Applicable Analysis and Discrete Mathematics
 available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 7 (2013), 83-93.
doi:10.2298/AADM121129022C

ON DIAMETER AND INVERSE DEGREE OF CHEMICAL GRAPHS

Xue-gang Chen, Shinya Fujita

The inverse degree $r(G)$ of a finite graph $G=(V, E)$ is defined as $r(G)=$ $\sum_{v \in V} \frac{1}{d(v)}$, where $d(v)$ is the degree of vertex v. In Discrete Math., 310 (2010), 940-946, MuKWEMBI posed the following conjecture: Let G be a connected chemical graph with diameter $\operatorname{diam}(G)$ and inverse degree $r(G)$. Then $\operatorname{diam}(G) \leq \frac{12}{5} r(G)+O(1)$.
In this paper, we settle the conjecture affirmatively.

1. INTRODUCTION

Graph theory terminology not presented here can be found in [6]. Let $G=$ (V, E) be a graph with $|V|=n(G)$. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d(v), N(v)$ and $N[v]=N(v) \cup\{v\}$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The graph induced by $S \subseteq V$ is denoted by $G[S]$. Let $G-S=G[V-S]$. The graph induced by $E^{\prime} \subseteq E$ is denoted by $G\left[E^{\prime}\right]$. Let $G-E^{\prime}=G\left[E-E^{\prime}\right]$. The distance $d_{G}(u, v)$ between two vertices u and v of G is the length of the shortest $u-v$ path in G, and the diameter is $\operatorname{diam}(G)=\max \left\{d_{G}(u, v): u, v \in V\right\}$. The inverse degree $r(G)$ of G is defined as $r(G)=\sum_{v \in V} \frac{1}{d(v)}$. Let P_{n}, C_{n} and K_{n} denote the path, cycle and complete graph with order n, respectively.

Chemical graphs represent the structure of organic molecules and thus have a maximum degree of 4 , carbon atoms being 4 -valent and double bonds being counted as single edges. Formally, a chemical graph is a graph with a maximum degree of 4.

[^0]The inverse degree (also known as the sum of reciprocals of degrees) first atracted attention through numerous conjectures generated by the computer programme Graffiti [4]. Since then its relationship with other graph invariants, such as diameter, edge-connectivity, matching number, Wiener index has been studied by several authors (see, for example $[\mathbf{1}, \mathbf{2}, \mathbf{5}]$).

Turning to bounds on the diameter in terms of order and inverse degree, our starting point is the following bound by Erdős, Pach and Spencer [3].

Theorem 1. Let G be a connected graph of order n, diameter $\operatorname{diam}(G)$ and inverse degree $r(G)$. Then $\operatorname{diam}(G) \leq(6 r(G)+o(1)) \frac{\log n}{\log \log n}$.

The bound was later improved by a factor of about 2 by Dankelmann, SWART and van den Berg [2], showing that diam $(G) \leq(3 r(G)+2+o(1)) \frac{\log n}{\log \log n}$. Mukwembi [6] focused on bounds on the diameter in terms of the inverse degree for some important classes of graphs such as planar graphs, regular graph, chemical graphs and trees. Molecular structure-descriptors such as the Randic Index (defined as $\left.R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u) d(v)}}\right)$, which is similar to that of the inverse degree, were studied intensively for these classes of graphs. Mukwembi [6] gave the following result.

Theorem 2. Let G be a connected chemical graph. Then $\operatorname{diam}(G) \leq 3 r(G)+3$.
In relation to the above theorem, Mukwembi [6] conjectured that if G is a connected chemical graph with diameter $\operatorname{diam}(G)$ and inverse degree $r(G)$, then $\operatorname{diam}(G) \leq \frac{12}{5} r(G)+O(1)$. In this paper, we settle this conjecture affirmatively.

Theorem 3. Let G be a connected chemical graph with diameter $\operatorname{diam}(G)$ and inverse degree $r(G)$. Then $\operatorname{diam}(G) \leq \frac{12}{5} r(G)$.

For the upper bound concerning $\operatorname{diam}(G)$, the coefficient $\frac{12}{5}$ of $r(G)$ is the best possible. To see this, consider the graph $G=K_{1}+K_{3}+K_{1}+K_{1}+K_{3}+K_{1}+$ $K_{1}+K_{3}+\ldots+K_{1}+K_{1}+K_{3}+K_{1}$. Here the operation $A+B$ for two disjoint graphs A, B means joining every vertex of A to every vertex of B with edges completely.

2. PROOF OF THEOREM 3

Amongst all connected chemical graphs G, we choose G so that,
(1) $\frac{r(G)}{\operatorname{diam}(G)}$ is minimal, and subject to the condition (1),
(2) $n(G)$ is minimal.

