PUBLIRACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'Electrotechnioue de l'universite a belgrade

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESET PHYSIQUE
Nz 202 (1967)

ON CERTAIN TRIANGLES INSCRIBED IN A GIVEN TRIANGLE*

O. Bottema

On the sides $B C, C A, A B$ of a given triangle $A B C$ we take the points $A^{\prime}, B^{\prime}, C^{\prime}$ so that $B A^{\prime}=C B^{\prime}=A C^{\prime}=x$. The case $x \leqslant \min (a, b, c)$ has recently been considered by Ž. Živanović [1], who arrived at an inequality for the area O^{\prime} of the triangle $A^{\prime} B^{\prime} C^{\prime}$. We make here some remarks on the case that x is unrestricted, so that one or more vertices of $A^{\prime} B^{\prime} C^{\prime}$ may lie on the extended sides of $A B C$.

If O is the area of $A B C$ then

$$
\begin{equation*}
O^{\prime}=O\left[1-\frac{x(c-x)}{a c}-\frac{x(a-x)}{b a}-\frac{x(b-x)}{c b}\right] \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
O^{\prime}=\frac{1}{4 R} \cdot Q(x) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x) \equiv(a+b+c) x^{2}-(b c+c a+a b) x+a b c . \tag{3}
\end{equation*}
$$

If $Q<0$ we have $O^{\prime}<0$, which means that the orientation of $A^{\prime} B^{\prime} C^{\prime}$ is opposite to that of $A B C$; if $Q=0$ the points A^{\prime}, B^{\prime} and C^{\prime} are collinear. The discriminant D of Q reads

$$
\begin{equation*}
D \equiv b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}-2 a^{2} b c-2 a b^{2} c-2 a b c^{2} . \tag{4}
\end{equation*}
$$

If $D<0$ the function Q is positive definite and all triangles $A^{\prime} B^{\prime} C^{\prime}$ have the same orientation as $A B C$; if $D=0$ there is one (positive) value of x for which A^{\prime}, B^{\prime} and C^{\prime} are collinear; for $D>0$ there are two (positive) values of x, let us say x_{1} and x_{2}, for which A^{\prime}, B^{\prime} and C^{\prime} are collinear and for $x_{1}<x<x_{2}$ $A^{\prime} B^{\prime} C^{\prime}$ has an orientation which is the reverse of that of $A B C$.

All three cases occur: when $a=b=c$ then $D<0 ; a: b: c=1: 4: 4$ implies $D=0$; when $a: b: c=1: 5: 5$ we have $D>0$.

If the sides of a triangle are p, q, r and F is its area then

$$
\begin{equation*}
16 F^{2}=-p^{4}-q^{4}-r^{4}+2 q^{2} r^{2}+2 r^{2} p^{2}+2 p^{2} q^{2} . \tag{5}
\end{equation*}
$$

[^0]Having compared this with (4) we conclude: if a (real, non-degenerated) triangle with the sides $\sqrt{b c}, \sqrt{c a}$ and $\sqrt{a b}$ exists, then $D<0$; if one of these lines is greater than the sum of the other two, then $D>0$.

A triangle will be called special if $D=0$. If $a \geqslant b \geqslant c$ then the triangle is special if $\sqrt{a b}=\sqrt{b c}+\sqrt{c a}$.

If an equilateral triangle $P_{1} P_{2} P_{3}$ is given and a, b, c are the barycentric coordinates of a point P with respect to this triangle, then P will be called the image point of the triangle $A B C$ the sides of which are proportional to a, b and c. The image points of real, non-degenerated triangles are inside the triangle $P_{1}{ }^{\prime} P_{2}{ }^{\prime} P_{3}^{\prime}$, the vertices of which are the midpoints of $P_{2} P_{3}, P_{3} P_{1}, P_{1} P_{2}$ (fig. 1).
$D=0$ is the equation of a curve K of the fourth order and it is easily seen from (4) that it has cusps in the points P_{1}, P_{2} and P_{3}, the cuspidal tangents being $b=c, c=a$ and $a=b$. Moreover, if we write

$$
\begin{equation*}
D \equiv(b c+c a+a b)^{2}-4 a b c(a+b+c) \tag{6}
\end{equation*}
$$

we see that K is tangent to the line at infinity
 $(a+b+c=0)$ at the isotropic points of the plane.
In view of a theorem of Cremona [2], these characteristics are sufficient to conclude that K is Steiner's hypocycloid. Hence the theorem: the locus of the image points of special triangles consists of the three arcs of Steiner's hypocycloid which lie inside the triangle $P_{1}{ }^{\prime} P_{2}{ }^{\prime} P_{3}{ }^{\prime}$.
K is a rational curve. A representation in parametric form reads

$$
\begin{equation*}
a=t^{2}(1-t)^{2}, \quad b=(1-t)^{2}, \quad c=t^{2} \tag{7}
\end{equation*}
$$

which obviously satisfies

$$
\begin{equation*}
\sqrt{b c} \pm \sqrt{c a} \pm \sqrt{a b}=0 . \tag{8}
\end{equation*}
$$

The two real points of intersection of K and $P_{1}{ }^{\prime} P_{2}{ }^{\prime}(a+b-c=0)$ are given by the roots t_{1} and t_{2} of $t+t^{-1}=\sqrt{2}+1$, those of K and $P_{2}^{\prime} P_{3}^{\prime}$ by $t_{i}\left(t_{i}-1\right)^{-1}$, those of K and $P_{3}{ }^{\prime} P_{1}{ }^{\prime}$ by $1-t_{i}$.

The midpoints of the three arcs are $(1,4,4),(4,1,4)$ and $(4,4,1)$; they correspond to the only isosceles special triangles.

REFERENCES

[1] Z̆. Živanović, Certaines inégalités relatives au triangle, Ces Publications, № 181 № 196 (1967), 69-72.
[2] G. Loria, Spezielle algebraische und transzendente ebene Kurven I, Leipzig und Berlin 1910, p. 161.

[^0]: * Presented November 1, 1967 by D. S. Mitrinović.

