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PART-PRODUCTS OF S-RESTRICTED INTEGER

COMPOSITIONS

Eric Schmutz, Caroline Shapcott

If S is a cofinite set of positive integers, an “S-restricted composition of n” is a
sequence of elements of S, denoted ~λ = (λ1, λ2, . . . ), whose sum is n. For uni-

form random S-restricted compositions, the random variable B(~λ) =
∏

i λi

is asymptotically lognormal. (A precise statement of the theorem includes
an error term to bound the rate of convergence.) The proof is based upon
a combinatorial technique for decomposing a composition into a sequence of
smaller compositions.

1. INTRODUCTION

A composition of n is a sequence of positive integers whose sum is n. Hitczenko
made the following observation: if Γ1,Γ2, . . . are independent random variables

with Geometric(1/2) distributions, and if τ = min
{
t :

t∑

i=1

Γi ≥ n
}
, then

(
Γ1,Γ2, . . . ,Γτ−1, n−

τ−1∑

i=1

Γi

)

is a uniform random composition of n. Using this fact, Hitczenko and others were
able to determine the asymptotic distributions of a variety of random variables
defined on the space of compositions of n with a uniform probability measure
[1, 16, 17, 18, 19, 20, 21].

In her thesis [32], Shapcott considered the random variable B(~λ) =
∏

i λi,

the product of the parts of ~λ. Because of Hitczenko’s observation, it was straight-
forward for her to use known results on random index summation [13, 30] to prove
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that B is asymptotically lognormal. The goal of this paper is to extend Shapcott’s
results to a more general setting where Hitczenko’s observation is not applicable.

In recent years, there has been a resurgence of interest in compositions with
restrictions on the part sizes. The easiest case is “S-restricted compositions,” i.e.
compositions whose parts are all elements of a fixed subset S ⊂ Z+. Hence there
have been papers on compositions with no parts of size 2 [8], compositions with no
parts of size k [7], compositions with parts from the interval (1, k) [6], compositions
with parts greater than or equal to d [5], compositions with parts equal to either a
or b [5], compositions with parts from an arbitrary finite set [27], and compositions
with parts from an arbitrary (not necessarily finite) set [2, 14]. More complicated
restrictions have also been considered, such as restrictions on the differences be-
tween successive parts [3, 25] and restrictions on the parts’ multiplicities [24, 26].
Interested readers are referred to the recent book by Heubach and Mansour [15]
for more background.

In [31], Shapcott studied the asymptotic distribution of B for uniform
random 1-free compositions of n, i.e. the case S = {k ∈ Z : k ≥ 2}. In this case, it
does not seem possible to generate random compositions using a stopped sequence
of independent random variables. It is straightforward to replace the geometric
variables with 1-omitting analogues, but there is no obvious way around the fact

that the putative last part n−
τ−1∑

i=1

Γi need not lie in S. Furthermore, the randomly-

generated compositions are not all equally likely to be chosen. Shapcott was able
to circumvent these difficulties by embedding the set of 1-free compositions in a
more tractable auxiliary space and doing the hard calculations there. The method
of proof was completely different from the methods in this paper.

This paper concerns S-restricted compositions of n in the case where S ⊂ Z+

is any proper cofinite set of positive integers. We prove that, for random S-restricted
compositions of n, B is asymptotically lognormal. As in [22], we deduce bounds on
the rate of convergence using methods that are ultimately based on the Berry-Essen
inequality. However, our proof involves a blocking argument, similar to that of
Bernstein [4] and Markov (see page 376 of [9]), for decomposing a composition
into a sequence of smaller compositions.

Theorem 1. Let Pn denote the uniform probability measure on the set of S-
restricted compositions of n. Then there exist positive constants a1, b1, c; constants
a0, b0; and sequences of constants 〈µn〉

∞
n=1

, 〈σn〉
∞
n=1

; such that the following three

statements hold :

• µn = a1n+ a0 + o(1),

• σ2
n = b1n+ b0 + o(1), and

• For all n,

sup
x

∣∣∣∣Pn

(
logB− µn

σn
≤ x

)
− Φ(x)

∣∣∣∣ ≤
c (logn)1/3

n1/6
.
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Throughout this manuscript, we denote the set of S-restricted compositions of
n as Λn and an individual composition of n as ~λ. Pn denotes the uniform probability
measure on Λn, and En denotes the expected value with respect to Pn. If F is a
formal power series in x, then we write [xn]F to denote the coefficient of xn in F.

