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§1. Introduction. Let M,, ..., M, be different points in Euclidean n-di-
mensional space E,. We shall consider a linear homogeneous functional equation

® f a; f(M+tM)=0.

i=1

where a; are real nonzero constants (weights), M is a variable point of E,, ¢ is
a real independent variable, and f an unknown real-valued function. We
assume that f(M) is defined for all MEE,.

It is evident that (1) has no nontrivial continuous solution if @, 4 - - - +
+a, #0.

Let .4 be a regular affine transformation of E,, and put A1 M =N,
A TM;=N,,
(2) g (M) =f(AM).

Then g satisfies the functional equation

k
3) a;g(N+1tN)=0.

i=1
The equality (2) gives one-to-one correspondence between the solutions of (1)
and (2). It enables us to obtain the solution of the functional equation (3)
when the solution of equation (1) is known.

We are interested in some particular cases of the functional equation

(1). These are ‘

4 af (x, y)+ bf (x+t, )+ cf (%, y+ )= f(x +rt, y+pi),
©) fO—t, )+ fx+8 )+ y+30=3f(x, y+1),

(6 FE—t )+ fx+6 )+ (% y+1+/3) =3 f(x, y+1/+/3),
Q) 2106 W HfEHE D)+ y+D)=4f(x+t/4, y+1]4).

The functional equation (6) is known as ,triangle‘‘ equation. In this paper
we prove (under weak regularity suppositions) that these equations have only

* Presented by D. S. Mitrinovic.
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polynomial solutions. We give explicit form of the solution of equations

(%), (6, (D).

§ 2. Auxiliary results. One-dimensional case of equation (1) has the form
k

® S aif(x+at)=0.

i=1

Following T. Popoviciu [4] we define the characteristic ,,polynomial* of the
equation (8)

K
(9 F(x)=> ax".
i<
If F()=F'(1)=---=F"D(1)=0, F"(1)#0 then we say that F(x) has

order m. These conditions are equivalent to

(U

a;a; =0 v=0,1,..., m—1),

1 i

a; a’m ?/:0.

M-

!

)
i

Consider the following transformations of the functional equation (8):(a)
multiplication by a constant a0, (b) substitution x->x -+ «t, (c) substitution
t—>pt where f# 0. The corresponding transformations of F(x) are: (a) F(x)
is multiplied by the same constant a=£0, (b) a; are substituted by a-+a;, (c)
x is substituted by xf where f 0. Characteristic ,,polynomials‘ which can be
obtained one from another by application of a finite number of these transfor-
mations are said to be equivalent. It is easy to see that equivalent characte-
ristic ,,polynomials“ have the same order.

Let us define the operation # by

fx+at)xaxf=af(x+at+p1).

We extend this definition by assuming that the operation is linear in
both factors. It may be verified that

(f(x+anF(x) *Gx)=f(x+at)*(F(x)G(x))

where F(x) and G (x) have the form (9). The equation (8) can be written
in the form f(x)* Fix)=0.

The m-th difference is defined by
m . ;{m .
AT =3 (7)o ih).
i=1

The following theorem is due to T. Popoviciu [4] (p. 57):

Theorem 1. If all o; are rational, m is the order of (9), then equation (8)
implies that

(10) AR f(x)=0,

where x, h are independent variables. Conversely, equation (10) implies (8).
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Z. Ciesielski has proved [2] the following theorem:

Theorem 2. Let f(x) be defined over (a,b) and Ayf(x)=0, and let f(x)
be bounded on a set E(a, b) of positive measure. Then f is continuous on (a, b).

By combining these two theorems we get:

Theorem 3. Let f(x) satisfy (8) with all a; rational, and let f(x) be bounded
on a set of positive measure. Then f(x) is continuous for all x.

It is well known that the general continuous solution of the functional
equation (10) is an arbitrary polynomial of degree less than m (cf. [4]).