In order to prove the theorem, it suffices to show that $\frac{r(G)}{\operatorname{diam}(G)} \geq 5 / 12$. Let $P=v_{0} v_{1} \ldots v_{d-1} v_{d}$ be a diametral path of G. For $i=0,1,2, \ldots, d$, let $N_{i}=$
$\left\{v \mid d\left(v, v_{0}\right)=i\right\}$. Clearly we have $N_{0}=\left\{v_{0}\right\}$. If $\operatorname{diam}(G) \leq 3$, it is easy to check that $\operatorname{diam}(G) \leq \frac{12}{5} r(G)$. Assume that $\operatorname{diam}(G)=4$. Then we have $r(G) \geq \sum_{x \in N\left[v_{0}\right]} \frac{1}{d(x)}+$ $\sum_{x \in N\left[v_{d}\right]} \frac{1}{d(x)} \geq 2$, and so $\operatorname{diam}(G) \leq \frac{12}{5} r(G)$. Also notice that, if $6 \geq \operatorname{diam}(G) \geq$ 5, then $r(G) \geq \sum_{x \in N\left[v_{0}\right]} \frac{1}{d(x)}+\frac{1}{d\left(v_{2}\right)}+\frac{1}{d\left(v_{3}\right)}+\sum_{x \in N\left[v_{d}\right]} \frac{1}{d(x)} \geq 5 / 2$, meaning that $\operatorname{diam}(G) \leq \frac{12}{5} r(G)$ holds. Hence, in the following argument, we may assume that $\operatorname{diam}(G) \geq 7$. For $i=0,1,2, \ldots, d$, let $S_{i}=\left\{v \mid v \in N_{i}, d(v)<4\right\}$. We define some graphs which will play an important role in the proof of our main result.

Claim 1. The following statements hold:
(i) $\delta(G) \geq 2$.
(ii) For every $1 \leq i \leq d-1, G\left[S_{i} \cup S_{i+1}\right]$ forms a complete graph. In particular, for any $v \in S_{i}$ and $u \in N_{i-1} \cup N_{i} \cup N_{i+1}$, if $v u \notin E(G)$ then $d(u)=4$.
(iii) For every $1 \leq i \leq d-1,\left|S_{i-1} \cup S_{i} \cup S_{i+1}\right| \leq 3$.
(iv) Let v be a vertex with $d(v)=2$ such that $v \in N_{i}$ for some $1 \leq i \leq d-1$. Then, for any edge $e=a b$ with $N(v) \cap\{a, b\}=\emptyset,\left|\left(N_{i-1} \cup N_{i} \cup N_{i+1}\right) \cap\{a, b\}\right| \leq 1$.

Proof. To prove (i), suppose that there exists a vertex $v \in V(G)$ such that $d(v)=1$. Then $v \in(V(G)-V(P)) \cup\left\{v_{0}, v_{d}\right\}$. Since P is a diametral path, it follows that $v \notin N_{1}$. If $v \in V(G)-V(P)$, let u be the neighbour of v and $G^{\prime}=$ $G-\{v\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Moreover, $d_{G^{\prime}}(x)=d_{G}(x)$ for all $x \notin\{u, v\}$. Since $d(u) \geq 2$, we have $r(G)-r\left(G^{\prime}\right)=\frac{1}{d(v)}+\frac{1}{d(u)}-\frac{1}{d(u)-1}=1+\frac{1}{d(u)}-\frac{1}{d(u)-1}>$ 0 . Then $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. If $d\left(v_{0}\right)=1$, let G^{\prime} be obtained from G and K_{3} by joining edges from v_{0} to each vertex of K_{3}. Then $\operatorname{diam}\left(G^{\prime}\right)=d+1$. Moreover, $d_{G^{\prime}}(v)=d_{G}(v)$ for all $v \in V(G)-\left\{v_{0}\right\}$. Let $x=\sum_{v \in V(G)-\left\{v_{0}\right\}} \frac{1}{d(v)}$. Then $x \geq \frac{d}{4}, r(G)=x+1$ and $r\left(G^{\prime}\right)=x+\frac{5}{4}$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}=\frac{x+1}{d}-\frac{x+\frac{5}{4}}{d+1}>0$, which is a contradiction. Hence, $d\left(v_{0}\right) \geq$
2. Similarly, $d\left(v_{d}\right) \geq 2$. So, $\delta(G) \geq 2$. Thus (i) holds. Next suppose that there exist two vertices $u, v \in S_{i} \cup S_{i+1}$ such that $u v \notin E(G)$. Let $G^{\prime}=G \cup\{u v\}$. Note that $\operatorname{diam}(G)=\operatorname{diam}\left(G^{\prime}\right)$. Since $r(G)-r\left(G^{\prime}\right)=\frac{1}{d(u)}+\frac{1}{d(v)}-\frac{1}{d(u)+1}-\frac{1}{d(v)+1}>0$, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Thus (ii) holds. To prove (iii), suppose $\left|S_{i-1} \cup S_{i} \cup S_{i+1}\right| \geq 4$ and take $u_{1}, u_{2}, u_{3}, u_{4} \in S_{i-1} \cup S_{i} \cup S_{i+1}$. Let G^{\prime} be the graph obtained from G by adding a new vertex v to N_{i} with edges $u_{1} v, u_{2} v, u_{3} v, u_{4} v$ (i.e., $G^{\prime}=G \cup\{v\} \cup\left\{u_{1} v, u_{2} v, u_{3} v, u_{4} v\right\}$). Then one can easily check that $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, a contradiction. Thus (iii) holds.

To show (iv), suppose that $a, b \in N_{i-1} \cup N_{i} \cup N_{i+1}$ where $a b \in E(G), v \in N_{i}$ and $d(v)=2$. Consider the graph $G^{\prime}=(G-\{a b\}) \cup\{a v, b v\}$. Then we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, a contradiction. Thus (iv) holds.