2. NUMBER OF COMPOSITIONS

At several points in the proof we need estimates for the cardinality of the
sample space Λn. This kind of calculation can be considered folklore since it is
clearly known to experts, but it is hard to know who to credit (see page 297 of
[11], for example, and the rather general results in [3]). We present an asymptotic
formula that will serve the needs of this paper.

We begin by defining S to be an arbitrary proper cofinite set of positive
integers and M to be the largest element of S̄ = Z+ − S. Define

F (x, t) = 1−
∑

k∈S

ktxk and f(x) = F (x, 0) = 1−
∑

k∈S

xk.

Lemma 1. The smallest magnitude root of f(x) = 1 −
∑

k∈S

xk is real, lies in the

interval
(
1

2
, 1
)
, and has multiplicity one.

Proof. First we verify that f has a real root p in the interval
(
1

2
, 1
)
. The function

f is continuous and strictly decreasing on (0, 1). Note that f
(
1

2

)
is strictly positive

and that lim
x→1−

f(x) = −∞. Therefore there is a unique positive real root p in the

interval
(
1

2
, 1
)
.

Next we use Rouché’s theorem to verify that f has no other roots in |x| < p.
Let g be the constant function g(x) = 1, which obviously has no zeros in |x| < p.

Let ǫ be an arbitrarily small positive number, and observe that
∑

k∈S

pk = 1. Then,

for |x| = p− ǫ,

|f(x)− g(x)| =

∣∣∣∣∣−
∑

k∈S

xk

∣∣∣∣∣ ≤
∑

k∈S

|x|k <
∑

k∈S

pk = 1 = |g(x)|.

By Rouché’s theorem, f has no roots inside the circle |x| = p− ǫ.

We use proof by contradiction to verify that no other root of f(x) has mag-
nitude equal to p. Suppose p̂ is a root of f(x) such that |p̂| = p and p̂ 6= p. Because
S is finite, S includes odd elements and

f(−p) = 1−
∑

k∈S

(−p)k > 1−
∑

k∈S

pk = 0.
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Therefore p̂ is not real and we have p̂ = p(cos θ + i sin θ) with 0 < |θ| < 2π. Since
f(p̂) = 0, the real part of f(p̂) is also zero:

0 = Re

(
1−

∑

k∈S

p̂k
)

= 1−
∑

k∈S

pk cos(kθ)

=

(
1−

∑

k∈S

pk
)
+
∑

k∈S

pk
(
1− cos(kθ)

)
= 0 +

∑

k∈S

pk
(
1− cos(kθ)

)
.

Because 1 − cos(kθ) ≥ 0, each term in the sum must be zero. Therefore, for all
k ∈ S, there is an ℓk ∈ Z such that kθ = 2πℓk. Because S̄ is finite, we can choose
k0 such that k0 and k0 + 1 are both elements of S, but then

θ = (k0 + 1− k0)θ = 2π(ℓk0+1 − ℓk0
).

Since ℓk0+1 − ℓk0
∈ Z, this contradicts the fact that 0 < |θ| < 2π.

The following lemma is proven in [31] and is needed for Theorems 2, 3, and
4.

Lemma 2. The moments of B are given by

En(B
t) =

1

|Λn|
[xn]

1

1−
∑

k∈S

ktxk
.

Theorem 2. Let p be the smallest root of f(x) and let r be the magnitude of the

second smallest root. Then

|Λn| =
1

pn
∑

k∈S

kpk
+O

(
nM−1

rn

)
.

Proof. By Lemma 2 with t = 0,

|Λn| = [xn]
1

1−
∑

k∈S

xk
= [xn]

1

f(x)
.

Observe that

f(x) = 1−

(
∑

k∈Z+

xk −
∑

k∈S̄

xk

)
= 1−

x

1− x
+ PM (x)

where M is the largest element of S̄ and PM (x) signifies a polynomial of degree M.
Multiplying both sides by 1− x, we have

(1− x)f(x) = 1− 2x+ PM+1(x).
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Therefore (1− x)f(x) has exactly M + 1 roots (one of which is x = p) and
1

f(x)
=

1− x

(1− x)f(x)
is rational. We can therefore apply standard methods for approximating

the coefficients of rational generating functions.

Define ri for i = 1, . . . ,M to be the remaining roots of f, and set ki equal to
the multiplicity of ri. Without loss of generality, assume |ri| ≤ |ri+1|. Then we use
Lemma 1 to write

|Λn| = [xn]
1− x

(1 − x)f(x)

= [xn]
C0

x− p
+ [xn]

∑

i

(
Ci,1

x− ri
+

Ci,2

(x − ri)2
+ · · ·+

Ci,ki

(x− ri)ki

)

where

C0 = lim
x→p

x− p

1−
∑

k∈S

xk
= lim

x→p

1

−
∑

k∈S

kxk−1

=
1

−
∑

k∈S

kpk−1

.

