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ON DIAMETER AND INVERSE DEGREE OF

CHEMICAL GRAPHS

Xue-gang Chen, Shinya Fujita

The inverse degree r(G) of a finite graph G = (V,E) is defined as r(G) =
∑

v∈V

1

d(v)
, where d(v) is the degree of vertex v. In Discrete Math., 310

(2010), 940–946, Mukwembi posed the following conjecture: Let G be a
connected chemical graph with diameter diam(G) and inverse degree r(G).

Then diam(G) ≤
12

5
r(G) +O(1).

In this paper, we settle the conjecture affirmatively.

1. INTRODUCTION

Graph theory terminology not presented here can be found in [6]. Let G =
(V,E) be a graph with |V | = n(G). The degree, neighborhood and closed neighbor-
hood of a vertex v in the graph G are denoted by d(v), N(v) and N [v] = N(v)∪{v},
respectively. The minimum degree and maximum degree of the graph G are de-
noted by δ(G) and ∆(G), respectively. The graph induced by S ⊆ V is denoted
by G[S]. Let G − S = G[V − S]. The graph induced by E′ ⊆ E is denoted by
G[E′]. Let G − E′ = G[E − E′]. The distance dG(u, v) between two vertices u
and v of G is the length of the shortest u − v path in G, and the diameter is
diam(G) = max{dG(u, v) : u, v ∈ V }. The inverse degree r(G) of G is defined as

r(G) =
∑

v∈V

1

d(v)
. Let Pn, Cn and Kn denote the path, cycle and complete graph

with order n, respectively.

Chemical graphs represent the structure of organic molecules and thus have a
maximum degree of 4, carbon atoms being 4-valent and double bonds being counted
as single edges. Formally, a chemical graph is a graph with a maximum degree of
4.
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The inverse degree (also known as the sum of reciprocals of degrees) first
atracted attention through numerous conjectures generated by the computer pro-
gramme Graffiti [4]. Since then its relationship with other graph invariants, such
as diameter, edge-connectivity, matching number, Wiener index has been studied
by several authors (see, for example [1, 2, 5]).

Turning to bounds on the diameter in terms of order and inverse degree, our
starting point is the following bound by Erdős, Pach and Spencer [3].

Theorem 1. Let G be a connected graph of order n, diameter diam(G) and inverse

degree r(G). Then diam(G) ≤
(
6r(G) + o(1)

) log n

log log n
.

The bound was later improved by a factor of about 2 by Dankelmann,

Swart and van den Berg [2], showing that diam(G) ≤
(
3r(G)+2+o(1)

) log n

log log n
.

Mukwembi [6] focused on bounds on the diameter in terms of the inverse degree
for some important classes of graphs such as planar graphs, regular graph, chemical
graphs and trees. Molecular structure-descriptors such as the Randic Index (defined

as R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

), which is similar to that of the inverse degree, were

studied intensively for these classes of graphs. Mukwembi [6] gave the following
result.

Theorem 2. Let G be a connected chemical graph. Then diam(G) ≤ 3r(G) + 3.

In relation to the above theorem, Mukwembi [6] conjectured that if G is a
connected chemical graph with diameter diam(G) and inverse degree r(G), then

diam(G) ≤
12

5
r(G) +O(1). In this paper, we settle this conjecture affirmatively.

Theorem 3. Let G be a connected chemical graph with diameter diam(G) and

inverse degree r(G). Then diam(G) ≤
12

5
r(G).

For the upper bound concerning diam(G), the coefficient
12

5
of r(G) is the

best possible. To see this, consider the graph G = K1+K3+K1+K1+K3+K1+
K1+K3+ . . .+K1+K1+K3+K1. Here the operation A+B for two disjoint graphs
A,B means joining every vertex of A to every vertex of B with edges completely.

2. PROOF OF THEOREM 3

Amongst all connected chemical graphs G, we choose G so that,

(1)
r(G)

diam(G)
is minimal, and subject to the condition (1),

(2) n(G) is minimal.

In order to prove the theorem, it suffices to show that
r(G)

diam(G)
≥ 5/12.