Claim 2. If there exists a vertex $v \in N_{i}$ such that $d(v)=2$, then $N_{i}=\{v\}=\left\{v_{i}\right\}$.
Proof. Since $N_{0}=\left\{v_{0}\right\}$, we can assume that $v \in N_{i}$, where $i \in\{1,2, \ldots, d\}$. Let $u \in N(v) \cap N_{i-1}$. Suppose that $N_{i}-\{v\} \neq \emptyset$. For any $w \in N_{i}-\{v\}$, if $w v \notin E(G)$, then $d(w)=4$. Then there exists a vertex $t \in N(w)-N(v)$ such that $v t \notin E(G)$. Since $N(v) \cap\{w, t\}=\emptyset$, we get a contradiction to Claim 1(iv). Hence, $w v \in E(G)$ for any $w \in N_{i}-\{v\}$. Since $d(v)=2, N_{i}=\{v, w\}$. Furthermore, $u w \in E(G)$. Otherwise, let $G^{\prime}=(G-\{v\}) \cup\{u w\}$. Then $\operatorname{diam}\left(G^{\prime}\right)=d$ and $r(G)-r\left(G^{\prime}\right)>0$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Since $\operatorname{diam}(G) \geq 7, d(u) \geq 3$ or $d(w) \geq 3$. If $d(u) \geq 3$ and $d(w) \geq 3$, let $G^{\prime}=G-\{v\}$. Then $\operatorname{diam}\left(G^{\prime}\right)=d$ and $r(G)-r\left(G^{\prime}\right)>0$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. If $d(u)=2$ and $d(w) \geq 3$, then $N_{0}=\{u\}$. Let G^{\prime} be obtained from G by adding a vertex ℓ and joining edges ℓu and ℓv. Then $\operatorname{diam}\left(G^{\prime}\right)=d+1$. Let $x=\sum_{z \in V(G)-\{u, v\}} \frac{1}{d(z)}$. Then $x \geq \frac{d}{4}, r(G)=x+1$ and $r\left(G^{\prime}\right)=x+\frac{7}{6}$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}=\frac{x+1}{d}-\frac{x+\frac{7}{6}}{d+1}>0$, which is a contradiction. If $d(u) \geq 3$ and $d(w)=2$, then $N_{d}=\{v, w\}$. In a similar way as above, there is a contradiction. So $N_{i}=\{v\}=\left\{v_{i}\right\}$.

Claim 3. For $i \in\{2,3, \ldots, d-2\}$, if there exists a vertex $v \in N_{i}-\left\{v_{i}\right\}$ such that $d(v)=4$, say $N(v)=\{u, w, t, s\}$, then the following statements hold:
(1) Suppose that $u w \notin E(G)$. If $u, w \in N_{i-1} \cup N_{i}$ or $u, w \in N_{i} \cup N_{i+1}$, then $d(t)=d(s)=3$ holds .
(2) $N(v) \cap N_{i+1} \neq \emptyset$.

Proof. Since $v \notin V(P)$ and $2 \leq i \leq d-2$, in view of Claim $2, d(u), d(w), d(t), d(s) \geq$ 3. Furthermore, there exists a vertex of degree 4 in $N(v)$.
(1) If $u, w \in N_{i-1} \cup N_{i}$ or $u, w \in N_{i} \cup N_{i+1}$, then $d(t)=d(s)=3$. Otherwise, let $G^{\prime}=(G-\{v\}) \cup\{u w\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right) \geq 0, \frac{r(G)}{\operatorname{diam}(G)}-$ $\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)} \geq 0$ and $n\left(G^{\prime}\right)<n(G)$, which is a contradiction.
(2) Suppose that $N(v) \subseteq N_{i-1} \cup N_{i}$. Then $N[v] \cong K_{5}$. Otherwise, say $u w \notin$ $E(G)$. Then $d(s)=d(t)=3$ and $s t \in E(G)$. Since $s w \notin E(G)$ or $s u \notin E(G)$, we can assume that $s w \notin E(G)$. Then $d(u)=d(t)=3$ and ut,us $\in E(G)$. Since $i \geq 2,\{u, s, t\} \cap N_{i-1}=\emptyset$. Hence, $\{u, s, t\} \subseteq N_{i}$. Then $N(u) \cap N_{i-1}=\emptyset$, which is a contradiction. Since $N[v] \cong K_{5}, G \cong K_{5}$, which is a contradiction. So, $N(v) \cap N_{i+1} \neq \emptyset$.

Claim 4. For $i \in\{2,3, \cdots, d-2\}$, if there exists a vertex $v \in N_{i}-\left\{v_{i}\right\}$ such that $d(v)=3$, then $G\left[N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{1}$.

Proof. Let $N(v)=\{u, w, t\}$. Since $v \notin V(P)$ and $2 \leq i \leq d-2$, Claim 2 implies $d(u), d(w), d(t) \geq 3$. First we observe that for any $x, y \in N(v)$, if $x, y \in N_{i-1} \cup N_{i}$ or $x, y \in N_{i} \cup N_{i+1}$ then $x y \in E(G)$. To see this, suppose $x y \notin E(G)$, and let $G^{\prime}=(G-\{v\}) \cup\{x y\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction.

Since $\left|S_{i-1} \cup S_{i} \cup S_{i+1}\right| \leq 3$ by Claim 1(iii), at least one vertex of $N(v)$ has degree 4. Suppose that $d(u)=4$. Then $d(w)=d(t)=3$. Otherwise, let $G^{\prime}=G-$ $\{v\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right) \geq 0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)} \geq 0$ and $n\left(G^{\prime}\right)<n(G)$, which is a contradiction. If $N(v) \subseteq N_{i-1} \cup N_{i}$, then $G[N[v]] \cong$ K_{4} by the above observation. So, $u \in N_{i-1}$ and $\{w, t\} \subseteq N_{i}$ (because $2 \leq i$ and $d(w)=d(t)=3)$. Since $i \leq d-2$, we have $v, w, t \notin V(P)$. So $u \notin V(P)$. Let $G^{\prime}=G-N[v]$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0, \frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Hence, $N(v) \cap N_{i-1} \neq \emptyset$.

