PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA – SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 179 (1966)

A PROBLEM IN GEOMETRICAL PROBABILITY*

D. Ž. Djoković

Introduction

If n-1 points are chosen at random on a given line segment of length a. we denote by m the maximal length of n intervals between consecutive points. In this paper we find the probability distribution function of m. For n=3this problem is solved in many textbooks on probability, for instance in [3], p. 56, 185. For arbitrary n the probability of m < a/2 was found by H. H. Brazier [1], G. A. Bull [2], S. Rushton [4]. Of course, this probability is the value of the distribution function at x = a/2. I give two approaches to the problem: an analytic and a second one geometric. This second approach, similar to that of Brazier, is more effective.

We apply our Theorem to find the probability that n points chosen at random on a circle will lie all on some arc of length φ . This is a generalisation (for n=2) of a problem solved by J. G. Wendel [5]: If N points are scattered at random on the surface of the unit sphere in E^n , what is the probability that all the points lie on some hemisphere? The generalisation which we have in mind is: What is the probability that all N points lie on some portion of the sphere which has a given form?

Analytic approach

On a straight line segment AB of length a the n-1 points A_1, \ldots, A_{n-1} are chosen at random. AB is divided into n parts by these points; we denote by x_i $(i=1, \ldots, n)$ the length of the *i*-th part counted from A. Let $F_n^a(x)$ be the probability distribution function of the random variable $m = \max x_i$. $1 \leq i \leq n$

For at least one *i* we have $x_i \ge a/n$. Hence

 $F_n^a(x) = 0 \qquad (x \leq a/n)$ $= 1 \qquad (x > a).$ $F_1^a(x) = 0 \qquad (x \le a)$ $= 1 \qquad (x > a).$ (x > a).

If n = 1 we obtain

* Presented November 20, 1966 by D. S. Mitrinović.

D. Ž. Djoković

Assume that the position of A_1 is known $AA_1 = t$. The probability that exactly k-1 $(k=1, \ldots, n-1)$ points among A_i $(i=2, \ldots, n-1)$ lie on AA_1 is

$$\binom{n-2}{k-1}\left(\frac{t}{a}\right)^{k-1}\left(\frac{a-t}{a}\right)^{n-k-1}$$

If exactly k-1 points A_i $(i=2, \ldots, n-1)$ lie on AA_1 the probability that the maximal part of AA_1 is not greater than x is $F'_k(x)$; the probability that in this case the maximal part of A_1B is not greater than x is $F^{a-t}_{n-k}(x)$. Thus for $n \ge 2$ we obtain

(1)
$$F_n^a(x) = \frac{1}{a^{n-1}} \sum_{k=1}^{n-1} {n-2 \choose k-1} \int_0^\infty t^{k-1} (a-t)^{n-k-1} F_k^t(x) F_{n-k}^{a-t}(x) dt.$$

With $a^{n-1}F_n^a(x) = G_n^a(x)$ we have

$$G_n^a(x) = \sum_{k=1}^{n-1} {n-2 \choose k-1} \int_0^a G_k^t(x) \ G_{n-k}^{a-t}(x) \ dt \qquad (n \ge 2).$$

Using this recurrent relation we find successively

$$\begin{aligned} F_2^a(x) &= 0 & (u < 1/2) \\ &= 2u - 1 & (1/2 < u < 1) \\ &= 1 = (2u - 1) - 2(u - 1) & (1 < u), \end{aligned}$$

$$\begin{aligned} F_3^a(x) &= 0 & (u < 1/3) \\ &= (3u - 1)^2 & (1/3 < u < 1/2) \\ &= (3u - 1)^2 - 3(2u - 1)^2 & (1/2 < u < 1) \\ &= 1 = (3u - 1)^2 - 3(2u - 1)^2 + 3(u - 1)^2 & (1 < u), \end{aligned}$$

$$\begin{aligned} F_4^a(x) &= 0 & (u < 1/4) \\ &= (4u - 1)^3 & (1/4 < u < 1/3) \\ &= (4u - 1)^3 - 4(3u - 1)^3 & (1/3 < u < 1/2) \\ &= (4u - 1)^3 - 4(3u - 1)^3 + 6(2u - 1)^3 & (1/2 < u < 1) \end{aligned}$$

$$= 1 = (4u-1)^3 - 4(3u-1)^3 + 6(2u-1)^3 - 4(u-1)^3 \quad (1 < u),$$

where u = x/a. Now we can guess the general formula

(2)
$$F_n^a(x) = 0$$
 $(x < a/n)$
= $\sum_{r=0}^k (-1)^r {n \choose r} \left[(n-r) \frac{x}{a} - 1 \right]^{n-1}$ $\left(\frac{a}{n-k} < x < \frac{a}{n-k-1}; k = 0, 1, ..., n-1 \right).$

For k = n-1 we have $a < x < +\infty$ and the following identity must hold

$$\sum_{r=0}^{n-1} (-1)^r \binom{n}{r} [(n-r)u-1]^{n-1} = 1,$$

$$\sum_{r=1}^n (-1)^r \binom{n}{r} (ru-1)^{n-1} = 0.$$

i.e.