Let P = v0v1 . . . vd−1vd be a diametral path of G. For i = 0, 1, 2, . . . , d, let Ni =
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{v|d(v, v0) = i}. Clearly we have N0 = {v0}. If diam(G) ≤ 3, it is easy to check that

diam(G) ≤
12

5
r(G). Assume that diam(G) = 4. Then we have r(G) ≥

∑

x∈N[v0]

1

d(x)
+

∑

x∈N[vd]

1

d(x)
≥ 2, and so diam(G) ≤

12

5
r(G). Also notice that, if 6 ≥ diam(G) ≥

5, then r(G) ≥
∑

x∈N[v0]

1

d(x)
+

1

d(v2)
+

1

d(v3)
+

∑

x∈N[vd]

1

d(x)
≥ 5/2, meaning that

diam(G) ≤
12

5
r(G) holds. Hence, in the following argument, we may assume that

diam(G) ≥ 7. For i = 0, 1, 2, . . . , d, let Si = {v|v ∈ Ni, d(v) < 4}. We define some
graphs which will play an important role in the proof of our main result.

Claim 1. The following statements hold :

(i) δ(G) ≥ 2.

(ii) For every 1 ≤ i ≤ d− 1, G[Si ∪ Si+1] forms a complete graph. In particular,

for any v ∈ Si and u ∈ Ni−1 ∪Ni ∪Ni+1, if vu /∈ E(G) then d(u) = 4.

(iii) For every 1 ≤ i ≤ d− 1, |Si−1 ∪ Si ∪ Si+1| ≤ 3.

(iv) Let v be a vertex with d(v) = 2 such that v ∈ Ni for some 1 ≤ i ≤ d−1. Then,
for any edge e = ab with N(v)∩ {a, b} = ∅, |(Ni−1 ∪Ni ∪Ni+1)∩ {a, b}| ≤ 1.

Proof. To prove (i), suppose that there exists a vertex v ∈ V (G) such that
d(v) = 1. Then v ∈ (V (G) − V (P )) ∪ {v0, vd}. Since P is a diametral path, it
follows that v /∈ N1. If v ∈ V (G) − V (P ), let u be the neighbour of v and G′ =
G − {v}. Then diam(G′) ≥ d. Moreover, dG′(x) = dG(x) for all x /∈ {u, v}. Since

d(u) ≥ 2, we have r(G) − r(G′) =
1

d(v)
+

1

d(u)
−

1

d(u)− 1
= 1 +

1

d(u)
−

1

d(u)− 1
>

0. Then
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. If d(v0) = 1, let

G′ be obtained from G and K3 by joining edges from v0 to each vertex of K3.
Then diam(G′) = d + 1. Moreover, dG′(v) = dG(v) for all v ∈ V (G) − {v0}.

Let x =
∑

v∈V (G)−{v0}

1

d(v)
. Then x ≥

d

4
, r(G) = x + 1 and r(G′) = x +

5

4
. So,

r(G)

diam(G)
−

r(G′)

diam(G′)
=

x+ 1

d
−

x+
5

4

d+ 1
> 0, which is a contradiction. Hence, d(v0) ≥
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2. Similarly, d(vd) ≥ 2. So, δ(G) ≥ 2. Thus (i) holds. Next suppose that there exist
two vertices u, v ∈ Si ∪ Si+1 such that uv /∈ E(G). Let G′ = G ∪ {uv}. Note that

diam(G) = diam(G′). Since r(G) − r(G′) =
1

d(u)
+

1

d(v)
−

1

d(u) + 1
−

1

d(v) + 1
> 0,

r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. Thus (ii) holds. To prove

(iii), suppose |Si−1 ∪ Si ∪ Si+1| ≥ 4 and take u1, u2, u3, u4 ∈ Si−1 ∪ Si ∪ Si+1.
Let G′ be the graph obtained from G by adding a new vertex v to Ni with edges
u1v, u2v, u3v, u4v (i.e., G′ = G ∪ {v} ∪ {u1v, u2v, u3v, u4v}). Then one can easily

check that
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, a contradiction. Thus (iii) holds.

To show (iv), suppose that a, b ∈ Ni−1 ∪Ni ∪Ni+1 where ab ∈ E(G), v ∈ Ni

and d(v) = 2. Consider the graph G′ = (G − {ab}) ∪ {av, bv}. Then we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, a contradiction. Thus (iv) holds.

Claim 2. If there exists a vertex v ∈ Ni such that d(v) = 2, then Ni = {v} = {vi}.

