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ON DIAMETER AND INVERSE DEGREE OF
CHEMICAL GRAPHS

Xue-gang Chen, Shinya Fujita

The inverse degree r(G) of a finite graph G = (V, E) is defined as r(G) =

Z %1))7 where d(v) is the degree of vertex v. In Discrete Math., 310
veV

(2010), 940-946, MUKWEMBI posed the following conjecture: Let G be a
connected chemical graph with diameter diam(G) and inverse degree r(G).
Then diam(G) < %T(G) +O(1).

In this paper, we settle the conjecture affirmatively.

1. INTRODUCTION

Graph theory terminology not presented here can be found in [6]. Let G =
(V, E) be a graph with |V| = n(G). The degree, neighborhood and closed neighbor-
hood of a vertex v in the graph G are denoted by d(v), N(v) and N[v] = N(v)U{v},
respectively. The minimum degree and maximum degree of the graph G are de-
noted by §(G) and A(G), respectively. The graph induced by S C V is denoted
by G[S]. Let G — S = G[V — S]. The graph induced by E’ C FE is denoted by
G[F’]. Let G — E' = G[E — E']. The distance dg(u,v) between two vertices u
and v of G is the length of the shortest © — v path in G, and the diameter is
diam(G) = max{dg(u,v) : u,v € V}. The inverse degree r(G) of G is defined as

r(G) = Z ﬁ Let P,,C, and K, denote the path, cycle and complete graph
veV

with order n, respectively.
Chemical graphs represent the structure of organic molecules and thus have a
maximum degree of 4, carbon atoms being 4-valent and double bonds being counted

as single edges. Formally, a chemical graph is a graph with a maximum degree of
4.
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The inverse degree (also known as the sum of reciprocals of degrees) first
atracted attention through numerous conjectures generated by the computer pro-
gramme Graffiti [4]. Since then its relationship with other graph invariants, such
as diameter, edge-connectivity, matching number, Wiener index has been studied
by several authors (see, for example [1, 2, 5]).

Turning to bounds on the diameter in terms of order and inverse degree, our
starting point is the following bound by ERDOS, PACH and SPENCER [3].

Theorem 1. Let G be a connected graph of order n, diameter diam(G) and inverse

degree r(G). Then diam(G) < (GT(G) + 0(1)) lo:ign'

The bound was later improved by a factor of about 2 by DANKELMANN,

SWART and VAN DEN BERG [2], showing that diam(G) < (3r(G)+2+0(1)) lo:ign'

MUKWEMBI [6] focused on bounds on the diameter in terms of the inverse degree
for some important classes of graphs such as planar graphs, regular graph, chemical
graphs and trees. Molecular structure-descriptors such as the Randic Index (defined
1

as R(G) = —_—),
M;E:(C;) Vd(u)d(v)
studied intensively for these classes of graphs. MUKWEMBI [6] gave the following
result.

which is similar to that of the inverse degree, were

Theorem 2. Let G be a connected chemical graph. Then diam(G) < 3r(G) + 3.

In relation to the above theorem, MUKWEMBI [6] conjectured that if G is a
connected chemical graph with diameter diam(G) and inverse degree r(G), then

diam(G) < %T(G) + O(1). In this paper, we settle this conjecture affirmatively.

Theorem 3. Let G be a connected chemical graph with diameter diam(G) and

inverse degree r(G). Then diam(G) < 1—527°(G).

For the upper bound concerning diam(G), the coefficient % of r(G) is the

best possible. To see this, consider the graph G = K1 + K3+ K1+ K1+ K3+ K1 +
K1+ Ks+...+ K1+ K1+ K3+ K;. Here the operation A+ B for two disjoint graphs
A, B means joining every vertex of A to every vertex of B with edges completely.

2. PROOF OF THEOREM 3

Amongst all connected chemical graphs G, we choose G so that,

r(G) . .. . ..
(1) Tam () is minimal, and subject to the condition (1),
(2) n(G) is minimal.
In order to prove the theorem, it suffices to show that ﬁﬁ)) > 5/12.

