PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ÉLECTROTECHNIQUE DE L'UNIVERSITÉ À BELGRADE

SERIJA: MATEMATIKA I FIZIKA --- SÉRIE: MATHÉMATIQUES ET PHYSIQUE

№ 140 (1965)

ON DIVERGENT SERIES OF POSITIVE TERMS*

Dragomir Ž. Djoković

In their paper¹ Banerjee and Lahiri proved the following:

Theorem. Let

(1)
$$u(1) + u(2) + u(3) + \cdots$$

be a divergent series of positive terms for which

(2)
$$\lim_{n \to +\infty} u(n) = 0.$$

Let P be a positive number. Then there is a subseries $u(n_1) + u(n_2) + u(n_3) + \cdots$ which converges to P.

Their proof is based on an effective construction of such a subseries. We give a simpler construction of another subseries with the same properties.

Proof. Let n_1 be the least integer such that $u(n_1) < P$. The existence of n_1 is a consequence of (2). Let n_2 be the least integer such that $n_2 > n_1$ and $u(n_1) + u(n_2) < P$. Continuation of the construction yields the integers n_1, n_2, n_3, \ldots such that

(3)
$$n_1 < n_2 < n_3 < \cdots$$

(4) $S_k = \sum_{i=1}^k u(n_i) < P \quad (k = 1, 2, 3, \ldots).$

We shall prove that

(5)

 $u(n_1) + u(n_2) + u(n_3) + \cdots = P.$

From (4) we conclude that the series on the left-hand member of (5) is convergent and that its sum S (say) is not greater than P. Let us suppose that (6) $u(n_1) + u(n_2) + u(n_3) + \cdots = S < P.$

Taking (2) into account we conclude that there exists an integer m such that u(n) < P-S for all $n > n_m$.

Since (1) is a divergent series we conclude that the sequence $\{n_i\}$ (i = 1, 2, 3, ...) does not contain all integers $> n_m$. Let r be the least integer such that $r > n_m$ and r is not contained in the sequence $\{n_i\}$ (i = 1, 2, 3, ...). Hence, $r-1 = n_k$ for some k. We have

$$S_k + u(r) < S + (P - S) = P$$

which is in contradiction with the construction of the sequence $\{n_i\}$ (i = 1, 2, 3, ...). It follows that (6) is false. Therefore (5) is true. The theorem is established.

* Presented December 20, 1964 by D. S. Mitrinović.

¹ C. R. Banerjee and B. K. Lahiri: On subseries of divergent series, Amer. Math. Monthly, 71 (1964), 767-768.