Proof. Since N0 = {v0}, we can assume that v ∈ Ni, where i ∈ {1, 2, . . . , d}. Let
u ∈ N(v)∩Ni−1. Suppose that Ni−{v} 6= ∅. For any w ∈ Ni −{v}, if wv /∈ E(G),
then d(w) = 4. Then there exists a vertex t ∈ N(w) − N(v) such that vt /∈ E(G).
Since N(v) ∩ {w, t} = ∅, we get a contradiction to Claim 1(iv). Hence, wv ∈ E(G)
for any w ∈ Ni − {v}. Since d(v) = 2, Ni = {v, w}. Furthermore, uw ∈ E(G).
Otherwise, let G′ = (G− {v}) ∪ {uw}. Then diam(G′) = d and r(G) − r(G′) > 0.

So,
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. Since diam(G) ≥ 7, d(u) ≥ 3

or d(w) ≥ 3. If d(u) ≥ 3 and d(w) ≥ 3, let G′ = G − {v}. Then diam(G′) = d and

r(G)−r(G′) > 0. So,
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. If d(u) = 2

and d(w) ≥ 3, then N0 = {u}. Let G′ be obtained from G by adding a vertex ℓ and

joining edges ℓu and ℓv. Then diam(G′) = d + 1. Let x =
∑

z∈V (G)−{u,v}

1

d(z)
. Then

x ≥
d

4
, r(G) = x+1 and r(G′) = x+

7

6
. So,

r(G)

diam(G)
−

r(G′)

diam(G′)
=

x+ 1

d
−

x+
7

6

d+ 1
> 0,

which is a contradiction. If d(u) ≥ 3 and d(w) = 2, then Nd = {v, w}. In a similar
way as above, there is a contradiction. So Ni = {v} = {vi}.

Claim 3. For i ∈ {2, 3, . . . , d− 2}, if there exists a vertex v ∈ Ni − {vi} such that

d(v) = 4, say N(v) = {u,w, t, s}, then the following statements hold:

(1) Suppose that uw /∈ E(G). If u,w ∈ Ni−1 ∪ Ni or u,w ∈ Ni ∪ Ni+1, then
d(t) = d(s) = 3 holds.

(2) N(v) ∩Ni+1 6= ∅.

Proof. Since v /∈ V (P ) and 2 ≤ i ≤ d−2, in view of Claim 2, d(u), d(w), d(t), d(s) ≥
3. Furthermore, there exists a vertex of degree 4 in N(v).
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(1) If u,w ∈ Ni−1 ∪Ni or u,w ∈ Ni ∪Ni+1, then d(t) = d(s) = 3. Otherwise,

let G′ = (G−{v})∪{uw}. Then diam(G′) ≥ d. Since r(G)− r(G′) ≥ 0,
r(G)

diam(G)
−

r(G′)

diam(G′)
≥ 0 and n(G′) < n(G), which is a contradiction.

(2) Suppose that N(v) ⊆ Ni−1 ∪Ni. Then N [v] ∼= K5. Otherwise, say uw /∈
E(G). Then d(s) = d(t) = 3 and st ∈ E(G). Since sw /∈ E(G) or su /∈ E(G),
we can assume that sw /∈ E(G). Then d(u) = d(t) = 3 and ut, us ∈ E(G). Since
i ≥ 2, {u, s, t} ∩ Ni−1 = ∅. Hence, {u, s, t} ⊆ Ni. Then N(u) ∩ Ni−1 = ∅, which
is a contradiction. Since N [v] ∼= K5, G ∼= K5, which is a contradiction. So,
N(v) ∩Ni+1 6= ∅.

Claim 4. For i ∈ {2, 3, · · · , d− 2}, if there exists a vertex v ∈ Ni − {vi} such that

d(v) = 3, then G[Ni−1 ∪Ni ∪Ni+1] ∼= F1.

Proof. Let N(v) = {u,w, t}. Since v /∈ V (P ) and 2 ≤ i ≤ d − 2, Claim 2 implies
d(u), d(w), d(t) ≥ 3. First we observe that for any x, y ∈ N(v), if x, y ∈ Ni−1 ∪Ni

or x, y ∈ Ni ∪ Ni+1 then xy ∈ E(G). To see this, suppose xy /∈ E(G), and let
G′ = (G − {v}) ∪ {xy}. Then diam(G′) ≥ d. Since r(G) − r(G′) > 0, we have

r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction.