Let P = vgvy ...v4-1v4 be a diametral path of G. For ¢« = 0,1,2,....d, let N; =
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{v|d(v,vg) = i}. Clearly we have Ny = {vg}. If diam(G) < 3, it is easy to check that

diam(G) < E7’(G). Assume that diam(G) = 4. Then we have r(G) > Z L—|—
2 x€N[vg] d(:C)
Z %x) > 2, and so diam(G) < %T(G). Also notice that, if 6 > diam(G) >
z€N[vg]
1 1 1 1 .
> — _ — >
5, then r(G) > ze%[:uo] ) + (02) + (oa) + ZE%[:%] i@ 2 5/2, meaning that

diam(G) < 1—52r(G) holds. Hence, in the following argument, we may assume that
diam(G) > 7. For i = 0,1,2,...,d, let S; = {v|v € N;,d(v) < 4}. We define some
graphs which will play an important role in the proof of our main result.

Lo s

F3

Claim 1. The following statements hold :
(i) 4(G) > 2.

(i1) For every 1 <i <d—1, G[S; U Sit1] forms a complete graph. In particular,
for anyv € S; and u € N;—1 U N; U Ni41, if vu ¢ E(G) then d(u) = 4.

(iil) For every 1 <i<d—1,[S;—1 US; US;11] < 3.

(iv) Let v be a vertex with d(v) = 2 such that v € N; for some 1 < i< d—1. Then,
for any edge e = ab with N (v) N{a,b} =0, [(N;—1 UN; UN; 1) N{a,b}| < 1.

Proof. To prove (i), suppose that there exists a vertex v € V(G) such that

d(v) = 1. Then v € (V(G) — V(P)) U {vg,vq}. Since P is a diametral path, it

follows that v ¢ Ny. If v € V(G) — V(P), let u be the neighbour of v and G' =

G — {v}. Then diam(G’) > d. Moreover, dg/(z) = dg(z) for all x ¢ {u,v}. Since
1

1 1 1 1
> el / = — _— e = _—
d(u) > 2, we have r(G) — r(G") a00) + dw) " dw) =1 1+ a0 A =1 >
0. Then r(G) r(@) > 0, which is a contradiction. If d(vg) = 1, let

diam(G)  diam(G")
G’ be obtained from G and K3 by joining edges from vy to each vertex of Kj.
Then diam(G’) = d + 1. Moreover, dg/(v) = dg(v) for all v € V(G) — {vo}.

1 d 5
- . > ¢ - " = 2.
Let z Z a00) Then = > 1 r(G) = x+1and r(G') =z + 1 So,
veV(G)—{vo}
5
r(G) r(G") 7:0—1—1_5‘7"'1

_ _ o ction. -
Jiam(G)  diam(C7) ] i1 0, which is a contradiction. Hence, d(vg) >
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2. Similarly, d(vg) > 2. So, 6(G) > 2. Thus (i) holds. Next suppose that there exist
two vertices u,v € S; U S;41 such that uwv ¢ E(G). Let G’ = G U {uv}. Note that
. T ’ . _ n_ Lo 1 _ 1
diam(G) = diam(G’). Since 7(G) —r(G’) = a0 + OB OET O > 0,
r&) (&) > 0, which is a contradiction. Thus (ii) holds. To prove
diam(G)  diam(G’) ’

(111)7 suppose |S1'71 us; U Si+1| > 4 and take wuy,u9,us,ug € S;—1 US; U Siy1.

Let G’ be the graph obtained from G by adding a new vertex v to N; with edges

U0, U0, uzv, ugv (ie., G = GU{v} U {uiv, usv, uzv,uqv}). Then one can easily
r(G) r(G")

check that diam(G) N diam(G’)

To show (iv), suppose that a,b € N;_1 U N; U N;;1 where ab € E(G),v € N;

and d(v) = 2. Consider the graph G’ = (G — {ab}) U {av,bv}. Then we have
r(G) r(G")

diam(G) N diam(G”)

> 0, a contradiction. Thus (iii) holds.

