PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnioue de l'universite i belgrade

A PROBLEM IN GEOMETRICAL PROBABILITY*

D. Z̈. Djoković

Introduction

If $n-1$ points are chosen at random on a given line segment of length a, we denote by m the maximal length of n intervals between consecutive points. In this paper we find the probability distribution function of m. For $n=3$ this problem is solved in many textbooks on probability, for instance in [3], p. 56, 185. For arbitrary n the probability of $m<a / 2$ was found by H. H. Brazier [1], G. A. Bull [2], S. Rushton [4]. Of course, this probability is the value of the distribution function at $x=a / 2$. I give two approaches to the problem: an analytic and a second one geometric. This second approach, similar to that of Brazier, is more effective.

We apply our Theorem to find the probability that n points chosen at random on a circle will lie all on some arc of length φ. This is a generalisation (for $n=2$) of a problem solved by J. G. Wendel [5]: If N points are scattered at random on the surface of the unit sphere in E^{n}, what is the probability that all the points lie on some hemisphere? The generalisation which we have in mind is: What is the probability that all N points lie on some portion of the sphere which has a given form?

Analytic appioach

On a straight line segment $A B$ of length a the $n-1$ points A_{1}, \ldots, A_{n-1} are chosen at random. $A B$ is divided into n parts by these points; we denote by $x_{i}(i=1, \ldots, n)$ the length of the i-th part counted from A. Let $F_{n}^{a}(x)$ be the probability distribution function of the random variable $m=\max _{1 \leqslant i \leqslant n} x_{i}$. For at least one i we have $x_{i} \geqslant a / n$. Hence

If $n=1$ we obtain

$$
\begin{aligned}
F_{n}^{a}(x) & =0 & & (x \leqslant a / n) \\
& =1 & & (x>a) .
\end{aligned}
$$

$$
\begin{aligned}
F_{1}^{a}(x) & =0 & & (x \leqslant a) \\
& =1 & & (x>a) .
\end{aligned}
$$

[^0]Assume that the position of A_{1} is known $A A_{1}=t$. The probability that exactly $k-1(k=1, \ldots, n-1)$ points among $A_{i}(i=2, \ldots, n-1)$ lie on $A A_{1}$ is

$$
\binom{n-2}{k-1}\left(\frac{t}{a}\right)^{k-1}\left(\frac{a-t}{a}\right)^{n-k-1} .
$$

If exactly $k-1$ points $A_{i}(i=2, \ldots, n-1)$ lie on $A A_{1}$ the probability that the maximal part of $A A_{1}$ is not greater than x is $F_{k}^{t}(x)$; the probability that in this case the maximal part of $A_{1} B$ is not greater than x is $F_{n-k}^{a-t}(x)$. Thus for $n \geqslant 2$ we obtain

$$
\begin{equation*}
F_{n}^{a}(x)=\frac{1}{a^{n-1}} \sum_{k=1}^{n-1}\binom{n-2}{k-1} \int_{0}^{a} t^{k-1}(a-t)^{n-k-1} F_{k}^{t}(x) F_{n-k}^{a-t}(x) d t \tag{1}
\end{equation*}
$$

With $a^{n-1} F_{n}^{a}(x)=G_{n}^{a}(x)$ we have

$$
G_{n}^{a}(x)=\sum_{k=1}^{n-1}\binom{n-2}{k-1} \int_{0}^{a} G_{k}^{t}(x) G_{n-k}^{a-t}(x) d t \quad(n \geqslant 2)
$$

