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1. Introduction. let a;, (k=1,...,n) be real numbers, and consider
(1.1) SO = T] 4@ =X+ 6, X" 4 -+ - 4Gy X €y
k=1

Then ¢, (k=1,..., n) is the k-th elementary symmetric function of the
a,(k=1, ...,n). We define ¢;=1 and ¢_,=0 (k=1, 2,..)).

The following result is valid (see [1], p. 52 or {2}, p. 117):
Theorem 1.1. If all zeros of a real polynomial f(x) are real, then
(1.2) Ck—y Crp1—C2<0 (k=1,...,n—1).

Applying this theorem to the polynomial

(x—1) f(x) (v a positive integer),

we get the following inequality
(1.3) (z (—l)f(f)ck-l_i) (z (- l)f(?)ckﬂ_i)
i=0 d i=0 !

_(é(;l):(:)ck_i)zgo (k=1,...,n—1).

For instance, if v=1 and v =2, this inequality becomes

(1.4) (Cx—1—Ck—2) (k41— ) < (c—C—y)?

and

(1.5) (Ck—1—2 €y + Ch3) (Cht1 —2 G+ Chy) S(Ck—2 Chy + ),
respectively.
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2. Preliminary rvesults. Let ¢, ,>c,>0. Then inequality (1.2) is equivalent to

Ch— Ck
i S < X
Ck Ck+1

»

whence

Ck— C
K1 < bk << 1’
Ck Ck+1
since ¢;<<cg+,. Thus,

Theorem 2.1. If k=1, ..., n—1, then ¢, .;>¢;,>0 => ¢, >cpy.
Similarly, we obtain the result:

Theorem 2.2. [f k=1, ..., n—1, then ¢, >¢;>0 = > cpeq.
The following theorems are also valid:

Theorem 2.3. If k=1,...,n—1, then

>0 >0 and e —2c+¢ >0

imply that
Cr—2 Cpy + €3 >0.
Theorem 2.4, If k=1, ..., n—1, then
O0<cr<<cr—y and ¢, —2c¢p_(+ >0
imply that

Cr+1—2 ¢+ - >0.

Theorems 2.1—2.4 are simple generalizations of theorems 1 and 2
proved by J. N. Darroch and J. Pitman [3].

We shall prove only theorem 2.4. Consider the inequality (1.4). Since
Cx— Ce—y<<0 by our assumption and ¢, —c,<<0 by theorem 2.2, inequality
(1.4) is equivalent to

Clk—1—Chk— Ck—Ck—
(21) 1 k—2 < 1
Ck — Ck—, Ck+1—Ck

We have assumed also that
Ck—2 Cpq + Ch—y >0, 1€, CL—Cpy > Choq—Cisps
so that
Ck—1—Ck—2

Ck—Ck—1

1<

From (2.1) and the last inequality we get

Ck—Cl—
Ck+1—Ck
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Since ¢z, —cx<<0, the latter is equivalent to
Crt1— Ck > Ck—Cpmys 1805 Cpiy—2 ¢+ €4 >0,

which we had to prove.
Next we prove the following two preliminary theorems:

Theorem 2.5. [f

2.2) Cri—3 ¢+ 3cpy—Cry >0,
(2.3) Ck—2Cpy+ ey >0,
(2.4) Ch_y—Cr_py >0,

and

(2.5) ck—y >0,

then

(2.6) Ce—3C—y + 3 Cp—py—C3—3>0.

Proof. Starting with (1.5) we have

Ck+1—2 Ck+Ck—, < Ccr—2 Cp—y+ Ck—2
~

(2.7

Ck—=2Ch—y+Ch—y  Ch——2Ch— 5+ Ck—y ’
since, by (2.3), (2.4) and (2.9),

(2.8) cr—2¢C,y+ >0 and ¢, —2c¢p,+ 3y > 0.
From (2.2) it follows that

Ceyr—2 0k + ey > € — 2 Gy + Cry,

1. e.,
Chpy—2 Ck+ Ch—y >1.
Ck—2Ck—+Ck—,
From this result and (2.7), we obtain
1< Gk 2 k=1 ¥ Choz
Cik—1—2 Ch— 5+ Ck—s
Since ¢y —2 ¢k, +¢;3>>0, the latter is equivalent to
Cho1—2 ChmpF Ch3y < Ck—2Chy + Co_ys
i. e.,

O0<er—3c+3c—r—cCrs,

whence the truth of (2.6) follows.



24 ' Dragoslav S. Mitrinovic¢

Theorem 2.6, If

2.9 ag—3c  +3c—c—3 <0,
(2.10) k—2C 1+ Ck—y >0,
2.1 : Cp—Cr—y << 0,

and

2.12) ¢ >0,

then

2.13) Cro1— 3+ 3 j—cr—y <0,

Proof. We start with inequality (1.5). By theorem 2.4 and hypotheses (2.10),
(2.11) and (2.12) we have

Crpr—2¢+ ¢y >0 and ¢, —2 ¢+, > 0.
Then inequality (1.5) is equivalent to

(2‘14) Clomq—2 Ch—y+ Ck—4 < Ck—2Chk—y+ Che—y

C—2Ch— g+ Cl—, = Cii1—2 Cic+ C—, ’
Inequality (2.9) is equivalent to

k=2 ¢yt Ch—y < Cp—y—2 Cmy + Cr—3;
i.e.,

(2.15) 1<

Clmy—2 Ch— g+ Cl—y

Ck—2 Cpy+ Ck—s

Inequalities (2.14) and (2.15) yield

Ck—2Ch— g+ Cl—
1<k k-1 k-2

Cht—2 Ck+Ch—y
from which (2.13) follows immediately.