> 0, a contradiction. Thus (iv) holds.

Claim 2. If there exists a vertex v € N; such that d(v) = 2, then N; = {v} = {v;}.

Proof. Since Ny = {vp}, we can assume that v € N;, where i € {1,2,...,d}. Let
u € N(v) N N;_1. Suppose that N; — {v} # 0. For any w € N; — {v}, if wv ¢ E(G),
then d(w) = 4. Then there exists a vertex t € N(w) — N(v) such that vt ¢ E(G).
Since N(v) N{w,t} = 0, we get a contradiction to Claim 1(iv). Hence, wv € E(G)
for any w € N; — {v}. Since d(v) = 2, N; = {v,w}. Furthermore, uw € E(G).
Otherwise, let G' = (G — {v}) U {uw}. Then diam(G’) = d and r(G) — r(G") > 0.
r(G) (@) . e - N
' Fam(G)  dam(G7) > 0, which is a contradiction. Since diam(G) > 7, d(u) > 3
or d(w) > 3. If d(u) > 3 and d(w) > 3, let G’ = G — {v}. Then diam(G’") = d and
e r(G) (@) o . B
r(G)—r(G") > 0. So, Tam(G) ~ Tam(G) > 0, which is a contradiction. If d(u) = 2

and d(w) > 3, then Ny = {u}. Let G’ be obtained from G by adding a vertex £ and

joining edges fu and fv. Then diam(G’) = d + 1. Let z = Z L Then
d(2)
zeV(G)—{u,v}
7
r(G) r(G") 71:—1—1_:”"'5

d _ n_ o7 _
2 4’ r(G) = z+1landr(G) = x+6' So, diam(G) diam(G’) ~  d d+1 >0,

which is a contradiction. If d(u) > 3 and d(w) = 2, then Ny = {v,w}. In a similar
way as above, there is a contradiction. So N; = {v} = {v;}.

Claim 3. Forie€ {2,3,...,d — 2}, if there exists a vertex v € N; — {v;} such that
d(v) =4, say N(v) = {u,w,t, s}, then the following statements hold:

(1) Suppose that wvw ¢ E(G). If u,w € N;—1 UN; or u,w € N; U N;;1, then
d(t) = d(s) = 3 holds.

(2) N(’U) N Nit1 #* 0.

Proof. Sincev ¢ V(P) and 2 < i < d—2, in view of Claim 2, d(u), d(w), d(t), d(s) >
3. Furthermore, there exists a vertex of degree 4 in N (v).
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(1) If u,w € N;—1 UN; or u,w € N; UN;41, then d(t) = d(s) = 3. Otherwise,

let G’ = (G —{v})U{uw}. Then diam(G") > d. Since r(G) —r(G") > 0, % -
r(G)

diam(G”)

(2) Suppose that N(v) € N;_1 U N;. Then N[v] = K5. Otherwise, say uw ¢
E(G). Then d(s) = d(t) = 3 and st € E(G). Since sw ¢ E(G) or su ¢ E(G),
we can assume that sw ¢ E(G). Then d(u) = d(t) = 3 and ut,us € E(G). Since
i > 2, {u,s,t} N N;—1 = 0. Hence, {u,s,t} C N;. Then N(u) N N;—1 = @, which
is a contradiction. Since N[v] & K5, G = Kj, which is a contradiction. So,
N(’U) n NrL'Jrl }é @

> 0 and n(G’) < n(G), which is a contradiction.

Claim 4. Fori € {2,3,---,d — 2}, if there exists a vertez v € N; — {v;} such that
d(v) = 3, then GIN;_1 UN; U N; 1] = F.

