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1. Introduction

The object of this note is to derive the well known Jacobi formulae
(12] and [1]). These formulae give an exphclte way of reducing a quadratic
form to its cannonical form. Qur derivation is based on the fact that a po-
sitive definite self-adjoint operator can be used to introduce a new scalar
product. It seems that this method is not widely known and that it throughs
a new light on the theory of positive definite quadratic forms and on pairs
of quadratic forms. In addition to this in the theory of unitary spaces it
enables one to derive the Jacobi formulae in few lines.

2. Positive definite quadratic forms

Let ®={«, B,...} denote the field of reals or the field of all complex
numbers. A quadratic form (a hermitian quadratic form) is a function of

n-variables &,, &,, ... , &, of the form:
) o= > a;E§
ij=1

where «;—ay are elements of ® and « denotes the complex conjugate of a.
A quadratic form ¢ is said to be positive definite if ¢>0 for all

i oov s En=® and ¢=0 implies §=...=§,=

Together with (1) one considers a umtary n-dlmenswnal vector space
X={x,y,...} over ® with a scalar product (x y). If e,e, ..., e, is an
orthonormal basic set in X then (1) can be written in the form:
(2) f= (A X, x)

where x= 2": E,e; and 4 is a linear operator defined by

n
Aeg=73 oy e
i=1

Since the matrix of A in the basic set e;, ..., e, is hermitian A is
self-adjoint. If the form ¢ is positive definite then
3 ¢=(d4x, x)>0

for any x € X, x+#0, i.e. the sclf-adjoint operator A is positive definite.
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Conversely, if 4 >0 (i.e. 4 is a positive definite self-adjoint operator)
then (3) in an orthonormal basic set gives a positive definite quadratic form.
Hence with a positive definite quadratic form a positive definite self-adjoint
operator A is associated in such a way that (3) holds. These are well known
facts. Now we set:

<x,y>=(4x, y)

for x, yc X. It is obvious that <x, y> is a scalar product in X. In this scalar
product, which we call a new scalar product, the quadratic form (3) is
written in the form: :

n
“ p=<x, x>=3 |<e, x>|?
k=1

’

where e, €', ... , e, is any orthonormal basic set in the new scalar pro-
duct. Already from (4) we see that ¢ is a sum of squares of linear forms
x—> <X, e, > .

Now, for e, we take the orthonormal basic set which is obtained from
ey, €, ... , €, by the Gram-Schmidt method of orthogonalisation in the new
scalar product.

Hence we have:

€
e,
T, e, ..., -y _2
, ei , <€k, > - <€, €x—1> €
&) o'=——""75, &= 12
<ey, &> [T(ey, ... ex—-1) T'ey,..., €]
where
<e, 6> <ep, 6> -+ <ey, >
<ey, 0> <y, 6> <ey, >
Tey,...,e)= :
' <ex, >  <e, e3> <ey, €>
Oy Uy L7731
Uy G Oka
= k=2,3...,m
L2 T Y Ok

is the Gram determinant in the new scalar product ([2], p. 239)," )
We introduce the following notation: o

Lo TR S T

©® D=1, Ap=ay,, A= s aen s Bp=

Ogy  Oag
% Gnn

As we see in the case of positive defivite quadratic form any main
minor of A, is the Gram determinant of some linearly independent vectors.
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Thus any main minor of any order of A, is a positive number. From (5)
and (4) we get:

) ¢= & _Imel®
=1 Bp_1 0

where

Oy Gyt Hg—gsy A (X)

%ye  Ogp Op—1,a Ay (X)
(8) N=dy (), .en s M=

LT Y 2 -1,k Ar()
and

4D = 4D=T T (de, ), 1.

Jj=1

) 4 0=S a8 p=1,2 ..., n
=1

By (7), (8) and (9) the explicite formulae for reducing ¢ to its cannonical
form are given*.

3. Quadratic forms of the rank r
The formulae (7), (8) and (9) have the meaning also if ¢ is not necessarily
positive definite provided that A;, A,, ..., A, do not vanish.

Suppose that (1) is quadratic form of the rank r, i.e. the matrix of
coefficients (e;) has the rank r and that

Gyy *cc Gy
#0, ..., 0= #0.

Gr1 %py

G11 %2

(10) Ay=0y, #0, Q=

®or  Oag

We assert that in this case

r 2

o= | x|
=1 Apg Ay

where v, (k=1, 2, ... , r) are given by (8).