From this identity we get the known identities

$$\sum_{r=0}^{n} (-1)^{r} {n \choose r} r^{k} = 0 \qquad (k = 0, 1, \ldots, n-1).$$

I could not prove (2) on the basis of (1).

Geometric approach

We shall prove the following

Theorem. The probability distribution function $F_n^a(x)$ of the random variable m is given by (2).

It is sufficient to prove the theorem in the case a = 1, u = x/a = x. The elementary events of our experiment can be represented by points $X = (x_1, \ldots, x_n)$ in E^n . The sample space is (n-1)-dimensional regular simplex T defined by

$$\begin{array}{cc} x_i \geq 0 & (i=1, \ldots, n) \\ x_1 + \cdots + x_n = 1 \end{array} \end{array} \right\} T$$

Its vertices are

 $P_i = (\underbrace{0, \ldots, 0}_{i-1}, 1, 0, \ldots, 0)$ $(i = 1, \ldots, n).$

The volume of T is (3)

For $u \in (-\infty, +\infty)$ we define a set S^u as the set of all points $X = (x_1, \ldots, x_n)$ such that

 $V(T) = \sqrt{n}/(n-1)!$.

$$x_i \leq u \qquad (i=1, \ldots, n) \\ x_1 + \cdots + x_n = 1$$
 S^u

The favorable cases to $m \leq u$ correspond to $X \in S^u \cap T$. Hence

(4)
$$F_n^1(u) = \frac{V(S^u \cap T)}{V(T)}.$$

If u < 1/n we have $S^u \cap T = \emptyset$, $F_n^1(u) = 0$. If $u \ge 1$ then $S^u \cap T = T$, $F_n^1(u) = 1$.

Lemma 1. If u > 1/n then S^u is (n-1)-dimensional regular simplex with vertices

$$Q_i = (\underbrace{u, \ldots, u}_{i-1}, 1 - (n-1)u, u, \ldots, u)$$
 $(i = 1, \ldots, n).$

D. Ž. Djoković

Proof of Lemma 1. S^u is convex since it is defined as an intersection of a finite number of closed halfspaces. Clearly, $Q_i \in S^u$ (i = 1, ..., n). The convex hull of Q_i (i = 1, ..., n) (it is a regular simplex) is contained in S^u . It remains to prove that each point $X = (x_1, ..., x_n) \in S^u$ has a representation $X = \lambda_1 Q_1 + \cdots + \lambda_n Q_n$, with $\lambda_i \ge 0$ (i = 1, ..., n) and $\lambda_1 + \cdots + \lambda_n = 1$. We can take $\lambda_i = (u - x_i)/(nu - 1)$ (i = 1, ..., n).

Lemma 2. If u > 1/(n-k) (k = 0, 1, ..., n-1) the set $S_{12...k}^u$ of all points $X = (x_1, ..., x_n) \in S^u$ which satisfy $x_i \leq 0$ (i = 1, ..., k) is (n-1)-dimensional regular simplex with vertices

$$R_{i} = (0, \dots, 0, 1 - (n-k)u, 0, \dots, 0, u, \dots, u) \quad (i = 1, \dots, k)$$

$$R_{k+i} = (0, \dots, 0, u, \dots, u, 1 - (n-k-1)u, u, \dots, u) \quad (i = 1, \dots, n-k).$$

Proof of Lemma 2. $S_{12}^{\mu} \dots k$ is convex since it is the intersection of S^{μ} and k closed halfspaces $x_i \leq 0$ $(i = 1, \dots, k)$. Clearly, $R_i \in S_{12}^{\mu} \dots k$ $(i = 1, \dots, n)$. The convex hull of R_i $(i = 1, \dots, n)$ (it is a regular simplex) is contained in $S_{12}^{\mu} \dots k$. It remains to prove that each point $X = (x_1, \dots, x_n) \in S_{12}^{\mu} \dots k$ has a representation $X = \lambda_1 R_1 + \dots + \lambda_n R_n$, with $\lambda_i \geq 0$ $(i = 1, \dots, n)$, $\lambda_1 +$ $+ \dots + \lambda_n = 1$. Since $X \in S_{12}^{\mu} \dots k \subset S^{\mu}$ we have by Lemma 1 $X = \mu_1 Q_1 + \dots$ $\dots + \mu_n Q_n$ with $\mu_i \geq 0$ $(i = 1, \dots, n)$ and $\mu_1 + \dots + \mu_n = 1$. It follows that $x_i = u - \mu_i (nu - 1)$ $(i = 1, \dots, n)$ and that $\mu_i (nu - 1) \geq u$ $(i = 1, \dots, k)$. We can take