Since |Si−1 ∪ Si ∪ Si+1| ≤ 3 by Claim 1(iii), at least one vertex of N(v) has
degree 4. Suppose that d(u) = 4. Then d(w) = d(t) = 3. Otherwise, let G′ = G −

{v}. Then diam(G′) ≥ d. Since r(G)− r(G′) ≥ 0, we have
r(G)

diam(G)
−

r(G′)

diam(G′)
≥ 0

and n(G′) < n(G), which is a contradiction. If N(v) ⊆ Ni−1 ∪Ni, then G[N [v]] ∼=
K4 by the above observation. So, u ∈ Ni−1 and {w, t} ⊆ Ni (because 2 ≤ i
and d(w) = d(t) = 3). Since i ≤ d − 2, we have v, w, t /∈ V (P ). So u /∈ V (P ). Let

G′ = G−N [v]. Then diam(G′) ≥ d. Since r(G)−r(G′) > 0,
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0,

which is a contradiction. Hence, N(v) ∩Ni−1 6= ∅.

Case 1. |N(v) ∩Ni−1| = 2.

Without loss of generality, we can assume that w ∈ Ni−1. Since N(w) ∩
Ni−2 6= ∅, it follows that wvi /∈ E(G). If there exists a vertex s ∈ N(vi) ∩ (Ni−1 ∪
Ni) − N(v) ∩ Ni−1, let G′ = (G − {vis}) ∪ {viw, vs}. Then diam(G′) ≥ d. Since

r(G)−r(G′) > 0, we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. Hence,

N(vi)∩ (Ni−1 ∪Ni)−N(v)∩Ni−1 = ∅. That is N(v)∩Ni−1 = {w, u}, uvi ∈ E(G)
and |N(vi) ∩ Ni+1| ≥ 3. Since d(t) = 3, there exists a vertex s ∈ N(vi) ∩ Ni+1

such that ts /∈ E(G). Let G′ = (G − {vis}) ∪ {viv, ts}. Then diam(G′) ≥ d. Since

r(G) − r(G′) > 0, we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction.

Case 2. |N(v) ∩Ni−1| = 1 and |N(v) ∩Ni| = 1.

Without loss of generality, we can assume that w ∈ N(v) ∩ (Ni−1 ∪ Ni). If
|Ni| > 2, say s ∈ Ni − N [v]. By the above observation, sw /∈ E(G). Note that,
by Claim 1(ii), d(s) = 4. Let k ∈ N(s) − N(v) and G′ = (G − {sk}) ∪ {sw, kv}.
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Then diam(G′) ≥ d. Since r(G) − r(G′) > 0, we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0,

which is a contradiction. Hence, |Ni| = 2. That is Ni = {v, vi} and vvi ∈ E(G).
If d(vi) = 4, then vi = u, w ∈ Ni−1 and t ∈ Ni+1. Let s ∈ N(vi) − N(v) and
k ∈ N(s)−N(w)∪N(t). LetG′ = (G−{sk})∪{kw, sv} orG′ = (G−{sk})∪{kt, sv}.

Then diam(G′) ≥ d. Since r(G) − r(G′) > 0, we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0,

which is a contradiction. Hence d(vi) = 3. That is w = vi. Then |Ni+1| = 1. If
|Ni−1| ≥ 2, let s ∈ Ni−1 − N(v), then d(s) = 4 and N(s) ∩ Ni = ∅. If i ≥ 3,
by Claim 3, there is a contradiction. If i = 2, then |N0 ∪ N1| ≥ 6, there is a
contradiction. Hence |Ni−1| = 1. So G[Ni−1 ∪Ni ∪Ni+1] ∼= F1.

Case 3. |N(v) ∩Ni−1| = 1 and |N(v) ∩Ni+1| = 2.

We may assume that t ∈ N(v) ∩ Ni+1. Then vit /∈ E(G). Otherwise, let
G′ = (G − {t}) ∪ {vvi}. Then diam(G′) ≥ d. Since r(G) − r(G′) > 0, we have

r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. In a similar way as Case 1, it

follows that N(vi) ∩ (Ni ∪Ni+1) = {u}. That is w ∈ Ni−1 and |N(vi) ∩Ni−1| = 3.
In a similar way as Case 1, there is a contradiction.

Claim 5. For i ∈ {3, 4, . . . , d− 3}, if there exists a vertex v ∈ Ni − {vi} such that

d(v) = 4, then one of the following statements hold :

(1) G[Ni−1 ∪Ni ∪Ni+1] ∼= F2.

(2) G[Ni−1 ∪Ni ∪Ni+1 ∪Ni+2] ∼= F3.

