PUBLIKACIJE ELEKTROTEHNIČKOG FAKULTETA UNIVERZITETA U BEOGRADU PUBLICATIONS DE LA FACULTE D'ELECTROTECHNIQUE DE L'UNIVERSITE A BELGRADE

SERIJA: MATEMATIKAIFIZIKA-SERIE: MATHEMATIQUES ETPHYSIQUE
№ 97 (1963)

A SPECIAL FUNCTIONAL EQUATION

L. Carlitz

(Received 1 november 1962)
Mitrinović and Pressić [1] have proved that the general solution of the functional equation

$$
\begin{equation*}
f(x, y) f(u, v)+f(x, u) f(v, y)+f(x, v) f(y, u)=0 \tag{1}
\end{equation*}
$$

is given by

$$
\begin{equation*}
f(x, y)=g(x) h(y)-g(y) h(x) \tag{2}
\end{equation*}
$$

where $g(x), h(x)$ are arbitrary functions of x.
In the present note we consider the furctional equation

$$
\begin{align*}
f(x, y, z) & f(u, v, w)+f(y, x, u) f(z, v, w) \tag{3}\\
& +f(x, y, v) f(z, u, w)+f(y, x, w) f(z, u, v)=0
\end{align*}
$$

The variables and the functional values are assumed to be complex numbers.

If we take $x=y=z=\boldsymbol{u}=\boldsymbol{v}=\boldsymbol{w}$, it is clear that (3) implies

$$
\begin{equation*}
f(x, x, x)=0 \tag{4}
\end{equation*}
$$

Next if we take $x=y=z=u, v=w$, we get

$$
\begin{aligned}
f(x, x, x) f(x, v, v) & +f(x, x, x) f(x, v, v) \\
& +f(x, x, v) f(x, x, v)+f(x, x, v) f(x, x, v)=0
\end{aligned}
$$

so that

$$
\begin{equation*}
f(x, x, v)=0 \tag{5}
\end{equation*}
$$

If we take $x=u=v=w, y=z$, we get

$$
\begin{equation*}
2 f^{2}(y, x, x)+f(x, y, x) f(y, x, x)=0 \tag{6}
\end{equation*}
$$

while $x=z, y=u=v=w$ yields

$$
f^{2}(x, y, y)+2 f(x, y, y) f(y, x, y)=0
$$

Interchanging x and y, this becomes

$$
\begin{equation*}
f^{2}(y, x, x)+2 f(x, y, x) f(y, x, x)=0 \tag{7}
\end{equation*}
$$

comparison of (7) with (6) gives

$$
\begin{equation*}
f(y, x, x)=0 \tag{8}
\end{equation*}
$$

In the next place, if we take $x=u, y=z=v=w$, we get

$$
\begin{aligned}
& f(x, y, y) f(x, y, y)+f(y, x, x) f(y, y, y) \\
& \quad+f(x, y, y) f(y, x, y)+f(y, x, y) f(y, x, y)=0 .
\end{aligned}
$$

Making use of (8), this becomes

$$
\begin{equation*}
f(y, x, y)=0 \tag{9}
\end{equation*}
$$

Now let a, b, c be fixed complex numbers. such that

$$
f(a, b, c) \neq 0
$$

If we take $v=w$ in (3) we get

$$
(f(x, y, v)+f(y, x, v)) f(z, u, v)=0
$$

In particular, for $z=a, u=b, v=c$, this implies

$$
\begin{equation*}
f(x, y, c)=-f(y, x, c) \tag{11}
\end{equation*}
$$

If we take $z=w$ in (3) we get

$$
f(x, y, z) f(u, v, z)+f(y, x, z) f(z, u, y)=0 .
$$

For $x, y, z=a, b, c$ this becomes, in view of (10) and (11),

$$
\begin{equation*}
f(u, v, c)=f(c, u, v) \tag{12}
\end{equation*}
$$

For $z=v$ we find that

$$
f(x, y, z) f(u, z, w)+f^{\prime}(x, y, z) f(z, u, w)=0
$$

which implies

$$
\begin{equation*}
f(c, u, w)=-f(u, c, w) \tag{13}
\end{equation*}
$$

It is evident from the above, that

$$
f\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \neq 0
$$

where $a^{\prime}, b^{\prime}, c^{\prime}$ is any permutation of a, b, c. Thus, in particular (11), (12), (13) hold when c is replaced by a or b. It follows, for example, that

$$
f(a, b, u)=-f(b, a, u)
$$

We now define

$$
\begin{align*}
& \Phi_{1}(u)=\frac{f(a, b, u)}{f(a, b, c)} \tag{14}\\
& \Psi(u, v)=f(u, v, c) \tag{15}
\end{align*}
$$

Then it follows from (3), (11), (12) and (13) that

$$
f(u, v, w)=\Phi_{1}(u) \Psi(v, w)-\Phi_{1}(v) \Psi(u, w)+\Phi_{1}(w) \Psi(u, v)
$$

Also, if we take $x=u=c$ in (3), we get

$$
\begin{equation*}
\Psi(y, z) \Psi(v, w)+\Psi(y, v) \Psi(w, z)+\Psi(y, w) \Psi(z, v)=0 . \tag{17}
\end{equation*}
$$

Comparing (17) with (1) we infer that

$$
\Psi(u, v)=\Phi_{2}(u) \Phi_{3}(v)-\Phi_{2}(v) \Phi_{3}(u)
$$

where $\Phi_{2}(u), \Phi_{3}(u)$ are arbitrary functions. Therefore (16) becomes

$$
f(u, v, w)=\left|\begin{array}{lll}
\Phi_{1}(u) & \Phi_{1}(v) & \Phi_{1}(w) \tag{18}\\
\Phi_{2}(u) & \Phi_{2}(v) & \Phi_{2}(w) \\
\Phi_{3}(u) & \Phi_{3}(v) & \Phi_{3}(w)
\end{array}\right|
$$

Conversely, if $f(u, v, w)$ is defined by means of (18), then (3) is satisfied. This follows on expanding the vanishing determinant

$$
\left|\begin{array}{lllccc}
\Phi_{1}(x) & \Phi_{2}(x) & \Phi_{3}(x) & 0 & 0 & 0 \\
\Phi_{1}(y) & \Phi_{2}(y) & \Phi_{3}(y) & 0 & 0 & 0 \\
\Phi_{1}(z) & \Phi_{2}(z) & \Phi_{3}(z) & \Phi_{1}(z) & \Phi_{2}(z) & \Phi_{3}(z) \\
\Phi_{1}(u) & \Phi_{2}(u) & \Phi_{3}(u) & \Phi_{1}(u) & \Phi_{2}(u) & \Phi_{3}(u) \\
\Phi_{1}(v) & \Phi_{2}(v) & \Phi_{3}(v) & \Phi_{1}(v) & \Phi_{2}(v) & \Phi_{3}(v) \\
\Phi_{1}(w) & \Phi_{2}(w) & \Phi_{3}(w) & \Phi_{1}(w) & \Phi_{2}(w) & \Phi_{3}(w)
\end{array}\right| .
$$

We have therefore proved the following.
Theorem. - The general complex solution of the functional equation (3) is given by (18), where $\Phi_{1}(u), \Phi_{2}(u), \Phi_{3}(u)$ are arbitrary complex functions.

REFERENCE

[1] D. S. Mitrinović and S. B. Prestić:
Sur une équation fonctionnelle cyclique d'ordre supérieur, ces Pcblications № 70, 1962.