Using this recurrent relation we find successively

$$
\begin{aligned}
F_{2}^{a}(x) & =0 & & (u<1 / 2) \\
& =2 u-1 & & (1 / 2<u<1) \\
& =1=(2 u-1)-2(u-1) & & (1<u),
\end{aligned}
$$

$$
\begin{aligned}
F_{3}^{a}(x) & =0 & & (u<1 / 3) \\
& =(3 u-1)^{2} & & (1 / 3<u<1 / 2) \\
& =(3 u-1)^{2}-3(2 u-1)^{2} & & (1 / 2<u<1) \\
& =1=(3 u-1)^{2}-3(2 u-1)^{2}+3(u-1)^{2} & & (1<u),
\end{aligned}
$$

$$
\begin{aligned}
F_{4}^{a}(x) & =0 & & (u<1 / 4) \\
& =(4 u-1)^{3} & & (1 / 4<u<1 / 3) \\
& =(4 u-1)^{3}-4(3 u-1)^{3} & & (1 / 3<u<1 / 2) \\
& =(4 u-1)^{3}-4(3 u-1)^{3}+6(2 u-1)^{3} & & (1 / 2<u<1) \\
& =1=(4 u-1)^{3}-4(3 u-1)^{3}+6(2 u-1)^{3}-4(u-1)^{3} & & (1<u),
\end{aligned}
$$

where $u=x / a$. Now we can guess the general formula

$$
\begin{array}{ll}
\text { (2) } \quad F_{n}^{a}(x)=0 & (x<a / n) \\
=\sum_{r=0}^{k}(-1)^{r}\binom{n}{r}\left[(n-r) \frac{x}{a}-1\right]^{n-1} & \left(\frac{a}{n-k}<x<\frac{a}{n-k-1} ; k=0,1, \ldots, n-1\right) .
\end{array}
$$

For $k=n-1$ we have $a<x<+\infty$ and the following identity must hold
i.e.

$$
\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{r}[(n-r) u-1]^{n-1}=1
$$

$$
\sum_{r=1}^{n}(-1)^{r}\binom{n}{r}(r u-1)^{n-1}=0 .
$$

From this identity we get the known identities

$$
\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} r^{k}=0 \quad(k=0,1, \ldots, n-1)
$$

I could not prove (2) on the basis of (1).

Geometric approach

We shall prove the following
Theorem. The probability distribution function $F_{n}^{a}(x)$ of the random variable m is given by (2).

It is sufficient to prove the theorem in the case $a=1, u=x / a=x$. The elementary events of our experiment can be represented by points $X=\left(x_{1}, \ldots, x_{n}\right)$ in E^{n}. The sample space is $(n-1)$-dimensional regular simplex T defined by

$$
\left.\begin{array}{c}
x_{i} \geqslant 0 \quad(i=1, \ldots, n) \\
x_{1}+\cdots+x_{n}=1
\end{array}\right\} T
$$

Its vertices are

$$
P_{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0) \quad(i=1, \ldots, n) .
$$

The volume of T is

$$
\begin{equation*}
V(T)=\sqrt{n} /(n-1)! \tag{3}
\end{equation*}
$$

For $u \in(-\infty,+\infty)$ we define a set S^{u} as the set of all points $X=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\left.\begin{array}{l}
x_{i} \leqslant u \quad(i=1, \ldots, n) \\
x_{1}+\cdots+x_{n}=1
\end{array}\right\} S^{u}
$$

The favorable cases to $m \leqslant u$ correspond to $X \in S^{u} \cap T$. Hence

$$
\begin{equation*}
F_{n}^{1}(u)=\frac{V\left(S^{u} \cap T\right)}{V(T)} . \tag{4}
\end{equation*}
$$

If $u<1 / n$ we have $S^{u} \cap T=\emptyset, F_{n}^{1}(u)=0$. If $u \geqslant 1$ then $S^{u} \cap T=T, F_{n}^{1}(u)=1$.
Lemma 1. If $u>1 / n$ then S^{u} is ($n-1$)-dimensional regular simplex with vertices

$$
Q_{i}=(\underbrace{, \ldots, u}_{i-1}, 1-(n-1) u, u, \ldots, u) \quad(i=1, \ldots, n) .
$$