(3) G[Ni−2 ∪Ni−1 ∪Ni ∪Ni+1] ∼= F3.

Proof. Let N(v) = {u,w, t, s}. By Claim 3, N(v) ∩Ni+1 6= ∅.

Case 1. |N(v) ∩Ni−1| = 3 and |N(v) ∩Ni+1| = 1.

We may assume that u,w, t ∈ Ni−1 and s ∈ Ni+1. If G[{u,w, t}] ∼= K3, then
d(u) = d(w) = d(t) = 4. Let ℓ ∈ N(u)∩Ni−2. Since u 6= vi−1, applying Claim 3(1) to
u, we also have ℓ ∈ N(w)∩N(t). Let G′ = G−{v, w, u, t}. Since u,w, t /∈ V (P ) and

d(s) ≥ 3, diam(G′) ≥ d and r(G)−r(G′) > 0. So,
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is

a contradiction. Without loss of generality, we can assume that uw /∈ E(G). Then,
in view of Claim 3(1), we have d(t) = d(s) = 3. Since ut /∈ E(G) or wt /∈ E(G), say
ut /∈ E(G), then d(w) = 3 and wt ∈ E(G). Hence w 6= vi−1. By Claim 4, there is a
contradiction.

Case 2. |N(v) ∩Ni−1| = 2 and |N(v) ∩Ni| = 1.

We may assume that u,w ∈ Ni−1, t ∈ Ni and s ∈ Ni+1. Suppose that
G[{u,w, t}] ∼= K3. Since d(u) = d(w) = 4, in view of Claim 3, we must have
st ∈ E(G). Without loss of generality, assume u /∈ V (P ). Let ℓ ∈ N(u) ∩Ni−2. By
Claim 3, we have ℓw ∈ E(G).

If there exists a vertex h ∈ Ni − {v, t}, let h1 ∈ N(h) ∩ Ni−1 and G′ =

(G− {v} − {hh1}) ∪ {th1, wh}. Then
r(G)

diam(G)
−

r(G′)

diam(G′)
≥ 0 and n(G′) < n(G),
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which is a contradiction. Hence Ni = {v, t}. Since Ni = {v, t}, Ni+1 = {s}.
Suppose that there exists a vertex h ∈ Ni−1 − {u,w}. Since h 6= vi−1, by Claim 4,
d(h) = 4. Since N(h)∩Ni = ∅, by Claim 3, there is a contradiction. Hence, Ni−1 =
{u,w} = {u, vi−1}. Arguing similarly as above, we can prove that Ni−2 = {l}. So,
G[Ni−2 ∪Ni−1 ∪Ni ∪Ni+1] ∼= F3.

Assume for the moment that uw /∈ E(G). By Claim 3, d(t) = d(s) = 3 and
hence st ∈ E(G) by Claim 1(ii). Since ut /∈ E(G) or wt /∈ E(G), say ut /∈ E(G),
then d(w) = 3 and wt ∈ E(G). Since v /∈ V (P ), by Claim 4, t = vi, w = vi−1 and
s = vi+1. Since d(u) = 4 by Claim 1(iii), there exists a vertex f ∈ N(u) − N(w).
Let G′ = (G − {uf}) ∪ {ut, wf}. Then diam(G′) ≥ d and r(G) − r(G′) > 0. So,

r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction.

Hence uw ∈ E(G). Without loss of generality, we can assume that ut /∈ E(G).
Then d(w) = d(s) = 3. It is easy to check that w /∈ V (P ). Then, applying Claim 4
to w, we get a contradiction.

Case 3. |N(v) ∩Ni−1| = 1 and |N(v) ∩Ni| = 1.

We may assume that u ∈ Ni−1, w ∈ Ni and s, t ∈ Ni+1. Suppose that
G[{w, s, t}] ∼= K3. If d(s) = 3, let G′ = G− {s}. Then diam(G′) ≥ d. Since r(G) −

r(G′) ≥ 0,
r(G)

diam(G)
−

r(G′)

diam(G′)
≥ 0 and n(G′) < n(G), which is a contradiction.

Hence, d(s) = 4. Similarly, d(t) = 4. Then uw ∈ E(G) by Claim 3(1). Say s 6= vi+1.
Let ℓ ∈ N(s)− {v, w, t}. By Claim 3, ℓ ∈ Ni+2 and tℓ ∈ E(G). By a similar proof
as Case 2, G[Ni−1 ∪Ni ∪Ni+1 ∪Ni+2] ∼= F3.