Proof. Let N(v) = {u,w,t}. Since v ¢ V(P) and 2 < i < d — 2, Claim 2 implies
d(u),d(w),d(t) > 3. First we observe that for any z,y € N(v), if z,y € N;—1 UN;
or x,y € N; U N1 then zy € E(G). To see this, suppose zy ¢ E(G), and let
G = (G — {v}) U{zy}. Then diam(G’) > d. Since r(G) — r(G') > 0, we have
r(GQ) r(G)
diam(G)  diam(G')

Since |S;—1 US; US;11| < 3 by Claim 1(iii), at least one vertex of N(v) has
degree 4. Suppose that d(u) = 4. Then d(w) = d(t) = 3. Otherwise, let G’ = G —
{v}. Then diam(G’) > d. Since +(G) — r(G’) > 0, we have di;ﬁ)@ - di;ﬁé,) >0
and n(G") < n(G), which is a contradiction. If N(v) C N;_; UN;, then G[N[v]] =
K, by the above observation. So, u € N;,—; and {w,t} C N; (because 2 < i
and d(w) = d(t) = 3). Since i < d — 2, we have v,w,t ¢ V(P). So u ¢ V(P). Let
G = G—N/[v]. Then diam(G’) > d. Since r(G)—r(G') > 0, di;f()a) - di;ﬁ ();,) >0,
which is a contradiction. Hence, N(v) N N;—1 # 0.

Case 1. [N(v) N N;_1| = 2.

Without loss of generality, we can assume that w € N;_;. Since N(w) N
Ni_o # 0, it follows that wv; ¢ E(G). If there exists a vertex s € N(v;) N (N;—1 U
N;) — N(v) N Ny, let G’ = (G — {v;s}) U {v;w,vs}. Then diam(G’) > d. Since
r(G)—r(G’) > 0, we have di;(ri)G) - di;r(nG(C)J’) > 0, which is a contradiction. Hence,
N(’UZ‘) n (Ni—l U Nl) — N(’U) N N;—_1 = (. That is N(’U) NN;_1 = {w,u}, uv; € E(G)
and |N(v;) N Niy1| > 3. Since d(t) = 3, there exists a vertex s € N(v;) N Niyq
such that ts ¢ E(G). Let G' = (G — {v;s}) U {v;v,ts}. Then diam(G") > d. Since
r(G) —r(G") > 0, we have di;(ri)G) - di;(rﬁc)l’)

Case 2. [N(v)NN;_1|=1and |[N(v)NN;| = 1.

Without loss of generality, we can assume that w € N(v) N (N;,—1 UN;). If
|N;| > 2, say s € N; — N[v]. By the above observation, sw ¢ FE(G). Note that,
by Claim 1(ii), d(s) = 4. Let k € N(s) — N(v) and G’ = (G — {sk}) U {sw, kv}.

> 0, which is a contradiction.

> (0, which is a contradiction.
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Then diam(G’) > d. Since 7(G) — r(G’) > 0, we have di::,fri)G) - di;frig’) > 0,
which is a contradiction. Hence, |N;| = 2. That is N; = {v,v;} and vv; € E(G).
If d(v;) = 4, then v; = u, w € N;—1 and t € N;y1. Let s € N(v;) — N(v) and
k€ N(s)=N(w)UN(t). Let G’ = (G—{sk})U{kw, sv} or G' = (G—{sk})U{kt, sv}.
Then diam(G’) > d. Since 7(G) — r(G’) > 0, we have di::,fri)G) - di;frig’)
which is a contradiction. Hence d(v;) = 3. That is w = v;. Then |[N;y;| = 1. If
|N1',1| > 2, let s € N;_1 — N(’U), then d(S) = 4 and N(S) NN; = 0. If 4 > 3,
by Claim 3, there is a contradiction. If i = 2, then |[Ny U Ny| > 6, there is a
contradiction. Hence |N;_1| = 1. So G[N;—1 U N; U N, ;1] = F3.

Case 3. |N(’U) n Ni,1| =1 and |N(’U) n Ni+1| =2.

We may assume that ¢ € N(v) N N;y1. Then vt ¢ E(G). Otherwise, let
G = (G — {t}) U {vv;}. Then diam(G’) > d. Since 7(G) — r(G’') > 0, we have

r(Q) r(G")

diam(G)  diam(G')
follows that N(v;) N (N; UN;y1) = {u}. That is w € N;_1 and |N(v;) N N;_1| = 3.
In a similar way as Case 1, there is a contradiction.