We can use the fact that

(1) [xn]
Ci,j

(x− ri)j
= [xn]

Ci,j

(−ri)j

(
1−

x

ri

)−j

=
Ci,j

(−ri)j
·
1

rni
·

(
n+ j − 1

n

)

to obtain

[xn]
C0

x− p
=

C0

−p
·
1

pn
=

1

pn
∑
k∈S

kpk

and

[xn]
∑

i

(
Ci,1

x− ri
+

Ci,2

(x− ri)2
+ · · ·+

Ci,ki

(x− ri)ki

)
= O

(
nk1−1

|r1|n

)
.

Taking into account the fact that k1 ≤ M, we have

|Λn| =
1

pn
∑
k∈S

kpk
+O

(
nM−1

rn

)
.

For future reference, we record the following corollary which is derived easily
from Theorem 2.

Corollary 1. For any real q ∈ (p, r),

1

|Λn|
= pn

∑

k∈S

kpk
(
1 +O

((
p

q

)n))
.
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3. MOMENTS OF LOG B

In this section we combine generating function identities from [31, 32] with
singularity analysis [10, 11] to estimate the moments of logB.

Recall that r is the magnitude of the second smallest root of f, that 0 < p < 1,
and that p < r.

Theorem 3. There exist constants a1 > 0 and a0 such that, for any given q ∈
(p,min(1, r)), the expected value of the log product of parts is

En(logB) = a1n+ a0 +O

(
n
(
p

q

)n)
.

Proof. Define the moment generating function for the random variable logB,

Mn(t) = En(e
t logB) = En(B

t).

By Lemma 2, we have

En(B
t) =

1

|Λn|
[xn]

1

F (x, t)
.

Hence

En(logB) = M ′
n(0) =

1

|Λn|

d

dt
[xn]

1

F (x, t)

∣∣∣∣
t=0

.

Since
1

F (x, t)
is analytic throughout the disk |x| < p, we know that it has a Taylor

series representation

1

F (x, t)
=

∞∑

n=0

anx
n where an =

1

2πi

∫

C

1

F (x, t)

xn+1
dx

for a suitable contour C. Therefore

d

dt
[xn]

1

F (x, t)
=

d

dt
an =

d

dt

1

2πi

∫

C

1

F (x, t)

xn+1
dx.

Since
1

F (x, t)
and its partial derivative with respect to t are both analytic throughout

|x| < p, we can move the derivative inside the integral sign to obtain

d

dt

1

2πi

∫

C

1

F (x, t)

xn+1
dx =

1

2πi

∫

C

∂

∂t

1

F (x, t)

xn+1
dx = [xn]

∂

∂t

1

F (x, t)
.

Calculating the partial derivative and evaluating at t = 0, we see that

M ′
n(0) =

1

|Λn|
[xn]

∑

k∈S

(log k)xk

(
1−

∑

k∈S

xk
)2 .
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To simplify this expression, we define Li(x) =
∑

k∈S

(log k)ixk and D(x) =
f(x)

x− p
and

note that D has no zeroes in the disk |x| < r. Then

(2) M ′
n(0) =

1

|Λn|
[xn]

L1(x)

(x − p)2D(x)2
.

To estimate the right side of (2), note that the function G0(x) =
L1(x)

D(x)2
is

analytic in the disk |x| ≤ q for any q < min(1, r). If we expand G0(x) around p, we
have

G0(x) = G0(p) +G′
0
(p)(x − p) + G̃0(x)

where G̃0(x) =
∞∑

k=2

G
(k)
0 (p)

k!
(x− p)k. Therefore

(3) [xn]
G0(x)

(x− p)2
= [xn]

G0(p)

(x− p)2
+ [xn]

G′
0
(p)

(x − p)
+ [xn]

G̃0(x)

(x− p)2
.

We use (1) to obtain

[xn]
G0(p)

(x − p)2
=

G0(p)(n+ 1)

p2 · pn
and [xn]

G′
0(p)

(x − p)
=

G′
0(p)

−p · pn
.