Proof of Lemma 1. S^{u} is convex since it is defined as an intersection of a finite number of closed halfspaces. Clearly, $Q_{i} \in S^{u}(i=1, \ldots, n)$. The convex hull of $Q_{i}(i=1, \ldots, n)$ (it is a regular simplex) is contained in S^{u}. It remains to prove that each point $X=\left(x_{1}, \ldots, x_{n}\right) \in S^{u}$ has a representation $X=\lambda_{1} Q_{1}+\cdots+\lambda_{n} Q_{n}$, with $\lambda_{i} \geqslant 0(i=1, \ldots, n)$ and $\lambda_{1}+\cdots+\lambda_{n}=1$. We can take $\lambda_{i}=\left(u-x_{i}\right) /(n u-1)(i=1, \ldots, n)$.

Lemma 2. If $u>1 /(n-k)(k=0,1, \ldots, n-1)$ the set $S_{12 \ldots k}^{u}$ of all points $X=\left(x_{1}, \ldots, x_{n}\right) \in S^{u}$ which satisfy $x_{i} \leqslant 0(i=1, \ldots, k)$ is $(n-1)$-dimensional regular simplex with vertices

$$
\begin{aligned}
R_{i} & =(\underbrace{0, \ldots, 0}_{i-1}, 1-(n-k) u, 0, \ldots, 0, \underbrace{u, \ldots, u}_{n-k}) \quad(i=1, \ldots, k) \\
R_{k+i} & =(\underbrace{0, \ldots,}_{k} 0, \underbrace{u, \ldots, u}_{i-1}, 1-(n-k-1) u, u, \ldots, u) \quad(i=1, \ldots, n-k) .
\end{aligned}
$$

Proof of Lemma 2. $S_{12}^{u} \ldots k$ is convex since it is the intersection of S^{u} and k closed halfspaces $x_{i} \leqslant 0(i=1, \ldots, k)$. Clearly, $R_{i} \in S_{12 \ldots k}^{u}(i=1, \ldots, n)$. The convex hull of $R_{i}(i=1, \ldots, n)$ (it is a regular simplex) is contained in $S_{12 \ldots k}^{u}$. It remains to prove that each point $X=\left(x_{1}, \ldots, x_{n}\right) \in S_{12}^{\mu} \ldots k$ has a representation $X=\lambda_{1} R_{1}+\cdots+\lambda_{n} R_{n}$, with $\lambda_{i} \geqslant 0(i=1, \ldots, n), \lambda_{1}+$ $+\cdots+\lambda_{n}=1$. Since $X \in S_{12}^{u} \ldots k \subset S^{u}$ we have by Lemma $1 \quad X=\mu_{1} Q_{1}+$ $\cdots+\mu_{n} Q_{n}$ with $\mu_{i} \geqslant 0(i=1, \ldots, n)$ and $\mu_{1}+\cdots+\mu_{n}=1$. It follows that $x_{i}=u-\mu_{i}(n u-1)(i=1, \ldots, n)$ and that $\mu_{i}(n u-1) \geqslant u(i=1, \ldots, k)$. We can take

$$
\begin{aligned}
& \lambda_{i}=\frac{\mu_{i}(n u-1)-u}{(n-k) u-1} \quad(i=1, \ldots, k) \\
& \lambda_{i}=\frac{\mu_{i}(n u-1)}{(n-k) u-1} \quad(i=k+1, \ldots, n)
\end{aligned}
$$

which completes the proof.
If $u>1 /(n-k)(k=0,1, \ldots, n-1)$ we define analogously the regular simplex $S_{i_{1}, \ldots, i_{k}}^{u}$ as the set of all points $X=\left(x_{1}, \ldots, x_{n}\right) \in S^{u}$ which satisfy $x_{i_{r}} \leqslant 0(r=1, \ldots, k)$. If $k=0$ it reduces to S^{u}. Their volumes are

$$
\begin{equation*}
V\left(S_{i_{1}}^{u}, \ldots, i_{k}\right)=\frac{\sqrt{n}}{(n-1)!}((n-k) u-1)^{n-1} \quad(k=0,1, \ldots, n-1) \tag{5}
\end{equation*}
$$