Let u and » denote Lebesgue linear and plane measure respectively, and
let X (a)={(x,»)x=a}, Y(b)={(x, y)|y=b}.

Theorem 4. Let f(x,y) be defined for all x and y. Suppose that [ has the
following properties:

(P)) f(x,y) is bounded on a set SCE, and v(S)>0.

(P,) If f(x,y) is bounded on a set ACX (a) with p(A)>0 then f(a, ¥(
is a polynomial in y of degree less than k.

(Py) If f(x,y) is bounded on a set BZ Y (by with u(B)>0 then f(x, b)
is a polynomial in x of degree less than I.

Then f(x,y) is a polynomial in x and y whose degree in x resp. y is less
than | resp. k.

Proof. Let us put

Sc={yix, »ES), S,={x|(x, ) €S},

X={x|p(S)>0}, Y={y|u(S,)>0.
Property (P,) and

+ 00 + %
V()= [ uS)dx= [ u(S,)dy
imply that uw(X)>0, u(Y)>0. Let us choose different ;X (i=1, ..., ])
and different b, Y (j=1,..., k) and denote
L k sEL . t#j —b
PN-S S f(a,-,bj)(n — ) (H ’ )
=1 = s @i—ds i bj—b:

Since f(a;, b))=P(a;, b;) for all i and j, properties (P,) and (P;) imply that
f(ai, y)=P(a;, y) for all i and y,
f(x, b)=P(x, b;) for all j and x.
These equalities and properties (P,) and (P,) imply that
S, »)=P(x,p) for x € X and all y,
S, »)=P(x, ) for yc Y and all x.

4 Publikacije
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Now, these equalities and the properties (P,) and (P,) imply that f(x, y)=
=P (x, y) for all x and y.

Remark. It is evident that a similar result holds if instead of X (a) and
Y (b) we take any other two families of parallel straight lines.

§ 3. Statement of the results. Let D (a, b, ¢, p, r; x) be the determinant of
the third order | D;;| whose elements are given by

D, =ax® 4 bxP+rita—q(a+ ¢)—b (b+ ¢) x—abx?—abx1,
D, =ax?" 4 bxa+Pr—ax"—bx"+tP4, D,;=0, D, =a-+ bxP,
D,,= —xP", D,;=c, Dy =ax¥ +bx?P+rP4+a—q—bx,
D,, =a + bx%tPd—qx"—bxT+P,
Dy, = (a + b) x*—axa —bxriter,
Theorem 5. We assume that
1° a, b, ¢ are nonzero real constants such that a+b+c=1.
2° p, r are rational constants different from 0 and 1, and q=1-—p.
3° f(x, y) has property (P,) (see Theorem 4).
4° f(x, y) satisfies the functional equation (4).

Then f(x,y) is continuous in the whole plane and it is a polynomial in x
and vy, whose degree in x resp. y is less than the order of D(a, b, c, p, r; x)
resp. D(a, c, b, r, p; X). Moreover, these orders are at least 3.

By specialisation of Theorem 5 we obtain:

Theorem 6. If f(x, ) has property (P,) and satisfies the functional equa-
tion (4) with a=b=c=p=r=1/3, then f(x, y) is a linear combination of the
polynomials

(1 33y 00—, x(x+2y), y(r+2x), x 0 1

Conversely, any linear combination of these polynomials is a solution of this
special equation (4).

Corollary 1. If f(x, y) has property (P,) and satisfies the functional equa-
tion (5) then f(x, y) is a linear combination of the polynomials

(12) x(xz_y2)7 3x2_~y2, Xy, X, ), 1.

Corollary 2. If f(x, y) has property (P,) and satisfies the functional equa-
tion (6) then f(x, y) is a linear combination of the harmonic polynomials

(13) x3"3xy2’ xzfyz’ Xy, X, Y, L.

Theorem 7. If f(x, y) has property (P,)) and satisfies the functional equation (7)
then f(x,y) is a linear combination of the polynomials

(14) (x—=») Sx*+14xp+5y), x(x+3y), v(y=3x. x y L
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Conversely, any linear combination of these polynomials satisfies the functional
equation (7).