Assume that st /∈ E(G). Then d(u) = d(w) = 3. Since wt /∈ E(G) or ws /∈
E(G), say ws /∈ E(G), then d(t) = 3 and wt ∈ E(G). By Claim 4, w = vi, u = vi−1,
t = vi+1. By Claim 1, d(s) = 4. Then there exists a vertex f ∈ N(s) − N(t),
let G′ = (G − {sf}) ∪ {sw, ft}. Then diam(G′) ≥ d and r(G) − r(G′) > 0. So,

r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a contradiction. Hence st ∈ E(G). Without loss

of generality, we can assume that sw /∈ E(G). Then d(u) = d(t) = 3. By Claim 4,
t = vi+1. Hence v = vi, which is a contradiction.

Case 4. |N(v) ∩Ni−1| = 1 and |N(v) ∩Ni+1| = 3.

We may assume that u ∈ Ni−1 and w, s, t ∈ Ni+1. Assume for the moment
that G[{w, s, t}] ∼= K3. Since i ≤ d − 3, if there exists a vertex x ∈ {w, s, t}
such that d(x) = 3, then x 6= vi+1. But one can easily see that this structure
contradicts Claim 4. So we have d(w) = d(s) = d(t) = 4. Since G[{w, s, t}] ∼= K3

and v 6= vi, it is easy to check that {w, s, t} ∩ {vi+1} = ∅. By Claim 3, there exists
a vertex y ∈ Ni+2 such that {w, s, t} ⊂ N(y). Let G′ = G − {v, w, s, t, y}. Then
we get diam(G′) ≥ d. Also, since d(u) ≥ 3 and i ≤ d − 3, it is easy to check that

r(G) − r(G′) > 0. So we have
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, a contradiction.

Hence, without loss of generality, we may assume that ws /∈ E(G). Then we
have d(u) = d(t) = 3 by Claim 3. Since d(w) = 4 or d(s) = 4, we can assume
that d(w) = 4. Then st ∈ E(G). Since i ≤ d − 3 and d(t) = 3, we have t /∈ V (P ).
Applying Claim 4 to t, we can easily get a contradiction.
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Case 5. |N(v) ∩Ni−1| = 1, |N(v) ∩Ni| = 2 and |N(v) ∩Ni+1| = 1.

We may assume that u ∈ Ni−1, w, t ∈ Ni and s ∈ Ni+1. Suppose that
G[{u,w, t}] ∼= K3. Then we have d(u) = 4. By Claim 3, ws, ts ∈ E(G). If u /∈ V (P ),
letG′ = (G−{t}−{vi−1vi})∪{uvi, vi−1v}. Then diam(G′) ≥ d and r(G)−r(G′) ≥ 0.

So
r(G)

diam(G)
−

r(G′)

diam(G′)
≥ 0 and n(G′) < n(G), which is a contradiction. Hence,

u = vi−1. Suppose there exists a vertex l ∈ Ni−1 − {u}. Then there exists a vertex
f ∈ N(ℓ)−Nu such that ℓf ∈ E(G). Then, letting G′ = (G−{v}−{ℓf})∪{fu, wℓ},

we get diam(G′) ≥ d and
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, a contradiction. Hence Ni−1 =

{u} and this implies G[Ni−1 ∪Ni ∪Ni+1] ∼= F2, as desired.

Thus we may assume that uw /∈ E(G). By Claim 3, d(t) = d(s) = 3. Hence
by Claim 1(ii), st ∈ E(G). Since t ∈ Ni, we have N(t) ∩ Ni−1 6= ∅. This implies
wt /∈ E(G). Then by Claim 3, d(u) = 3 and ut ∈ E(G). Hence d(w) = 4 (by
Claim 1(ii)). Since v /∈ V (P ), by Claim 4, t = vi, u = vi−1 and s = vi+1. Let f be a
vertex with wf ∈ E(G) and f 6= v. Let G′ = (G−{wf})∪ {uw, ft}. Then we have

diam(G′) ≥ d and
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, a contradiction. Hence uw ∈ E(G). We

can similarly have ut ∈ E(G). Since G[{u,w, t}] ≇ K3, wt /∈ E(G). So, d(u) = 3.
Then N(u) ∩Ni−2 = ∅, which is a contradiction.