Case 1. $\left|N(v) \cap N_{i-1}\right|=2$.
Without loss of generality, we can assume that $w \in N_{i-1}$. Since $N(w) \cap$ $N_{i-2} \neq \emptyset$, it follows that $w v_{i} \notin E(G)$. If there exists a vertex $s \in N\left(v_{i}\right) \cap\left(N_{i-1} \cup\right.$ $\left.N_{i}\right)-N(v) \cap N_{i-1}$, let $G^{\prime}=\left(G-\left\{v_{i} s\right\}\right) \cup\left\{v_{i} w, v s\right\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Hence, $N\left(v_{i}\right) \cap\left(N_{i-1} \cup N_{i}\right)-N(v) \cap N_{i-1}=\emptyset$. That is $N(v) \cap N_{i-1}=\{w, u\}, u v_{i} \in E(G)$ and $\left|N\left(v_{i}\right) \cap N_{i+1}\right| \geq 3$. Since $d(t)=3$, there exists a vertex $s \in N\left(v_{i}\right) \cap N_{i+1}$ such that t 丑 $E(G)$. Let $\left.G^{\prime}=\left(G-\left\{v_{i}\right\}\right\}\right) \cup\left\{v_{i} v, t s\right\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction.

Case 2. $\left|N(v) \cap N_{i-1}\right|=1$ and $\left|N(v) \cap N_{i}\right|=1$.
Without loss of generality, we can assume that $w \in N(v) \cap\left(N_{i-1} \cup N_{i}\right)$. If $\left|N_{i}\right|>2$, say $s \in N_{i}-N[v]$. By the above observation, $s w \notin E(G)$. Note that, by Claim 1(ii), $d(s)=4$. Let $k \in N(s)-N(v)$ and $G^{\prime}=(G-\{s k\}) \cup\{s w, k v\}$.

Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Hence, $\left|N_{i}\right|=2$. That is $N_{i}=\left\{v, v_{i}\right\}$ and $v v_{i} \in E(G)$. If $d\left(v_{i}\right)=4$, then $v_{i}=u, w \in N_{i-1}$ and $t \in N_{i+1}$. Let $s \in N\left(v_{i}\right)-N(v)$ and $k \in N(s)-N(w) \cup N(t)$. Let $G^{\prime}=(G-\{s k\}) \cup\{k w, s v\}$ or $G^{\prime}=(G-\{s k\}) \cup\{k t, s v\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Hence $d\left(v_{i}\right)=3$. That is $w=v_{i}$. Then $\left|N_{i+1}\right|=1$. If $\left|N_{i-1}\right| \geq 2$, let $s \in N_{i-1}-N(v)$, then $d(s)=4$ and $N(s) \cap N_{i}=\emptyset$. If $i \geq 3$, by Claim 3, there is a contradiction. If $i=2$, then $\left|N_{0} \cup N_{1}\right| \geq 6$, there is a contradiction. Hence $\left|N_{i-1}\right|=1$. So $G\left[N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{1}$.

Case 3. $\left|N(v) \cap N_{i-1}\right|=1$ and $\left|N(v) \cap N_{i+1}\right|=2$.
We may assume that $t \in N(v) \cap N_{i+1}$. Then $v_{i} t \notin E(G)$. Otherwise, let $G^{\prime}=(G-\{t\}) \cup\left\{v v_{i}\right\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-r\left(G^{\prime}\right)>0$, we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. In a similar way as Case 1, it follows that $N\left(v_{i}\right) \cap\left(N_{i} \cup N_{i+1}\right)=\{u\}$. That is $w \in N_{i-1}$ and $\left|N\left(v_{i}\right) \cap N_{i-1}\right|=3$. In a similar way as Case 1 , there is a contradiction.

Claim 5. For $i \in\{3,4, \ldots, d-3\}$, if there exists a vertex $v \in N_{i}-\left\{v_{i}\right\}$ such that $d(v)=4$, then one of the following statements hold:
(1) $G\left[N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{2}$.
(2) $G\left[N_{i-1} \cup N_{i} \cup N_{i+1} \cup N_{i+2}\right] \cong F_{3}$.
(3) $G\left[N_{i-2} \cup N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{3}$.

Proof. Let $N(v)=\{u, w, t, s\}$. By Claim 3, $N(v) \cap N_{i+1} \neq \emptyset$.
Case 1. $\left|N(v) \cap N_{i-1}\right|=3$ and $\left|N(v) \cap N_{i+1}\right|=1$.
We may assume that $u, w, t \in N_{i-1}$ and $s \in N_{i+1}$. If $G[\{u, w, t\}] \cong K_{3}$, then $d(u)=d(w)=d(t)=4$. Let $\ell \in N(u) \cap N_{i-2}$. Since $u \neq v_{i-1}$, applying Claim 3(1) to u, we also have $\ell \in N(w) \cap N(t)$. Let $G^{\prime}=G-\{v, w, u, t\}$. Since $u, w, t \notin V(P)$ and $d(s) \geq 3, \operatorname{diam}\left(G^{\prime}\right) \geq d$ and $r(G)-r\left(G^{\prime}\right)>0$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Without loss of generality, we can assume that $u w \notin E(G)$. Then, in view of Claim 3(1), we have $d(t)=d(s)=3$. Since $u t \notin E(G)$ or $w t \notin E(G)$, say $u t \notin E(G)$, then $d(w)=3$ and $w t \in E(G)$. Hence $w \neq v_{i-1}$. By Claim 4, there is a contradiction.