In order to prove this we observe that
AMN)=A4+r1

is pos1t1ve definite for A>2,, where I is the identity operator and A, a
suitable real number.
Thus:

" | ne ) |2
11 Ax, A(x, X)= Y
an (Ax, x) +2 (x, x) k§=:! Ay M) A )

* The formulae (7), (8) and (9) were rediscovered and proved differently by .D. Blanus‘a
[1] whose lectures to students in 1962 initiated this investigations.
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where A
o +A Ay crr Opg
Lo agg+ A ks
(12) A )=
%k Gak e+ A
and -
ﬁu'l-l [ 7%} AR Lg—1s1 Al (x)+ )‘El
g tgg+ A Up—1sa Az (O+NE
(13) 0 M) =
Ok - 791 OCf~1sk Ak (X) + )‘E—k
n
=2 D ®E;
. J=1
with
o tA ey e Gpe1sy €+
G1a gy + A Of—152 “ja"‘)‘sjs
(14) Dy Q)=
[ 372 Uk Rk—15k ajk+7\81k

Now, the right side of (il1) is the ratioc of two polinomials in A and (11)
holds for all A>2,. If we make analytic continuation, i.e. if we take A com-
plex (jo.(d)}* is assumed to be written as the polinomial in A3 2) then (11)
holds for all complex A, We take 2{0 and we get:

T . a A} ¢
as) x, =3 120 Ly 3 1AL
= N VA VA N e AN VIR (N P Y (N
It remains to prove that:
2
(16) lim -—M—=O for r<k<n.
240 Ay () Ar ()

To prove this we observe that the coefficient of A? in the polinomial A;(3)
is proportional to the sum of all main minors of Ay=A,(0) of the order
k—p. Since A; has the rank r we see that

an Ay ) = @ W=" B A4 . . .

where ai, as the sum of all main minors of A, of the order r, does not
vanish*.

Furthermore from (14) we see that Dy (W) =0 if j<k, D W) =Ax ()
ard for j >k we have:

Dy; (0 Dy; (0
Di; (W) = Dyy (0) + ";,() + 2 "5!()+--~
(k—71)
;lk—'.p_,_(g).;_ ..
(k—r)}

_ % Qbserve that the dimension of the null-subspace of a salM-adjeint eperator H is
equal to the multiplicity of zero as the reot of det QA I—H)~Q.
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D,;(0) is the sum of minors of the matrix (a;) of the order k. Since k >r
it vanishes. In the same way Dy; (0) as the sum of minors of the order k—1
vanishes if k—1>r ctc. Hence:

(18) e () = oM+ di N
where ¢, may vanish. Now (17) and (18) imply:

™1 _, lcx |2+ (ch di+crdi) + - - -

>0
Ay AN g ag+h(ag—y bp+ag b))+ - --
from which (16) follows and therefore:
r 2
* e
Since the forms +,, ..., w, are linearly independent the Jacobi formulae (19);

(10), (9) and (8) give the explicit reduction of the form ¢ to its cannonical
form. If r=n then (19) implies ‘that ¢ is positive . definite if and .only if
Ap 1Ay >0, ie. if all minors (6) are positive. Thus .the fact that minors
Ay, A, ..., A, are positive implies that ¢ is positive definite and therefore
that all main minors of («;) are positive. Furthermore for r=n (19) implies
that—¢ is positive definite, i.e. ¢ negative definite, if and only if A, A< 0,
ie if (=D)AL >0(k=1, 2, ..., n).

4, Pairs of quadratic forms

In this section we prove the well known theorem that two quadratic
forms:

@ e 3w C b= BEY Gu=mn By=B),

can be brought with a same linear transformation to the cannonical form
provided that ¢ is positive definite. We write (20) in the form:

(21) CPZ(Ax’ x) qJZ(Bxa x) xcX

where 4 and B are sclf-adjoint operators in an n-dimensional unitary space
X. Furthermore A4 is positive definite.

If we set <x, y> =(4x, y) then (21) becomes:
(22) p=<X, x>, Y=<Dx,x> (D=A"1B).
If C:X—- X is any linear operator, C* the adjoint of C in the scalar product
( ) and C+ the adjoint of C in the scalar product << >, then

<x,Cty>=<Cx,y>=(ACx, y)=(x, C* Ay)
and
<x,Cty>=(Ax,C*ty)=(x, AC*Yy)
imply
AC+=C*4, ie.

(23) | C+=A4-1C* A.
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According to (23) we have:
A+=4A4
and
D+ =B+ A= 1=(A"'BA)A'=A-1B=D, i.e.

the operator D is self-adjoint in the new product.

Since D is self-adjoint there is an orthonormal basic set e;, ... , e, such
that

De,',’ =dy e,:

where d, are real numbers. In this basic set (22) becomes:
n 7 n rr

(24) o= | <ex,x>|? and o=> di|<ex,x>|*
k=1 k=1

which proves that ¢ and ¢, by the same linear (not necessarily unitary)
transformation can be brought to the sum of squares of linear forms. The
real numbers d; are roots of the equation det (A/—D)=0, i.e. of the equation
det(A\[—A-1B)=0. Thus dy, ... , d; are roots of the equation

det (A 4—B)=0.
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