> 0,

> 0, which is a contradiction. In a similar way as Case 1, it

Claim 5. For i€ {3,4,...,d — 3}, if there exists a vertex v € N; — {v;} such that
d(v) =4, then one of the following statements hold:

1 [Ni—l UN; U Ni+1] =~ Fy.

1) G
(2) G[Ni_l UN; UN;;11 U NH_Q] =~ Fj.
3) G

3 [Ni_g UN;_1 UNZ'UNH_l] = [y,
Proof. Let N(v) = {u,w,t,s}. By Claim 3, N(v) N N;11 # 0.

Case 1. [N(v) N N;_1| =3 and |N(v) N N;1| = 1.

We may assume that u,w,t € N;_1 and s € N;11. If G[{u,w,t}] = K3, then
d(u) = d(w) = d(t) = 4. Let £ € N(u)NN;_2. Since u # v;_1, applying Claim 3(1) to
u, we also have £ € N(w)NN(t). Let G’ = G —{v,w,u,t}. Since u, w,t ¢ V(P) and
d(s) > 3, diam(G’) > d and r(G) —r(G") > 0. So, di;(f;)G) - di;(ﬁé’)
a contradiction. Without loss of generality, we can assume that uw ¢ E(G). Then,
in view of Claim 3(1), we have d(t) = d(s) = 3. Since ut ¢ E(G) or wt ¢ E(G), say
ut ¢ E(Q), then d(w) = 3 and wt € E(G). Hence w # v;_1. By Claim 4, there is a
contradiction.

Case 2. [N(v)NN;_1| =2 and |[N(v) N N;| = 1.

We may assume that u,w € N;,_1, t € N; and s € N;;1. Suppose that
G[{u,w,t}] = Ks. Since d(u) = d(w) = 4, in view of Claim 3, we must have
st € E(G). Without loss of generality, assume u ¢ V(P). Let £ € N(u) N N;_2. By
Claim 3, we have lw € E(G).

If there exists a vertex h € N; — {v,t}, let hy € N(h) N N;—; and G' =

(G — {0} — {hh1}) U {th1, wh}. Then di;ﬁg) - di;ﬁg,) > 0 and n(G") < n(G),

> 0, which is
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which is a contradiction. Hence N; = {v,t}. Since N; = {v,t}, N;y1 = {s}.
Suppose that there exists a vertex h € N;_1 — {u,w}. Since h # v;_1, by Claim 4,
d(h) = 4. Since N(h)NN; = (), by Claim 3, there is a contradiction. Hence, N;_; =
{u,w} = {u,v;_1}. Arguing similarly as above, we can prove that N;_5 = {l}. So,
G[Ni72 U Ni,1 U Nl U NrL'Jrl] = Fg.

Assume for the moment that uw ¢ E(G). By Claim 3, d(t) = d(s) = 3 and
hence st € E(G) by Claim 1(ii). Since ut ¢ E(G) or wt ¢ E(G), say ut ¢ E(G),
then d(w) = 3 and wt € E(G). Since v ¢ V(P), by Claim 4, t = v;, w = v;_1 and
s = viy1. Since d(u) = 4 by Claim 1(iii), there exists a vertex f € N(u) — N(w).
Let G = (G — {uf}) U{ut,wf}. Then diam(G") > d and r(G) — r(G’") > 0. So,

(&) r(G")
diam(G)  diam(G')

Hence uvw € E(G). Without loss of generality, we can assume that ut ¢ E(G).
Then d(w) = d(s) = 3. It is easy to check that w ¢ V(P). Then, applying Claim 4
to w, we get a contradiction.

Case 3. [N(v)NN;_1|=1and |[N(v)NN;| = 1.