If $1 /(n-k)<u<1 /(n-k-1)(k=0,1, \ldots, n-1)$ then

$$
\begin{align*}
& V\left(S^{u} \cap T\right)=V\left(S^{u}\right)-\sum_{i_{1}} V\left(S_{i_{1}}^{u}\right)+\sum_{i_{1}, i_{2}} V\left(S_{i_{1}, i_{2}}^{u}\right)-\cdots \tag{6}\\
&+(-1)^{k} \sum_{i_{1}, \ldots, i_{k}} V\left(S_{i_{1}, \ldots, i_{k}}^{u}\right)
\end{align*}
$$

Let $X=\left(x_{1}, \ldots, x_{n}\right)$ be an interior point of S^{u} such that $x_{i} \neq 0(i=1, \ldots, n)$. We choose a sufficiently small neighbourhood of X such that it has no points in common with coordinate hyperplanes. Assuming that X has exactly $r(\geqslant 1)$
negative coordinates $x_{i_{1}}, \ldots, x_{i_{r}}$ we get $X \in S_{j_{1}, \ldots, j_{s}}^{u}$ iff j_{1}, \ldots, j_{s} is a subsequence of i_{1}, \ldots, i_{r}. From $u>1 /(n-k)$ it follows that $r \leqslant k$. Now, we can conclude that the volume of a chosen neighbourhood of X is counted in the right hand side of (6) N_{X} times

$$
N_{X}=1-\binom{r}{1}+\binom{r}{2}-\cdots+(-1)^{r}\binom{r}{r}=0 .
$$

If $r=0$, i.e. $X \in S^{u} \cap T$ then the volume of a chosen neighbourhood of X is taken into account only in $V\left(S^{u}\right)$. This proves (6), and (2) is implied by (3), (4), (5) and (6).

Division of a circle

Let n points $A_{i}(i=1, \ldots, n)$ be chosen at random on circumference of the unit circle. We shall find the probability $\Phi_{n}(\varphi)$ that all these n points lie on some are of length φ.

We denote by $\theta_{i}(i=1, \ldots, n)$ the lengths of n arcs so obtained. The probability which we seek is equal to the probability that for at least one i we have $\theta_{t} \geqslant 2 \pi-\varphi$, i.e.

$$
\Phi_{n}(\varphi)=1-F_{n}^{2 \pi}(2 \pi-\varphi),
$$

where $F_{n}^{a}(x)$ is given by (1). Hence,

$$
\begin{array}{rlrl}
\Phi_{n}(\varphi) & =0 & & (\varphi<0) \\
& =\sum_{s=1}^{m-1}(-1)^{n+s}\binom{n}{s}\left(s-1-\frac{s \varphi}{2 \pi}\right)^{n-1} & \left(2 \pi \frac{m-2}{m-1}<\varphi<2 \pi \frac{m-1}{m}, m=2, \ldots, n\right) \\
& =1 & & \left(\varphi>2 \pi \frac{n-1}{n}\right) .
\end{array}
$$

REFERENCES

[1] H. H. Brazier: A problem in probability, Math. Gazette 19 (1935), № 234, p. 208-209.
[2] G. A. Bull: Math. Gazette 32 (1948), p. 87-88.
[3] M. Girault: Calcul des probabilités en vue des applications, Paris 1964.
[4] S. Rushton: A broken stick, Math. Gazette 33 (1949), № 306, p. 286-288.
[5] J. G. Wendel: A problem in geometric probability, Math. Scandinavica 11 (1962), p. 109-111.

[^0]: * Presented November 20, 1966 by D. S. Mitrinović.

