PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade

No 152 (1965)

A SPECIAL CYCLIC FUNCTIONAL EQUATION*

Dragomir Ž. Djoković

1. Introduction. - Let $F_{i}(x, y), i=1, \ldots, m+n$ be unknown real valued functions of two real variables, which sat'sfy

$$
\begin{equation*}
\sum_{i=1}^{m+n} F_{i}\left(x_{i}+x_{i+1}+\cdots+x_{i+m-1}, x_{i+m}+x_{i+m+1}+\cdots+x_{i+m+n-1}\right)=0 \tag{1}
\end{equation*}
$$

where $x_{i}, i=1, \ldots, m+n$ are independent variables and $x_{i+m+n}=x_{i}, i=1$, 2,... In [2] the general cont nuous solution of (1) is found. But, the argument given there is val.d only if the greatest common divisor of m and n is $(m, n)=1$. The general case is not solved, which will be done in this paper.
2. A Correction. - Let us restate the theorem from [2] in the correct form.

Theorem A. The general continuous solution of (1) if $(m, n)=1$, $m+n>2, m>0, n>0$, is

$$
\begin{equation*}
F_{i}(x, y)=(n x-m y) f(x+y)+g_{i}(x+y), \quad i=1, \ldots, m+n ; \tag{2}
\end{equation*}
$$

$$
\sum_{i=1}^{m+n} g_{i}(x)=0,
$$

where $f(x)$ and $g_{i}(x), i=1, \ldots, m+n-1$ are arbitrary continuous functions.
The proof of Theorem A which is given in [2] is valid since $(m, n)=1$ implies that the variables

$$
t_{i}=x_{i}+x_{i+1}+\cdots+x_{i+m-1}-\frac{m s}{m+n}, \quad i=1, \ldots, m+n-1 ;
$$

and

$$
s=x_{1}+x_{2}+\cdots+x_{m+n}
$$

are independent. In order to prove their independence we can use instead of $t_{i}, i=1, \ldots, m+n-1$ and s the variables

$$
\begin{equation*}
T_{i}=x_{i}+x_{i+1}+\cdots+x_{i+m-1}, \quad i=1, \ldots, m+n \tag{4}
\end{equation*}
$$

since

$$
t_{i}=T_{i}-\frac{1}{m+n} \sum_{i=1}^{m+n} T_{i}, \quad i=1, \ldots, m+n-1 ; \quad s=\frac{1}{m} \sum_{i=1}^{m+n} T_{i}
$$

[^0]and
\[

$$
\begin{aligned}
& T_{i}=t_{i}+\frac{m s}{m+n}, \quad i=1, \ldots, m+n-1 ; \\
& T_{m+n}=-\left(t_{1}+t_{2}+\cdots+t_{m+n-1}\right)+\frac{m s}{m+n} .
\end{aligned}
$$
\]

The determinant D of the system (4) of linear forms is a circulant whose first row is $\underbrace{1,1, \ldots, 1}_{m}, \underbrace{0,0, \ldots, 0}_{n}$.
Hence,

$$
D=\alpha(1) \alpha(\varepsilon) \alpha\left(\varepsilon^{2}\right) \cdots \alpha\left(\varepsilon^{m+n-1}\right)
$$

where

$$
\alpha(x)=1+x+x^{2}+\cdots+x^{m-1}=\frac{x^{m}-1}{x-1}, \quad \varepsilon=\exp \frac{2 \pi i}{m+n} .
$$

D will vanish if and only if for some $k=1, \ldots, m+n-1$ we have $\varepsilon^{k m}=1$, i.e. if and only if (m, n) >1. Hence, if $(m, n)=1$ the variables $T_{i}, i=1, \ldots$, $m+n$ are independent and so are the variables $t_{i}, i=1, \ldots, m+n-1$ and s.

A minor completion of the proof in [2] furnishes the following
Theorem B. The most general solution of (1) if $(m, n)=1, m+n>2$, $m>0, n>0$, is

$$
\begin{gather*}
F_{i}(x, y)=\varphi(n x-m y) f(x+y)+g_{i}(x+y), \quad i=1, \ldots, m+n ; \tag{5}\\
\sum_{i=1}^{m+n} g_{i}(x)=0 \tag{6}
\end{gather*}
$$

where $f(x)$ and $g_{i}(x), i=1, \ldots, m+n-1$ are arbitrary functions and $\varphi(x)$ is the general solution of the Cauchy functional equation

$$
\begin{equation*}
\varphi(x+y)=\varphi(x)+\varphi(y) . \tag{7}
\end{equation*}
$$