Case 2. $\left|N(v) \cap N_{i-1}\right|=2$ and $\left|N(v) \cap N_{i}\right|=1$.
We may assume that $u, w \in N_{i-1}, t \in N_{i}$ and $s \in N_{i+1}$. Suppose that $G[\{u, w, t\}] \cong K_{3}$. Since $d(u)=d(w)=4$, in view of Claim 3, we must have $s t \in E(G)$. Without loss of generality, assume $u \notin V(P)$. Let $\ell \in N(u) \cap N_{i-2}$. By Claim 3, we have $\ell w \in E(G)$.

If there exists a vertex $h \in N_{i}-\{v, t\}$, let $h_{1} \in N(h) \cap N_{i-1}$ and $G^{\prime}=$ $\left(G-\{v\}-\left\{h h_{1}\right\}\right) \cup\left\{t h_{1}, w h\right\}$. Then $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)} \geq 0$ and $n\left(G^{\prime}\right)<n(G)$,
which is a contradiction. Hence $N_{i}=\{v, t\}$. Since $N_{i}=\{v, t\}, N_{i+1}=\{s\}$. Suppose that there exists a vertex $h \in N_{i-1}-\{u, w\}$. Since $h \neq v_{i-1}$, by Claim 4, $d(h)=4$. Since $N(h) \cap N_{i}=\emptyset$, by Claim 3, there is a contradiction. Hence, $N_{i-1}=$ $\{u, w\}=\left\{u, v_{i-1}\right\}$. Arguing similarly as above, we can prove that $N_{i-2}=\{l\}$. So, $G\left[N_{i-2} \cup N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{3}$.

Assume for the moment that $u w \notin E(G)$. By Claim $3, d(t)=d(s)=3$ and hence st $\in E(G)$ by Claim 1(ii). Since $u t \notin E(G)$ or $w t \notin E(G)$, say ut $\notin E(G)$, then $d(w)=3$ and $w t \in E(G)$. Since $v \notin V(P)$, by Claim $4, t=v_{i}, w=v_{i-1}$ and $s=v_{i+1}$. Since $d(u)=4$ by Claim 1(iii), there exists a vertex $f \in N(u)-N(w)$. Let $G^{\prime}=(G-\{u f\}) \cup\{u t, w f\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $r(G)-r\left(G^{\prime}\right)>0$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction.

Hence $u w \in E(G)$. Without loss of generality, we can assume that $u t \notin E(G)$. Then $d(w)=d(s)=3$. It is easy to check that $w \notin V(P)$. Then, applying Claim 4 to w, we get a contradiction.

Case 3. $\left|N(v) \cap N_{i-1}\right|=1$ and $\left|N(v) \cap N_{i}\right|=1$.
We may assume that $u \in N_{i-1}, w \in N_{i}$ and $s, t \in N_{i+1}$. Suppose that $G[\{w, s, t\}] \cong K_{3}$. If $d(s)=3$, let $G^{\prime}=G-\{s\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Since $r(G)-$ $r\left(G^{\prime}\right) \geq 0, \frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)} \geq 0$ and $n\left(G^{\prime}\right)<n(G)$, which is a contradiction. Hence, $d(s)=4$. Similarly, $d(t)=4$. Then $u w \in E(G)$ by Claim 3(1). Say $s \neq v_{i+1}$. Let $\ell \in N(s)-\{v, w, t\}$. By Claim $3, \ell \in N_{i+2}$ and $t \ell \in E(G)$. By a similar proof as Case $2, G\left[N_{i-1} \cup N_{i} \cup N_{i+1} \cup N_{i+2}\right] \cong F_{3}$.

Assume that st $\notin E(G)$. Then $d(u)=d(w)=3$. Since $w t \notin E(G)$ or $w s \notin$ $E(G)$, say $w s \notin E(G)$, then $d(t)=3$ and $w t \in E(G)$. By Claim $4, w=v_{i}, u=v_{i-1}$, $t=v_{i+1}$. By Claim 1, $d(s)=4$. Then there exists a vertex $f \in N(s)-N(t)$, let $G^{\prime}=(G-\{s f\}) \cup\{s w, f t\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $r(G)-r\left(G^{\prime}\right)>0$. So, $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction. Hence st $\in E(G)$. Without loss of generality, we can assume that $s w \notin E(G)$. Then $d(u)=d(t)=3$. By Claim 4, $t=v_{i+1}$. Hence $v=v_{i}$, which is a contradiction.

Case 4. $\left|N(v) \cap N_{i-1}\right|=1$ and $\left|N(v) \cap N_{i+1}\right|=3$.
We may assume that $u \in N_{i-1}$ and $w, s, t \in N_{i+1}$. Assume for the moment that $G[\{w, s, t\}] \cong K_{3}$. Since $i \leq d-3$, if there exists a vertex $x \in\{w, s, t\}$ such that $d(x)=3$, then $x \neq v_{i+1}$. But one can easily see that this structure contradicts Claim 4. So we have $d(w)=d(s)=d(t)=4$. Since $G[\{w, s, t\}] \cong K_{3}$ and $v \neq v_{i}$, it is easy to check that $\{w, s, t\} \cap\left\{v_{i+1}\right\}=\emptyset$. By Claim 3, there exists a vertex $y \in N_{i+2}$ such that $\{w, s, t\} \subset N(y)$. Let $G^{\prime}=G-\{v, w, s, t, y\}$. Then we get $\operatorname{diam}\left(G^{\prime}\right) \geq d$. Also, since $d(u) \geq 3$ and $i \leq d-3$, it is easy to check that $r(G)-r\left(G^{\prime}\right)>0$. So we have $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, a contradiction.