3. Main results. The results mentioned in §2 suggest that some more general
theorems might hold.
We shall now use the notation

Ame, = éo (=1 ('In) Crii-

Theorem 3.1. Let k and v be fixed natural numbers and, for p=0,1, ..., v, let

@.1) (—1)P AP ¢y, 05
then

(3.2) (—1) A ¢, >0.
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Proof. For »=1, 2, 3 and each k=1, ..., n—1 theorem 3.1 reduces to theo-
rems 2.1, 2.3, 2.5. Let us assume that theorem 3.1 holds for »—1 and all
k=1, ...,n—1; i. e. that the inequalities

(3.3) (-D?A? ¢y >0 (p=0,1,...,7—1)
imply that
(3.4 (=D A g, >0.

In this case inequality (1.3) becomes
(3.5 Aty A oy, KA H ek py )

On the basis of (3.2) for p=v—1 and (3.4), inequality (3.5) is equi-
valent to
AV
Aﬂ

v—1
A Ch—vt1
v—1
A ¢

—1
Ch—vi2

(3.6)

~=

'
Ck—yt1 —

Inequality (3.1) for p=» is equivalent to
(— l)v—1 A=t Cr—vi2y > (_' l)v—l A'_l Cxk—v+ys

wherefrom it follows that
r—1
A ck—v+2

EX) 1< o

Ck—vt1
From (3.6) and (3.7) we obtain

y—1
A kvl

1<
-
AT g

This inequality is equivalent to
(_ l)v—l Av—l Ck~v<("" l)v—] Av—l Chmyt1s
whence we obtain the inequality (3.2). This proves the theorem 3.1.

We can also prove the following theorems:

Theorem 3.2. If s and k are natural numbers and

A ,>0 (r=0,1,...,25%),
then
A% ¢ p544>0.

Theorem 3.3. If s and k are natural numbers and

AP ¢, >0 (p=0,1,...,2s5+1),
then
AZs+1 ck—2s>0'
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Proof. The proof of these theorems is by induction using the following schema:
Let P(v) denote some property. If

P(2s5s—1) => P(2s),
and .
P(2s)y > P(2s+1),
then also
P = P@+1).
Let us assume that the inequalities

Ar¢_,>0 (r=0,1,...,2s—-1)

imply A%-1¢,_, . ,>0. Now, if A>¢,_, >0, we shall prove that A2 ¢, _, ., ,>0.
In order to prove this fact, we start with

25—1 251 25—1 2
A?s Ck—zs'A ST gty S (AT ey 00

This inequality is equivalent to

(3 8) Azs—l ck_zs‘ Azs——l

2s5—1
A Ck—25+1

Ck—25+1
= a2s5—1 °
A Ck—25+2

The inequality A2S¢,_,,>0 is equivalent to the following

Aoy pop <Al
i. e.,

AZS—] s
3.9 1<—ZT——S'
A% Ck—2s5+1

From (3.8) and (3.9) we deduce

2s—1

1< A Ck—25+1

AZS*I

Cr 2512

whence

)

-1 25— ; 2
A2l g oy <A o piyy, 1€y A% eppe4,>0.

Now suppose that the inequalities

AP ep_p>0 (p=0,1,...,29)

imply A%s¢,_,,,,>0. If A¥+l¢ . >0 it can be proved by the similar
arguments that A%stl¢ _, >0.

Hence, by the above arguments and theorems 2.4 and 2.6, theorems
3.2 and 3.3 are proved inductively.
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4. Generalization. We can apply our procedure to
(x—a) (x—ay) -+ - (x—a,) (cgx"+e, X" 1+ -+ x+0¢,)
:AO xn+v+A1 xn+v_1 + o +An+v-—1 X +An+v’

where a,, ..., a, are real numbers to obtain more general results than those
we have proved.

It is also possible to modify the systems of conditional inequalities in
§2 and § 3.

5. Remark. Let us consider the polynomial
(x—a) (cogX"+ e, x" oo s L X+ 0y,
where a is a real number. Then inequality (1.2) becomes
(Ck—1—0 Cx—p) (Chy—a ) (e —a k)’
i. e., for every real a the following inequality is valid
5.1 (Chomy Cl—Ck—12) A2+ (Crmy Ck—Ch—y Ck—y) A+ (Cp—y Chty— D) <0,
where, according to (1.2),
(5.2) Chy Ct—C—1> <0 k=1,...,n—1).
From (5.1) and (5.2) we get

(Ck—y Ck—Cr—; Crv1)’—4 (Ch—1 Cht1 —Ckz) (Cr—p Cx— k- ) <0.

Dr S. B. Pre%i¢ and Dr D. Z. Pokovi¢ have read this Note in manus-
cript and made valuable comments.
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