We may assume that u € N;,_;, w € N; and s,t € N;y1. Suppose that
G{w,s,t}] =2 Ks. If d(s) = 3, let G' = G — {s}. Then diam(G") > d. Since r(G) —
r(G") >0, di;(nG()G) - di;r(nG(C)J’) > 0 and n(G’") < n(G), which is a contradiction.
Hence, d(s) = 4. Similarly, d(t) = 4. Then uw € E(G) by Claim 3(1). Say s # vit1.
Let ¢ € N(s) — {v,w,t}. By Claim 3, { € N;y2 and t¢ € E(G). By a similar proof
as Case 2, G[Ni,1 U Nl U NfL'Jrl U NiJrQ] = Fg.

Assume that st ¢ F(G). Then d(u) = d(w) = 3. Since wt ¢ E(G) or ws ¢
E(G), say ws ¢ E(G), then d(t) = 3 and wt € E(G). By Claim 4, w = v;, u = v;_1,
t = v;+1. By Claim 1, d(s) = 4. Then there exists a vertex f € N(s) — N(¢),
let G = (G — {sf}) U {sw, ft}. Then diam(G’) > d and r(G) — r(G’") > 0. So,
digr(rﬁ)G) - di;(rﬁc)l’) > 0, which is a contradiction. Hence st € E(G). Without loss
of generality, we can assume that sw ¢ F(G). Then d(u) = d(t) = 3. By Claim 4,
t = v;4+1. Hence v = v;, which is a contradiction.

Case 4. |N(’U) n Ni,1| =1 and |N(’U) n Ni+1| =3.

We may assume that v € N;_; and w,s,t € N;y1. Assume for the moment
that G[{w,s,t}] = Ks. Since i < d — 3, if there exists a vertex = € {w,s,t}
such that d(z) = 3, then = # v;;1. But one can easily see that this structure
contradicts Claim 4. So we have d(w) = d(s) = d(t) = 4. Since G[{w, s,t}] = K3
and v # v;, it is easy to check that {w, s, ¢} N {v;+1} = 0. By Claim 3, there exists
a vertex y € Njpo such that {w,s,t} C N(y). Let G = G — {v,w,s,t,y}. Then
we get diam(G’) > d. Also, since d(u) > 3 and ¢ < d — 3, it is easy to check that
r(G) —r(G’) > 0. So we have di;(f;)G) - di::,fric)?’)

Hence, without loss of generality, we may assume that ws ¢ F(G). Then we
have d(u) = d(t) = 3 by Claim 3. Since d(w) = 4 or d(s) = 4, we can assume
that d(w) = 4. Then st € E(G). Since i < d — 3 and d(t) = 3, we have ¢t ¢ V(P).
Applying Claim 4 to t, we can easily get a contradiction.

> 0, which is a contradiction.

> 0, a contradiction.
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Case 5. [N(v)NN;—1| =1, IN(v) N N;| =2 and |[N(v) N Niy1| = 1.

We may assume that v € N;_1, w,t € N; and s € N;;1. Suppose that
G[{u,w,t}] = K3. Then we have d(u) = 4. By Claim 3, ws, ts € E(G). lf u ¢ V(P),
let G = (G—{t}—{vi—1v:})U{uv;, v;_1v}. Then diam(G’") > d and r(G)—r(G") > 0.

r(G) r(G")

diam(G)  diam(G")
u = v;_1. Suppose there exists a vertex [ € N;_1 — {u}. Then there exists a vertex
f € N(l)— N, such that £f € E(G). Then, letting G’ = (G—{v}—{¢f})U{fu,wl},
we get diam(G’) > d and di;(ri)G) - di;(rﬁc)l’)
{u} and this implies G[N;_1 U N; U N, ;1] = Fy, as desired.

Thus we may assume that vw ¢ F(G). By Claim 3, d(t) = d(s) = 3. Hence
by Claim 1(ii), st € E(G). Since t € N;, we have N(t) N N;—1 # (). This implies
wt ¢ E(G). Then by Claim 3, d(u) = 3 and ut € E(G). Hence d(w) = 4 (by
Claim 1(ii)). Since v ¢ V(P), by Claim 4, t = v;, u = v;—1 and s = v;11. Let f be a
vertex with wf € E(G) and f # v. Let G' = (G — {wf}) U{uw, ft}. Then we have

~ / (&) r(G")
diam(G) > d and diam(QG) B diam(G’)
can similarly have ut € E(G). Since G[{u,w,t}] 2 K3, wt ¢ E(G). So, d(u) = 3.
Then N(u) N N;_9 = @, which is a contradiction.