Hence, without loss of generality, we may assume that ws $\notin E(G)$. Then we have $d(u)=d(t)=3$ by Claim 3. Since $d(w)=4$ or $d(s)=4$, we can assume that $d(w)=4$. Then $s t \in E(G)$. Since $i \leq d-3$ and $d(t)=3$, we have $t \notin V(P)$. Applying Claim 4 to t, we can easily get a contradiction.

Case 5. $\left|N(v) \cap N_{i-1}\right|=1,\left|N(v) \cap N_{i}\right|=2$ and $\left|N(v) \cap N_{i+1}\right|=1$.
We may assume that $u \in N_{i-1}, w, t \in N_{i}$ and $s \in N_{i+1}$. Suppose that $G[\{u, w, t\}] \cong K_{3}$. Then we have $d(u)=4$. By Claim 3, ws, $t s \in E(G)$. If $u \notin V(P)$, let $G^{\prime}=\left(G-\{t\}-\left\{v_{i-1} v_{i}\right\}\right) \cup\left\{u v_{i}, v_{i-1} v\right\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $r(G)-r\left(G^{\prime}\right) \geq 0$. So $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)} \geq 0$ and $n\left(G^{\prime}\right)<n(G)$, which is a contradiction. Hence, $u=v_{i-1}$. Suppose there exists a vertex $l \in N_{i-1}-\{u\}$. Then there exists a vertex $f \in N(\ell)-N_{u}$ such that $\ell f \in E(G)$. Then, letting $G^{\prime}=(G-\{v\}-\{\ell f\}) \cup\{f u, w \ell\}$, we get $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, a contradiction. Hence $N_{i-1}=$ $\{u\}$ and this implies $G\left[N_{i-1} \cup N_{i} \cup N_{i+1}\right] \cong F_{2}$, as desired.

Thus we may assume that $u w \notin E(G)$. By Claim $3, d(t)=d(s)=3$. Hence by Claim 1 (ii), st $\in E(G)$. Since $t \in N_{i}$, we have $N(t) \cap N_{i-1} \neq \emptyset$. This implies $w t \notin E(G)$. Then by Claim $3, d(u)=3$ and $u t \in E(G)$. Hence $d(w)=4$ (by Claim 1(ii)). Since $v \notin V(P)$, by Claim $4, t=v_{i}, u=v_{i-1}$ and $s=v_{i+1}$. Let f be a vertex with $w f \in E(G)$ and $f \neq v$. Let $G^{\prime}=(G-\{w f\}) \cup\{u w, f t\}$. Then we have $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, a contradiction. Hence $u w \in E(G)$. We can similarly have $u t \in E(G)$. Since $G[\{u, w, t\}] \not \equiv K_{3}$, wt $\notin E(G)$. So, $d(u)=3$. Then $N(u) \cap N_{i-2}=\emptyset$, which is a contradiction.

Case 6. $\left|N(v) \cap N_{i-1}\right|=2$ and $\left|N(v) \cap N_{i+1}\right|=2$.
We may assume that $u, w \in N_{i-1}$ and $s, t \in N_{i+1}$. It is easy to check that $u w \in E(G)$ or $s t \in E(G)$ holds. (Otherwise, let $G^{\prime}=(G-\{v\}) \cup\{u w, s t\}$. Then $\operatorname{diam}\left(G^{\prime}\right) \geq d$ and $r(G)-r\left(G^{\prime}\right)>0$. So $\frac{r(G)}{\operatorname{diam}(G)}-\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which is a contradiction.) Suppose that $u w \in E(G)$ and st $\notin E(G)$. By Claim 3, $d(u)=$ $d(w)=3$. This together with $v \notin V(P)$ implies $u, w \notin V(P)$. Then, applying Claim 4 to u, we get a contradiction. We can similarly get a contradiction in the case where $u w \notin E(G)$ and $s t \in E(G)$.

Hence we may assume that $u w \in E(G)$ and $s t \in E(G)$. If $d(u)=d(w)=3$ or $d(s)=d(t)=3$, in view of Claim 4, we get a contradiction. Hence, without loss of generality, we may assume that $d(u)=d(s)=4$. Let $N(s)-\{v, t\}=\left\{s_{1}, s_{2}\right\}$ and $N(u)-\{v, w\}=\left\{u_{1}, u_{2}\right\}$.

Assume for a while that $s \notin V(P)$. Applying Claim 3 to s, we may assume that $s_{1} \in N_{i+2}$. If $s_{2} \in N_{i} \cup N_{i+1}$, then by Claim 3, we have $d(t)=d\left(s_{1}\right)=3$. In this case, applying Claim 4 to t, we can easily get a contradiction. Thus we have $\left\{s_{1}, s_{2}\right\} \subset N_{i+2}$. Applying Claim 3 to $s, G\left[\left\{s_{1}, s_{2}, v, s\right\}\right]=K_{4}$. Furthermore, it is easy to prove that $d\left(s_{1}\right)=d\left(s_{2}\right)=4$.

If $G-v$ is connected, then let $G^{\prime}=G-\{v, s, t\}$. If $G-v$ is disconnected, then there is a connected component C such that $V(C) \supset\left\{s, t, s_{1}, s_{2}\right\}$ and $G-C$ is connected. In this case, let $G^{\prime}=G-C$. In any case, since G^{\prime} is connected and $\operatorname{diam}\left(G^{\prime}\right) \geq d$, we get a contradiction to the choice of G.