Case 6. |N(v) ∩Ni−1| = 2 and |N(v) ∩Ni+1| = 2.

We may assume that u,w ∈ Ni−1 and s, t ∈ Ni+1. It is easy to check that
uw ∈ E(G) or st ∈ E(G) holds. (Otherwise, let G′ = (G − {v}) ∪ {uw, st}. Then

diam(G′) ≥ d and r(G) − r(G′) > 0. So
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which is a

contradiction.) Suppose that uw ∈ E(G) and st /∈ E(G). By Claim 3, d(u) =
d(w) = 3. This together with v /∈ V (P ) implies u,w /∈ V (P ). Then, applying
Claim 4 to u, we get a contradiction. We can similarly get a contradiction in the
case where uw /∈ E(G) and st ∈ E(G).

Hence we may assume that uw ∈ E(G) and st ∈ E(G). If d(u) = d(w) = 3 or
d(s) = d(t) = 3, in view of Claim 4, we get a contradiction. Hence, without loss of
generality, we may assume that d(u) = d(s) = 4. Let N(s)− {v, t} = {s1, s2} and
N(u)− {v, w} = {u1, u2}.

Assume for a while that s /∈ V (P ). Applying Claim 3 to s, we may assume
that s1 ∈ Ni+2. If s2 ∈ Ni ∪Ni+1, then by Claim 3, we have d(t) = d(s1) = 3. In
this case, applying Claim 4 to t, we can easily get a contradiction. Thus we have
{s1, s2} ⊂ Ni+2. Applying Claim 3 to s, G[{s1, s2, v, s}] = K4. Furthermore, it is
easy to prove that d(s1) = d(s2) = 4.

If G − v is connected, then let G′ = G − {v, s, t}. If G − v is disconnected,
then there is a connected component C such that V (C) ⊃ {s, t, s1, s2} and G − C
is connected. In this case, let G′ = G − C. In any case, since G′ is connected and
diam(G′) ≥ d, we get a contradiction to the choice of G.

Finally assume that s ∈ V (P ). We may assume that s1 = vi+2, s2 = vi. In
view of Claim 4, we have d(t) = 4. In view of Claim 3, we have s1t, s2t ∈ E(G)
because d(v) = 4. Since vs2 /∈ E(G), applying Claim 3 to t, we get a contradiction
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because d(s) = 4.

Claim 6. For every 2 ≤ i ≤ d− 2, Ni−1 ∪Ni ∪Ni+1 contains a vertex of degree at

least 3.

Proof. Assume the opposite. Then by Claim 2, we have d(vi−1) = d(vi) =
d(vi+1) = 2 for some i. Let G′ be a graph obtained from G by adding a new vertex

u such that uvi−1, uvi, uvi+1 ∈ E(G′). Then we can easily check that
r(G)

diam(G)
−

r(G′)

diam(G′)
> 0, which contradicts the choice of G. �

Now we find a block decomposition of G. Notice that, in view of Claims 2,
4, 5, G has a cut vertex. So there exist at least two blocks. Let B0 be a set of
blocks such that each B ∈ B0 is isomorphic to K2 and B contains a vertex vj with
d(vj) = 2 for some 3 ≤ j ≤ d − 2. Moreover, let B1

0
= {B ∈ B0|V (B) = {vi−1, vi}

for some 3 ≤ i ≤ d− 2 such that Ni = {vi}, d(vi−1) > 2, d(vi) = 2 and d(vi+1) > 2}
and B2

0 = {B ∈ B0|V (B) = {vi, vi+1} for some 2 ≤ i ≤ d − 2 such that Ni =
{vi}, Ni+1 = {vi+1}, d(vi) = d(vi+1) = 2}.

For i = 1, 2, 3, let Bi be a set of blocks such that each B ∈ Bi is isomorphic
to Fi and V (B) ∩ {v2, v3, . . . , vd−2} 6= ∅. Let B = B1

0
∪ B2

0
∪ (

⋃
3

i=1
Bi). Also, for

each 1 ≤ i ≤ 3, put bi = |Bi|, and for j = 1, 2, put b0j = |Bj
0
|. For a pair of

blocks B,B′ ∈ B1 ∪ B3, it is possible that B and B′ share exactly one vertex (i.e.,
it is a cut vertex of G). Let x be the number of such pairs in B1 ∪ B3. Also let
Y = V (P ) − ∪B∈BV (B) and y = |Y |. Note that, in view of Claims 2-6, Y ⊂
{v0, v1, v2, v3, vd−3, vd−2, vd−1, vd}. Put I = {i|vi ∈ Y } and M = {v ∈ V (G)|v ∈ Ni

for some i ∈ I}.