Remark. We can write the solution also in the following form

$$
\begin{gathered}
F_{i}(x, y)=\varphi(x) f(x+y)+g_{i}(x+y), \quad i=1, \ldots, m+n ; \\
\sum_{i=1}^{m+n} g_{i}(x)=-m \varphi(x) f(x) .
\end{gathered}
$$

Corollary 1. The most general solution of the functional equation

$$
\begin{equation*}
\sum_{i=1}^{m+n} G_{i}\left(x_{i}+x_{i+1}+\cdots+x_{i+m-1}, x_{1}+x_{2}+\cdots+x_{m+n}\right)=0 \tag{8}
\end{equation*}
$$

if $(m, n)=1, m+n>2, m>0, n>0$, is

$$
\begin{equation*}
G_{i}(x, y)=\varphi(x) f(y)+g_{i}(y), \quad i=1, \ldots, m+n \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{m+n} g_{i}(y)=-m \varphi(y) f(y) \tag{10}
\end{equation*}
$$

where $f(y)$ and $g_{i}(y), i=1, \ldots, m+n-1$ are arbitrary functions and $\varphi(x)$ is the general solution of (7).

Corollary 2. The most general solution of the functional equation

$$
\begin{gather*}
\sum_{i=1}^{m+n} H_{i}\left(x_{i}+x_{i+1}+\cdots+x_{i+m-1}, x_{1}+x_{2}+\cdots+x_{m+n}\right) \tag{11}\\
=H\left(x_{1}+x_{2}+\cdots+x_{m+n}\right)
\end{gather*}
$$

if $(m, n)=1, m+n>2, m>0, n>0$, is

$$
\begin{gather*}
H_{i}(x, y)=\varphi(x) f(y)+g_{i}(y), \quad i=1, \ldots, m+n \tag{12}\\
\sum_{i=1}^{m+n} g_{i}(y)=H(y)-m \varphi(y) f(y) \tag{13}
\end{gather*}
$$

where $f(y)$ and $g_{i}(y), i=1, \ldots, m+n-1$ are arbitrary functions and $\varphi(x)$ is the general solution of (7).

Proofs. Corollary 1 follows by putting $G_{i}(x, y)=F_{i}(x, y-x)$. Corollary 2 follows from Corollary 1 by introducing $G_{i}(x, y)=H_{i}(x, y)-H(y) /(m+n)$.
3. Main Results. - Firstly we prove

Theorem 1. The most general solution of the functional equation (8), if $(m, n)=d>1, m / d=\mu, n / d=\nu, \mu+\nu>2$, is
(14) $\quad G_{i d+j}(x, y)=\varphi^{j}(x) f^{j}(y)+g_{i}^{j}(y), \quad i=0,1, \ldots, \mu+\nu-1, j=1, \ldots, d$;

$$
\begin{gather*}
\sum_{j=1}^{d} H^{j}(y)=0 \tag{15}\\
\sum_{i=0}^{\mu+v-1} g_{i}^{j}(y)=H^{j}(y)-\mu \varphi^{j}(y) f^{j}(y), \quad j=1, \ldots, d, \tag{16}
\end{gather*}
$$

where $f^{j}(y), j=1, \ldots, d ; H^{j}(y), j=1, \ldots, d-1 ; g_{i}^{j}(y), j=1, \ldots, d$, $i=0,1, \ldots, \mu+\nu-2$ are arbitrary functions and $\varphi^{j}(y), j=1, \ldots, d$ are the general solutions of (7).

Proof. Let us introduce the new variables

$$
\begin{equation*}
y_{i}=x_{i}+x_{i+1}+\cdots+x_{i+d-1}, i=1, \ldots, m+n \quad\left(y_{i+m+n}=y_{i}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
z=x_{1}+x_{2}+\cdots+x_{m+n} \tag{18}
\end{equation*}
$$

They are not independent since

$$
\begin{equation*}
\sum_{i=0}^{\mu+\nu-1} y_{i d+j}=z, \quad j=1, \ldots, d . \tag{19}
\end{equation*}
$$

The variables $y_{i}, i=1, \ldots, m+n-d$, and z are independent since it is easy to see that the rank of the matrix of linear forms determining them is $m+n-d+1$. In the sequel we shall use all variables (17) and (18) but we must have allways in mind that (19) holds. The equation (8) is now

$$
\sum_{i=1}^{m+n} G_{i}\left(y_{i}+y_{i+d}+\cdots+y_{i+(\mu-1) d}, z\right)=0
$$