Finally assume that $s \in V(P)$. We may assume that $s_{1}=v_{i+2}, s_{2}=v_{i}$. In view of Claim 4, we have $d(t)=4$. In view of Claim 3, we have $s_{1} t, s_{2} t \in E(G)$ because $d(v)=4$. Since $v s_{2} \notin E(G)$, applying Claim 3 to t, we get a contradiction
because $d(s)=4$.
Claim 6. For every $2 \leq i \leq d-2, N_{i-1} \cup N_{i} \cup N_{i+1}$ contains a vertex of degree at least 3.

Proof. Assume the opposite. Then by Claim 2, we have $d\left(v_{i-1}\right)=d\left(v_{i}\right)=$ $d\left(v_{i+1}\right)=2$ for some i. Let G^{\prime} be a graph obtained from G by adding a new vertex u such that $u v_{i-1}, u v_{i}, u v_{i+1} \in E\left(G^{\prime}\right)$. Then we can easily check that $\frac{r(G)}{\operatorname{diam}(G)}-$ $\frac{r\left(G^{\prime}\right)}{\operatorname{diam}\left(G^{\prime}\right)}>0$, which contradicts the choice of G.

Now we find a block decomposition of G. Notice that, in view of Claims 2, $4,5, G$ has a cut vertex. So there exist at least two blocks. Let \mathcal{B}_{0} be a set of blocks such that each $B \in \mathcal{B}_{0}$ is isomorphic to K_{2} and B contains a vertex v_{j} with $d\left(v_{j}\right)=2$ for some $3 \leq j \leq d-2$. Moreover, let $\mathcal{B}_{0}^{1}=\left\{B \in \mathcal{B}_{0} \mid V(B)=\left\{v_{i-1}, v_{i}\right\}\right.$ for some $3 \leq i \leq d-2$ such that $N_{i}=\left\{v_{i}\right\}, d\left(v_{i-1}\right)>2, d\left(v_{i}\right)=2$ and $\left.d\left(v_{i+1}\right)>2\right\}$ and $\mathcal{B}_{0}^{2}=\left\{B \in \mathcal{B}_{0} \mid V(B)=\left\{v_{i}, v_{i+1}\right\}\right.$ for some $2 \leq i \leq d-2$ such that $N_{i}=$ $\left.\left\{v_{i}\right\}, N_{i+1}=\left\{v_{i+1}\right\}, d\left(v_{i}\right)=d\left(v_{i+1}\right)=2\right\}$.

For $i=1,2,3$, let \mathcal{B}_{i} be a set of blocks such that each $B \in \mathcal{B}_{i}$ is isomorphic to F_{i} and $V(B) \cap\left\{v_{2}, v_{3}, \ldots, v_{d-2}\right\} \neq \emptyset$. Let $\mathcal{B}=\mathcal{B}_{0}^{1} \cup \mathcal{B}_{0}^{2} \cup\left(\bigcup_{i=1}^{3} \mathcal{B}_{i}\right)$. Also, for each $1 \leq i \leq 3$, put $b_{i}=\left|\mathcal{B}_{i}\right|$, and for $j=1,2$, put $b_{0 j}=\left|\mathcal{B}_{0}^{j}\right|$. For a pair of blocks $B, B^{\prime} \in \mathcal{B}_{1} \cup \mathcal{B}_{3}$, it is possible that B and B^{\prime} share exactly one vertex (i.e., it is a cut vertex of G). Let x be the number of such pairs in $\mathcal{B}_{1} \cup \mathcal{B}_{3}$. Also let $Y=V(P)-\cup_{B \in \mathcal{B}} V(B)$ and $y=|Y|$. Note that, in view of Claims 2-6, $Y \subset$ $\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{d-3}, v_{d-2}, v_{d-1}, v_{d}\right\}$. Put $I=\left\{i \mid v_{i} \in Y\right\}$ and $M=\left\{v \in V(G) \mid v \in N_{i}\right.$ for some $i \in I\}$.

Claim 7. The following statements hold:
(i) For $i \leq 3$, if $v_{i} \in Y$, then $v_{j} \in Y$ for each j with $j<i$. Similarly, for $i \geq d-3$, if $v_{i} \in Y$, then $v_{j} \in Y$ for each j with $i<j$.
(ii) If $v_{3} \in Y$, then $\sum_{v \in N_{2} \cup N_{3}} \frac{1}{d(v)} \geq \frac{5}{6}$. Similarly, if $v_{d-3} \in Y$, then $\sum_{v \in N_{d-2} \cup N_{d-3}} \frac{1}{d(v)} \geq \frac{5}{6}$.
(iii) $\sum_{v \in M} \frac{1}{d(v)} \geq 5 y / 12$.

Proof. We can easily see that, if $v_{i} \in Y$ holds for $i \leq 2$ or $i \geq d-2$, then the assertion of (i) follows from the structure of F_{i} for $1 \leq i \leq 3$ and $\delta(G) \geq 2$ by Claim 1(i). Suppose that $v_{3} \in Y$. If $\left|N\left(v_{3}\right) \cap N_{2}\right| \geq 2$, then we can easily check that $\left\{v_{0}, v_{1}, v_{2}\right\} \subset Y$. So we may assume that $N\left(v_{3}\right) \cap N_{2}=\left\{v_{2}\right\}$. If $d\left(v_{3}\right)=2$, then $\left\{v_{2}, v_{3}\right\}$ forms a block in $\mathcal{B}_{0}^{1} \cup \mathcal{B}_{0}^{2}$, which contradicts $v_{3} \in Y$. So we have $d\left(v_{3}\right) \geq 3$. Then, applying Claim 4 or 5 to a vertex of $N\left(v_{3}\right)-V(P)$, we find a block $B \in \cup_{1 \leq i \leq 3} \mathcal{B}_{i}$ containing v_{3}, a contradiction. For the case where $v_{d-3} \in Y$, the almost identical argument works. Thus (i) holds.

