PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTÉ D'ELECTROTECHNIQUE DE L'UNIVERSITE A BELGRADE

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUESET PHYSIQUE

№ 140 (1965)

ON DIVERGENT SERIES OF POSITIVE TERMS*

Dragomir Z̆. Djoković

In their paper ${ }^{1}$ Banerjee and Lahiri proved the following:
Theorem. Let

$$
\begin{equation*}
u(1)+u(2)+u(3)+\cdots \tag{1}
\end{equation*}
$$

be a divergent series of positive terms for which

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} u(n)=0 \tag{2}
\end{equation*}
$$

Let P be a positive number. Then there is a subseries $u\left(n_{1}\right)+u\left(n_{2}\right)+u\left(n_{3}\right)+\cdots$ which converges to P.

Their proof is based on an effective construction of such a subseries. We give a simpler construction of another subseries with the same properties.

Proof. Let n_{1} be the least integer such that $u\left(n_{1}\right)<P$. The existence of n_{1} is a consequence of (2). Let n_{2} be the least integer such that $n_{2}>n_{1}$ and $u\left(n_{1}\right)+u\left(n_{2}\right)<P$. Continuation of the construction yields the integers $n_{1}, n_{2}, n_{3}, \ldots$ such that

$$
\begin{gather*}
n_{1}<n_{2}<n_{3}<\cdots \tag{3}\\
S_{k}=\sum_{i=1}^{k} u\left(n_{i}\right)<P \quad(k=1,2,3, \ldots) . \tag{4}
\end{gather*}
$$

We shall prove that

$$
\begin{equation*}
u\left(n_{1}\right)+u\left(n_{2}\right)+u\left(n_{3}\right)+\cdots=P \tag{5}
\end{equation*}
$$

From (4) we conclude that the series on the left-hand member of (5) is convergent and that its sum S (say) is not greater than P. Let us suppose that

$$
\begin{equation*}
u\left(n_{1}\right)+u\left(n_{2}\right)+u\left(n_{3}\right)+\cdots=S<P \tag{6}
\end{equation*}
$$

Taking (2) into account we conclude that there exists an integer m such that

$$
u(n)<P-S \text { for all } n>n_{m} .
$$

Since (1) is a divergent series we conclude that the sequence $\left\{n_{i}\right\}(i=1,2,3, \ldots)$ does not contain all integers $>n_{m}$. Let r be the least integer such that $r>n_{m}$ and r is not contained in the sequence $\left\{n_{i}\right\}(i=1,2,3, \ldots)$. Hence, $r-1=n_{k}$ for some k. We have

$$
S_{k}+u(r)<S+(P-S)=P
$$

which is in contradiction with the construction of the sequence $\left\{n_{i}\right\}(i=1,2,3, \ldots)$. It folows that (6) is false. Therefore (5) is true. The theorem is established.

[^0]
[^0]: * Presented December 20, 1964 by D. S. Mitrinović.
 ${ }^{1}$ C. R. Banerjee and B. K. Lahiri: On subseries of divergent series, Amer. Math. Monthly, 71 (1964), 767-768.