Case 6. |[N(v) N N;_1| =2 and |N(v) N Ni1| = 2.

We may assume that u,w € N;_; and s,t € N;;1. It is easy to check that
uw € E(G) or st € E(G) holds. (Otherwise, let G' = (G — {v}) U {uw, st}. Then
diam(G’) > d and 7(G) — r(G') > 0. So di::,fri)G) - di;ﬁé’)
contradiction.) Suppose that uw € E(G) and st ¢ E(G). By Claim 3, d(u) =
d(w) = 3. This together with v ¢ V(P) implies u,w ¢ V(P). Then, applying
Claim 4 to u, we get a contradiction. We can similarly get a contradiction in the
case where uvw ¢ E(G) and st € E(G).

Hence we may assume that uw € E(G) and st € E(G). If d(u) = d(w) = 3 or
d(s) =d(t) = 3, in view of Claim 4, we get a contradiction. Hence, without loss of
generality, we may assume that d(u) = d(s) = 4. Let N(s) — {v,t} = {s1,s2} and
N(u) — {v,w} = {u1, us}.

Assume for a while that s ¢ V(P). Applying Claim 3 to s, we may assume
that s; € Njjo. If 85 € N; U N, 11, then by Claim 3, we have d(t) = d(s1) = 3. In
this case, applying Claim 4 to ¢, we can easily get a contradiction. Thus we have
{s1, 82} C N;t2. Applying Claim 3 to s, G[{s1, $2,v,s}] = K4. Furthermore, it is
easy to prove that d(s1) = d(s2) = 4.

If G — v is connected, then let G’ = G — {v, s,t}. If G — v is disconnected,
then there is a connected component C' such that V(C) D {s,t,s1,s2} and G- C
is connected. In this case, let G’ = G — C. In any case, since G’ is connected and
diam(G") > d, we get a contradiction to the choice of G.

> 0 and n(G’") < n(G), which is a contradiction. Hence,

> 0, a contradiction. Hence N;_; =

> 0, a contradiction. Hence uw € E(G). We

> 0, which is a

Finally assume that s € V(P). We may assume that s; = v;y2,82 = v;. In
view of Claim 4, we have d(t) = 4. In view of Claim 3, we have s1t, sot € E(G)
because d(v) = 4. Since vsy ¢ E(G), applying Claim 3 to ¢, we get a contradiction
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because d(s) = 4.

Claim 6. For every2 <i<d—2, N;_1 UN;UN,; 1 contains a vertex of degree at
least 3.

Proof. Assume the opposite. Then by Claim 2, we have d(v;—1) = d(v;) =
d(vi+1) = 2 for some i. Let G’ be a graph obtained from G by adding a new vertex

_ . , . r(G)
u such that wv;—1,uv;, uv;p1 € E(G'). Then we can easily check that Tam(G)
7,T(G ) > 0, which contradicts the choice of G. O
diam(G”)

Now we find a block decomposition of G. Notice that, in view of Claims 2,
4, 5, G has a cut vertex. So there exist at least two blocks. Let By be a set of
blocks such that each B € By is isomorphic to K3 and B contains a vertex v; with
d(vj) = 2 for some 3 < j < d — 2. Moreover, let B} = {B € Bo|V(B) = {vi—1,v;}
for some 3 < i < d—2 such that N; = {v;},d(vi—1) > 2,d(v;) = 2 and d(vig1) > 2}
and B = {B € Bo|V(B) = {vi,vi41} for some 2 < i < d — 2 such that N; =
{vit, Nigr = {viga}, d(vi) = d(vigr) = 2}

For ¢ = 1,2, 3, let B; be a set of blocks such that each B € B; is isomorphic
to F; and V(B) N {va,v3,...,v4-2} # 0. Let B = By U B2 U (U2, B;). Also, for
each 1 < i < 3, put b; = |By|, and for j = 1,2, put by; = |B}|. For a pair of
blocks B, B" € By U Bs, it is possible that B and B’ share exactly one vertex (i.e.,
it is a cut vertex of G)). Let x be the number of such pairs in B; U Bs. Also let
Y = V(P) — UpegV(B) and y = |Y|. Note that, in view of Claims 2-6, Y C
{vg, v1, V2, V3, V4—3,Vd—2,Vd—1,V4}. Put I = {ilv; € Y} and M = {v € V(G)|v € N;
for some i € I}.