It can be rewritten in the form

$$
\sum_{j=1}^{d} \sum_{i=0}^{\mu+v-1} G_{i d+j}\left(y_{i d+j}+y_{(i+1) d+j}+\cdots+y_{(i+\mu-1) d+j}, z\right)=0 .
$$

If we sut here

$$
\begin{gathered}
y_{i d+j}=0, i=0,1, \ldots, \mu+\nu-2, j=1,2, \ldots, r-1, r+1, \ldots, d ; \\
y_{(\mu \div v-1) d+j=z}, j=1,2, \ldots, r-1, r+1, \ldots, d,
\end{gathered}
$$

we gct

$$
\sum_{i=0}^{\mu+\nu-1} G_{i d+r}\left(y_{i d+r}+y_{(i+1) d+r}+\cdots+y_{(i+\mu-1) d+r}, z\right)=H^{r}(z), r=1, \ldots, d
$$

and

$$
\sum_{r=1}^{d} H^{r}(z)=0 .
$$

Remembering that $(\mu, \nu)=1$ and by using Corollary 2 of Theorem B we get

$$
\begin{aligned}
G_{i d+r}(x, y) & =\varphi^{r}(x) f^{r}(y)+g_{i}^{r}(y), i=0,1, \ldots, \mu+\nu-1, r=1, \ldots, d ; \\
& \sum_{i=0}^{\mu+\nu-1} g_{i}^{r}(y)=H^{r}(y)-\mu \varphi^{r}(y) f^{r}(y), r=1, \ldots, d
\end{aligned}
$$

where $f^{r}(y), r=1, \ldots, d ; g_{i}^{r}(y), i=0,1, \ldots, \mu+\nu-2, r=1, \ldots, d$ are arbitrary functions and $\varphi^{r}(y), r=1, \ldots, d$ are the general solutions of (7).

Conversely, any system of functions $G_{i}(x, y), i=1, \ldots, m+n$ defined by (14), (15), (16) satisfies (8). This completes the proof.

Corollary 1. The most general solution of (1) if $(m, n)=d>1, m / d=\mu$, $n / d=\nu, \mu+\nu>2$, is
(20) $\quad F_{i d+j}(x, y)=\varphi^{j}(x) f^{j}(x+y)+g_{i}^{j}(x+y), i=0,1, \ldots, \mu+\nu-1, j=1, \ldots, d$;

$$
\begin{gather*}
\sum_{j=1}^{d} H^{j}(y)=0 \tag{21}\\
\sum_{i=0}^{\mu+\nu-1} g_{i}^{j}(y)=H^{j}(y)-\mu \varphi^{j}(y) f^{j}(y), j=1, \ldots, d \tag{22}
\end{gather*}
$$

where $f^{j}(y), j=1, \ldots, d ; H^{j}(y), j=1, \ldots, d-1 ; g_{i}{ }^{j}(y), j=1, \ldots, d, i=0,1$, $\ldots, \mu+\nu-2$ are arbitrary functions and $\varphi^{j}(x), j \ni 1, \ldots, d$ are the general solutions of (7).

Proof. Put $F_{i}(x, y)=G_{i}(x, x+y)$.
The exceptional case $m=n$ is solved by
Theorem 2. The most general solution of (8) if $m=n$ is

$$
\begin{align*}
& G_{i}(x, y), \quad i=1, \ldots, m, \text { are arbitrary; } \tag{23}\\
& G_{m+i}(x, y)=H_{i}(y)-G_{i}(y-x, y), \quad i=1, \ldots, m ; \tag{24}\\
& \qquad \sum_{i=1}^{m} H_{i}(y)=0 \tag{25}
\end{align*}
$$

where $H_{i}(y), i=1, \ldots, m-1$ are also arbitrary functions.

Proof. Putting in (14)

$$
y_{i}=x_{i}+x_{i+1}+\cdots+x_{i+m-1}, \quad i=1, \cdots, m ; \quad y=x_{1}+x_{2}+\cdots+x_{2 m}
$$

we get

$$
\sum_{i=1}^{m}\left[G_{i}\left(y_{i}, y\right)+G_{m+i}\left(y-y_{i}, y\right)\right]=0 .
$$

It follows that

$$
G_{i}\left(y_{i}, y\right)+G_{m+i}\left(y-y_{i}, y\right)=H_{i}(y), \quad i=1, \ldots, m ; \quad \sum_{i=1}^{m} H_{i}(y)=0 .
$$