Claim 7. The following statements hold :

(i) For i ≤ 3, if vi ∈ Y, then vj ∈ Y for each j with j < i. Similarly, for i ≥ d−3,
if vi ∈ Y, then vj ∈ Y for each j with i < j.

(ii) If v3 ∈ Y, then
∑

v∈N2∪N3

1

d(v)
≥

5

6
. Similarly, if vd−3 ∈ Y, then

∑

v∈Nd−2∪Nd−3

1

d(v)
≥

5

6
.

(iii)
∑

v∈M

1

d(v)
≥ 5y/12.

Proof. We can easily see that, if vi ∈ Y holds for i ≤ 2 or i ≥ d − 2, then the
assertion of (i) follows from the structure of Fi for 1 ≤ i ≤ 3 and δ(G) ≥ 2 by
Claim 1(i). Suppose that v3 ∈ Y. If |N(v3) ∩ N2| ≥ 2, then we can easily check
that {v0, v1, v2} ⊂ Y. So we may assume that N(v3) ∩ N2 = {v2}. If d(v3) = 2,
then {v2, v3} forms a block in B1

0 ∪ B2
0, which contradicts v3 ∈ Y. So we have

d(v3) ≥ 3. Then, applying Claim 4 or 5 to a vertex of N(v3) − V (P ), we find a
block B ∈ ∪1≤i≤3Bi containing v3, a contradiction. For the case where vd−3 ∈ Y,
the almost identical argument works. Thus (i) holds.
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To show (ii), suppose that v3 ∈ Y. In view of Claims 2, 4, 5, this forces
|N(v3) ∩ N2| ≥ 2, N3 = {v3} and N(v3) ∩ N4 = {v4} (otherwise, v3 is contained

in a block of B). Since d(v3) ≥ 3 and ∆(G) ≤ 4, we have
∑

v∈N2∪N3

1

d(v)
≥ 5/6. For

the case vd−3 ∈ Y, the almost identical argument works. To show (iii), by (i) it
suffices to show that, for any maximal subset L of I such that L = {0, 1, . . . , ℓ}

or L = {d, d − 1, . . . , d − ℓ} and Z = ∪i∈LV (Ni),
∑

z∈Z

1

d(z)
≥ 5|L|/12. Note that

if I 6= ∅ then 1 ≤ |L| ≤ 4 by the definition of Y and I. By the Claims 2, 4, 5,
2 ≤ |L| ≤ 4. Since the argument of the proof is almost identical, we only discuss

the case where L = {0, 1, . . . , ℓ}. If |L| = 2, then
∑

z∈Z

1

d(z)
≥

∑

x∈N[v0]

1

d(x)
≥ 1 > 5/6,

as claimed. If |L| = 3, in view of Claim 2, it is easy to see that d(v1) ≥ 3. Then we

have
∑

z∈Z

1

d(z)
≥ max

{ ∑

x∈N[v0]

1

d(x)
,

∑

x∈N[v1]

1

d(x)

}
≥ 5/4, as claimed. If |L| = 4, then

by (ii),
∑

v∈M

1

d(v)
≥

∑

x∈N[v0]

1

d(x)
+

∑

v∈N2∪N3

1

d(v)
≥ 1 + 5/6 > 5/3, as claimed. �

Now we construct a graph G∗ from G as follows: For every pair of blocks
B,B′ ∈ B1 ∪ B3 sharing one cut vertex v (i.e., |B ∩B′| = 1), delete v and add two
new vertices v′, v′′ with an edge e = v′v′′ and join v′ to N(v) ∩ B completely, v′′

to N(v) ∩B′ completely with edges (i.e., this operation corresponds to replacing a
cutvertex by a bridge). Let G∗ be the resulting graph. By this construction, we
have d(G∗) = d+ x.

Then, in view of Claims 2-5 and 7(iii), we get that r(G∗) = r(G) + 5x/12 ≥
b01/2+ b02+4b1/3+ 5b2/4+ 5b3/3+ 5y/12 and d(G∗) = d+ x ≤ b01 +2b02+3b1+
3b2 + 4b3 + y.

Consequently we have d ≤
12

5
r(G), as desired. This completes the proof of

Theorem 3.
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