For related results on the functional equation (1) see {1], [3]. Our proof
is applicable to more general equations (4).

§ 4. Proof of Theorem 5. For fixed y and fixed ¢ we shall write
fx ) =a®), fx y+p D=4,

fO, y+ PP t+pP gy =y (x),  f(x, y+pt)=0(x),

S (x, y+pt+p*qt)=e(x),

SO, y+pt+pg)=C(x), f(x, y+1)=n(x).

Using the functional equation (4) we get
aa(X)+ba(x+0)+cn(x)=0(x+rs),
ad(x)+bd(x+qt)+cn(x)="C_(x+qro),
aa(x)+ba(x+pt)+cd(x)=p(x+prt),
aa(x)+ba(x+pt+pgt)+cl(x)=y (x+prt+pqrt),
af (x)+bp (x+pgr)+ co(x) =y (x+pgro),
af(x)+bp(x+qt+pqt)+cn(x)=e(x+qri+pgrt),
ad (x)+b6 (x+pgt) +cl(x)=e(x+pgrr).

By elimination of 8, v, 8, ¢, £, n from this system of equations we ob-
tain the functional equation satisfied by a(x). This equation has the form

(15) a(x)*F(x)=0,

where F(x) is the determinant

.
g a+bx 0 —x7 0 ¢
0 0 a+bxq —xqr c

a+ bxp —XxPr c 0 0
a+bxptre  —gxpr—pxpatpr —cxpr ¢ 0

0 a-+bxatrq —axqr—bxpa+ar  —cx4ar c

Subtract the first row from the second and fifth, multiply the second row by
¢, add the fourth row multiplied by x% to the second and fifth. We get (omit-
ting a scalar factor)

axar + bxptpr4+49r—ac—bex —axr—bxr+rq ¢ (d+bx9)
|
i
a+bxp —xPr c P
1
!

axar + bxptrqgtar—a—bx  a-+bx9+P9—ax*—bxrtr4  (a+b) x*—axqr—bxra:qr

4%
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Subtract the second row multiplied by a-+bx? from the first. Then we get
D(a, b, ¢, p, r; x). Hence, F(x) is equivalent to D (x). We have derived (15)
by assuming that ¢ is a constant. Now we can consider ¢ as a variable
but y remains fixed.

Considering the elements in the second row of D (x) we see that the co-
lumns of D(x) are linearly independent. Hence, F(x) is not identically zero.
Since p, ¢, r are rational we may use Theorem 3. It follows that f(x, y) has
the property (P;).

By symmetry (interchanging x and y, b and ¢, p and r) we conclude
that f(x, y) has the property (P,) (see Theorem 4).

We have assumed (3°) that f(x, ) has property (P,). By Theorem 4,
f(x,y) is a polynomial whose degree in x resp. y is less than the order of
D(a, b, c, p, r; x) resp. D(a, ¢, b, r, p; x).

It remains to prove that the order of D (x) is at least 3. If we substi-
tute x=1 in D(x) then the first and the third row will be zero. Hence,
D(1)=D'(1)=0. The derivative of the first row of D (x) is proportional to
(1, —1,0). The derivative of the third row of D(x) is proportional to (0,
—1,1). Since

1 =10
a+b —1 ¢ |=0,
0 —1 1

we conclude that D” (1) =0. This proves that the order of D (x) is at least 3.
We have

D" (1) =6 p? q (ar - br —bq) (bcqr —acr’—bcr? 4 abc —abp).

So, D’ (1)=£0 in general.

Theorems 6 and 7 are particular cases of Theorem 5 in which we are
able to determine the explicit form of the solution. This can be achieved by
substituting each homogeneous polynomial separately. Corollaries 1 and 2 are
obtained from Theorem 6 by applying appropriate affine transformations as
described in §1.
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