This proves the theorem.
Corollary 1. The most general solution of (1) if $m=n$ is

$$
\begin{equation*}
F_{i}(x, y), \quad i=1, \ldots, m \text { are arbitrary; } \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
F_{m+i}(x, y)=H_{i}(x+y)-F_{i}(y, x), \quad i=1, \ldots, m ; \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{m} H_{i}(x)=0 \tag{28}
\end{equation*}
$$

where $H_{i}(x), i=1, \ldots, m-1$ are arbitrary functions.
Proof. Put $F_{i}(x, y)=G_{i}(x, x+y)$.
Remark. The general continuous solutions are given by the same formulae with the
additional condition that all the arbitrary functions are continuous and that $\varphi(x)$ and $\varphi^{r}(x)$
should be replaced by x.
4. Some Applications. - It is clear that the functional equation

$$
\begin{gather*}
\sum_{i=1}^{m+n} a_{i} f\left(x_{i}+x_{i+1}+\cdots+x_{i+m-1}, x_{i+m}+x_{i+m+1}+\cdots+x_{i+m+n-1}\right)=0 \tag{29}\\
\quad\left(\text { some } a_{i} \neq 0\right),
\end{gather*}
$$

is a special case of the equation (1). The last equation with a minor unessential modification was considered by Jong [1]. The results of Jong are easy consequences of our theorems. We shall show this in the case $m=n$. By Corollary 1 of Theorem 2 we have

$$
\begin{gather*}
a_{i} f(x, y)=F_{i}(x, y), \quad i=1, \ldots, m ; \tag{30}\\
a_{m+i} f(x, y)=H_{i}(x+y)-F_{i}(y, x), \quad i=1, \ldots, m ; \tag{31}\\
\sum_{i=1}^{m} H_{i}(x)=0 . \tag{32}
\end{gather*}
$$

From (30) and (31) we get

$$
\begin{equation*}
a_{m+i} f(x, y)+a_{i} f(y, x)=H_{i}(x+y), \quad i=1, \ldots, m . \tag{33}
\end{equation*}
$$

I Case: $a_{i}=a_{m+i}, i=1, \ldots, m$.
Summing (33) over i and taking (32) into account we find

$$
S(f(x, y)+f(y, x))=0 \quad\left(S=\sum_{i=1}^{m} a_{i}\right)
$$

If $S \neq 0$ then $f(x, y)+f(y, x)=0$, i. e.

$$
\begin{equation*}
f(x, y)=A(x, y)-A(y, x), \tag{34}
\end{equation*}
$$

where $A(x, y)$ is an arbitrary function. If $S=0$ we get from (33) that $f(x, y)+f(y, x)=2 B(x+y)$, i. e.

$$
\begin{equation*}
f(x, y)=B(x+y)+C(x, y)-C(y, x), \tag{35}
\end{equation*}
$$

where $B(x)$ and $C(x, y)$ are arbitrary functions. The general solution is given by (34) and (35).

II Case: $-a_{i}=a_{m+i}, i=1, \ldots, m$.
From (33) interchanging x and y we get $H_{i}(x+y)=0$. Hence, $f(x, y)=$ $=f(y, x)$, i. e.

$$
\begin{equation*}
f(x, y)=A(x, y)+A(y, x), \tag{36}
\end{equation*}
$$

where $A(x, y)$ is an arbitrary function.
III Case: $a_{i} \neq a_{m+i}$ and $-a_{j} \neq a_{m+j}$ for some i and j.
From (33) we have

$$
\begin{gathered}
a_{m+i} f(x, y)+a_{i} f(y, x)=H_{i}(x+y), \\
a_{m+i} f(y, x)+a_{i} f(x, y)=H_{i}(x+y), \\
\left(a_{m+i}-a_{i}\right)(f(x, y)-f(y, x))=0, \\
\quad f(x, y)=f(y, x) .
\end{gathered}
$$

If $\sum_{i=1}^{2 m} a_{i} \neq 0$, summing (33) over i and using $f(x, y)=f(y, x)$, we get

$$
\begin{equation*}
f(x, y)=0 . \tag{37}
\end{equation*}
$$

If $\sum_{i=1}^{2 m} a_{i}=0$ then $f(x, y)=f(y, x)$ and (33) gives

$$
\begin{equation*}
f(x, y)=B(x+y), \tag{38}
\end{equation*}
$$

where $B(x)$ is an arbitrary function. The general solution of (29) in this case is given by (37) and (38).

BIBLIOGRAPHY

[1] J. K. Jong: A class of linear functional equations, These Publications, № 151.
[2] S. Prešić -D. Ž. D joković: Sur une équation fonctionnelle, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, Beograd, 13 (1961), 140-152.

[^0]: * Presented March 20, 1965 by D. S. Mitrinović.