To show (ii), suppose that $v_{3} \in Y$. In view of Claims 2, 4, 5, this forces $\left|N\left(v_{3}\right) \cap N_{2}\right| \geq 2, N_{3}=\left\{v_{3}\right\}$ and $N\left(v_{3}\right) \cap N_{4}=\left\{v_{4}\right\}$ (otherwise, v_{3} is contained in a block of \mathcal{B}). Since $d\left(v_{3}\right) \geq 3$ and $\Delta(G) \leq 4$, we have $\sum_{v \in N_{2} \cup N_{3}} \frac{1}{d(v)} \geq 5 / 6$. For the case $v_{d-3} \in Y$, the almost identical argument works. To show (iii), by (i) it suffices to show that, for any maximal subset L of I such that $L=\{0,1, \ldots, \ell\}$ or $L=\{d, d-1, \ldots, d-\ell\}$ and $Z=\cup_{i \in L} V\left(N_{i}\right), \sum_{z \in Z} \frac{1}{d(z)} \geq 5|L| / 12$. Note that if $I \neq \emptyset$ then $1 \leq|L| \leq 4$ by the definition of Y and I. By the Claims 2, 4, 5, $2 \leq|L| \leq 4$. Since the argument of the proof is almost identical, we only discuss the case where $L=\{0,1, \ldots, \ell\}$. If $|L|=2$, then $\sum_{z \in Z} \frac{1}{d(z)} \geq \sum_{x \in N\left[v_{0}\right]} \frac{1}{d(x)} \geq 1>5 / 6$, as claimed. If $|L|=3$, in view of Claim 2, it is easy to see that $d\left(v_{1}\right) \geq 3$. Then we have $\sum_{z \in Z} \frac{1}{d(z)} \geq \max \left\{\sum_{x \in N\left[v_{0}\right]} \frac{1}{d(x)}, \sum_{x \in N\left[v_{1}\right]} \frac{1}{d(x)}\right\} \geq 5 / 4$, as claimed. If $|L|=4$, then by (ii), $\sum_{v \in M} \frac{1}{d(v)} \geq \sum_{x \in N\left[v_{0}\right]} \frac{1}{d(x)}+\sum_{v \in N_{2} \cup N_{3}} \frac{1}{d(v)} \geq 1+5 / 6>5 / 3$, as claimed.

Now we construct a graph G^{*} from G as follows: For every pair of blocks $B, B^{\prime} \in \mathcal{B}_{1} \cup \mathcal{B}_{3}$ sharing one cut vertex v (i.e., $\left|B \cap B^{\prime}\right|=1$), delete v and add two new vertices $v^{\prime}, v^{\prime \prime}$ with an edge $e=v^{\prime} v^{\prime \prime}$ and join v^{\prime} to $N(v) \cap B$ completely, $v^{\prime \prime}$ to $N(v) \cap B^{\prime}$ completely with edges (i.e., this operation corresponds to replacing a cutvertex by a bridge). Let G^{*} be the resulting graph. By this construction, we have $d\left(G^{*}\right)=d+x$.

Then, in view of Claims 2-5 and 7(iii), we get that $r\left(G^{*}\right)=r(G)+5 x / 12 \geq$ $b_{01} / 2+b_{02}+4 b_{1} / 3+5 b_{2} / 4+5 b_{3} / 3+5 y / 12$ and $d\left(G^{*}\right)=d+x \leq b_{01}+2 b_{02}+3 b_{1}+$ $3 b_{2}+4 b_{3}+y$.

Consequently we have $d \leq \frac{12}{5} r(G)$, as desired. This completes the proof of Theorem 3.

Acknowledgments. X.-G. Chen's research is supported by spectical funds for coconstruction project of Beijing. Shinya Fujita's research is supported by KAKENHI Grant-in-Aid for Young Scientists (B) (23740095).

We wish to offer our thanks to the referees for their careful reading of a previous version of this paper and for a number of helpful suggestions that led to many improvements.

REFERENCES

1. P. Dankelmann, A. Hellwig, L. Volkmann: Inverse degree and edge-connectivity. Discrete Math., 309 (2008), 2943-2947.
2. P. Dankelmann, H. C. Swart, P. van den Berg: Diameter and inverse degree. Discrete Math., 308 (2008), 670-673.
3. P. Erdős, J. Pach, J. Spencer: On the mean distance between points of a graph. Congr. Numer., 64 (1988), 121-124.
4. S. FAJtlowicz: On conjectures of graffiti II. Congr. Numer., 60 (1987), 189-197.
5. X. Li, I. Gutman: Mathematical Aspects of Randic-type Molecular structure Descriptors. MCM, Kragujevac, 2006.
6. S. Mukwembi: On diameter and inverse degree of a graph. Discrete Math., 310 (2010), 940-946.

Department of Mathematics,
(Received February 21, 2012)
North China Electric Power University,
Beijing 102206
China
E-mail: gxcxdm@163.com
Department of Integrated Design Engineering,
Maebashi Institute of Technology,
460-1 Kamisadori, Maebashi, Gunma 371-0816
Japan
E-mail: shinya.fujita.ph.d@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C07, 05C35.
 Keywords and Phrases. Inverse degree, diameter, chemical graph.