Claim 7. The following statements hold :

(i) Fori<3,ifv; €Y, thenv; €Y for each j with j < i. Similarly, fori > d—3,
if vi €Y, thenv; €Y for each j with i < j.

. Similarly, if vq—3 €Y, then Z L >

vENgG_oUNg _3 d(’l})

(ii) Ifvs €Y, then» L >

'UGNQUNgd(v)

| ot
| ot

(i) 3 ﬁ > 5y/12.
veM

Proof. We can easily see that, if v; € Y holds for ¢ < 2 or ¢« > d — 2, then the
assertion of (i) follows from the structure of F; for 1 < i < 3 and §(G) > 2 by
Claim 1(i). Suppose that vs € Y. If |[N(vs) N Na| > 2, then we can easily check
that {vo,v1,v2} C Y. So we may assume that N(vs) N No = {vo}. If d(vs) = 2,
then {vg,v3} forms a block in B} U B2, which contradicts vs € Y. So we have
d(vs) > 3. Then, applying Claim 4 or 5 to a vertex of N(v3z) — V(P), we find a
block B € Uj<i<3B; containing vs, a contradiction. For the case where vq_3 € Y,
the almost identical argument works. Thus (i) holds.
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To show (ii), suppose that v3 € Y. In view of Claims 2, 4, 5, this forces

[N (v3) N Na| > 2,N3 = {v3} and N(v3) N Ny = {vs} (otherwise, vz is contained
in a block of B). Since d(v3) > 3 and A(G) < 4, we have Z %v) > 5/6. For
vENaUN3

the case vg_3 € Y, the almost identical argument works. To show (iii), by (i) it
suffices to show that, for any maximal subset L of I such that L = {0,1,...,¢}
or L ={d,d—1,...,d — ¢} and Z = U;e, V(N Z e > 5|L|/12. Note that

z€Z

if I # 0 then 1 < |L| < 4 by the definition of Y and I. By the Claims 2, 4, 5,
2 < |L] < 4. Since the argument of the proof is almost identical, we only discuss

1 1
the case where L = {0,1,...,¢}. If |L| = 2, then — > ——>1>5/6,
010 161 Sz ¥ ozt

z€N[vg]
as claimed. If |L| = 3, in view of Claim 2, it is easy to see that d(vy) > 3. Then we
1 1 .

—_— > > . =

have Z i@ > max{ Z @)’ Ies) } 5/4, as claimed. If |L| = 4, then
@eN[v ] aceN[
1 .

>1 .

(i), S - e > > d it Z dfy 2 11 5/6> 5/3, as claimed 0
veM aceN[v vENUN3

Now we construct a graph G* from G as follows: For every pair of blocks
B, B’ € By U B3 sharing one cut vertex v (i.e., |[BNB’| = 1), delete v and add two
new vertices v’,v” with an edge e = v'v” and join v’ to N(v) N B completely, v”
to N(v) N B’ completely with edges (i.e., this operation corresponds to replacing a
cutvertex by a bridge). Let G* be the resulting graph. By this construction, we
have d(G*) = d + x.

Then, in view of Claims 2-5 and 7(iii), we get that r(G*) = r(G) + 52/12 >
bo1/2 + boa + 4b1/3 + Bba/4 + 5b3/3 + 5y /12 and d(G*) = d+ x < b1 + 2bga + 3b1 +
3b2 + 4b3 + y.

Consequently we have d < %T‘(G), as desired. This completes the proof of
Theorem 3.
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