$$\lambda_{i} = \frac{\mu_{i} (nu-1) - u}{(n-k) u - 1} \qquad (i = 1, ..., k)$$

$$\lambda_{i} = \frac{\mu_{i} (nu-1)}{(n-k) u - 1} \qquad (i = k+1, ..., n),$$

which completes the proof.

If u > 1/(n-k) (k=0, 1, ..., n-1) we define analogously the regular simplex $S_{i_1,...,i_k}^u$ as the set of all points $X = (x_1, ..., x_n) \in S^u$ which satisfy $x_{i_r} \leq 0$ (r=1,...,k). If k=0 it reduces to S^u . Their volumes are

(5)
$$V(S_{i_1,\ldots,i_k}^u) = \frac{\sqrt{n}}{(n-1)!} ((n-k)u-1)^{n-1} \quad (k=0, 1, \ldots, n-1).$$

If
$$1/(n-k) < u < 1/(n-k-1)$$
 $(k=0, 1, ..., n-1)$ then

(6)
$$V(S^{u} \cap T) = V(S^{u}) - \sum_{i_{1}} V(S^{u}_{i_{1}}) + \sum_{i_{1}, i_{2}} V(S^{u}_{i_{1}, i_{2}}) - \cdots + (-1)^{k} \sum_{i_{1}, \dots, i_{k}} V(S^{u}_{i_{1}, \dots, i_{k}}).$$

Let $X = (x_1, \ldots, x_n)$ be an interior point of S^u such that $x_i \neq 0$ $(i = 1, \ldots, n)$. We choose a sufficiently small neighbourhood of X such that it has no points in common with coordinate hyperplanes. Assuming that X has exactly $r (\geq 1)$ negative coordinates x_{i_1}, \ldots, x_{i_r} we get $X \in S^u_{j_1,\ldots,j_s}$ iff j_1, \ldots, j_s is a subsequence of i_1, \ldots, i_r . From u > 1/(n-k) it follows that $r \leq k$. Now, we can conclude that the volume of a chosen neighbourhood of X is counted in the right hand side of (6) N_X times

$$N_{\chi} = 1 - \binom{r}{1} + \binom{r}{2} - \cdots + (-1)^{r} \binom{r}{r} = 0.$$

If r=0, i.e. $X \in S^u \cap T$ then the volume of a chosen neighbourhood of X is taken into account only in $V(S^u)$. This proves (6), and (2) is implied by (3), (4), (5) and (6).

Division of a circle

Let *n* points A_i (i = 1, ..., n) be chosen at random on circumference of the unit circle. We shall find the probability $\Phi_n(\varphi)$ that all these *n* points lie on some arc of length φ .

We denote by θ_i $(i=1, \ldots, n)$ the lengths of *n* arcs so obtained. The probability which we seek is equal to the probability that for at least one *i* we have $\theta_i \ge 2\pi - \varphi$, i.e.

$$\Phi_n(\varphi) = 1 - F_n^{2\pi} (2\pi - \varphi),$$

where $F_n^a(x)$ is given by (1). Hence,

$$\Phi_{n}(\varphi) = 0 \qquad (\varphi < 0)
= \sum_{s=1}^{m-1} (-1)^{n+s} {n \choose s} \left(s - 1 - \frac{s\varphi}{2\pi} \right)^{n-1} \left(2\pi \frac{m-2}{m-1} < \varphi < 2\pi \frac{m-1}{m}, \ m = 2, \dots, n \right)
= 1 \qquad \left(\varphi > 2\pi \frac{n-1}{n} \right).$$

REFERENCES

[1] H. H. BRAZIER: A problem in probability, Math. Gazette 19 (1935), № 234, p. 208-209.

[2] G. A. BULL: Math. Gazette 32 (1948), p. 87-88.

[3] M. GIRAULT: Calcul des probabilités en vue des applications, Paris 1964.

[4] S. RUSHTON: A broken stick, Math. Gazette 33 (1949), № 306, p. 286-288.

[5] J. G. WENDEL: A problem in geometric probability, Math. Scandinavica 11 (1962), p. 109-111.