To bound the last term in (3), note that
G̃0(x)

(x− p)2
is also analytic in the disk

|x| ≤ q (with a removable singularity at x = p). Choosing γ to be a positively-
oriented circle of radius q, centered at the origin, we use Cauchy’s inequality to
get

∣∣∣∣[x
n]

G̃0(x)

(x − p)2

∣∣∣∣ =
∣∣∣∣
1

2πi

∫

γ

G̃0(x)

(x− p)2xn+1
dx

∣∣∣∣ ≤
max

∣∣∣ G̃0(x)

(x − p)2

∣∣∣
qn

= O
(

1

qn

)
.

Combining this with (3) and Corollary 1, with the value of q chosen in (p,min(1, r)),
we get

En(logB) =
1

|Λn|
[xn]

G0(x)

(x − p)2

=

G0(p)
∑

k∈S

kpk(n+ 1)

p2
+

G′
0(p)

∑

k∈S

kpk

−p
+O

(
n
(
p

q

)n)
.

Using the fact that D(k)(p) =
f (k+1)(p)

k + 1
, we can evaluate the constants G0(p) and

G′
0(p) to obtain the statement of the theorem.
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Theorem 4. There exist constants b1 > 0 and b0 such that, for any given q ∈
(p,min(1, r)), the variance of the log product of parts is

Vn(logB) = b1n+ b0 +O

(
n2

(
p

q

)n)
.

Proof. By the same method as above, we obtain

M ′′
n (0) =

1

|Λn|
[xn]




2
(∑

k∈S

(log k)xk
)2

(
1−

∑

k∈S

xk
)3 +

∑

k∈S

(log k)2xk

(
1−

∑

k∈S

xk
)2




=
1

|Λn|
[xn]

(
2L1(x)

2

(x− p)3D(x)3
+

L2(x)

(x− p)2D(x)2

)
.

Since the functions G1(x) =
L1(x)

2

D(x)3
and G2(x) =

L2(x)

D(x)2
are both analytic in

the disk |x| ≤ q < min(1, r), we can expand them around x = p as in the previous
proof. Hence, for the first term above, we have

[xn]
G1(x)

(x− p)3
= [xn]

G1(p)

(x− p)3
+ [xn]

G′
1
(p)

(x − p)2
+ [xn]

G′′
1
(p)

2(x− p)
+O

(
1

qn

)

=
G1(p)(n+ 1)(n+ 2)

−2p3 · pn
+

G′
1
(p)(n+ 1)

p2 · pn
+

G′′
1
(p)

−2p · pn
+O

(
1

qn

)
.

Similarly, for the second term above, we have

[xn]
G2(x)

(x− p)2
= [xn]

G2(p)

(x− p)2
+ [xn]

G′
2
(p)

(x − p)
+O

(
1

qn

)

=
G2(p)(n+ 1)

p2 · pn
+

G′
2(p)

−p · pn
+O

(
1

qn

)
.

Now by Corollary 1 we get

En((logB)2) =
1

|Λn|
[xn]

2G1(x)

(x− p)3
+

1

|Λn|
[xn]

G2(x)

(x− p)2

=

G1(p)
∑

k∈S

kpk(n+ 1)(n+ 2)

−p3
+

2G′
1(p)

∑

k∈S

kpk(n+ 1)

p2

+

G′′
1 (p)

∑

k∈S

kpk

−p
+

G2(p)
∑

k∈S

kpk(n+ 1)

p2
+

G′
2(p)

∑

k∈S

kpk

−p
+O

(
n2

(
p

q

)n)
.

These constants can be evaluated as in the previous proof, and En(logB)2 can be
calculated using Theorem 3, to obtain the statement of the theorem.
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In theory, any moment of logB can be calculated using the methods above.
However there is a major problem with using this method to calculate central
moments: There are many cross terms, and it becomes unmanageable to do the
calculations by hand. Due to the length and messiness of the calculations, we record
the following result without proof. More details can be found in [32].

Theorem 5. Define Rn to be the fourth central moment with respect to Pn. Then

Rn(logB) = En((logB− En(logB))4) = O(n2).

An anonymous referee pointed out an alternative approach, related to the
ideas in [23], for calculating the central moments of logB: The generating function
Tm(x) =

∑
n
|Λn|En(logB− µn)mxn satisfies the recurrence

Tm(x) =
1

1− S0(x)

m∑

k=1

(
m

k

)
Tm−k(x)Sk,

where
Sk(x) =

∑

j∈S

(log j − µj)kxj .

The referee believes that the m’th central moment of logB can then be estimated
using this recurrence and an induction argument. He remarked that, by the method
of moments, this would give an alternative proof that logB is asymptotically nor-
mal, not only for cofinite S but also for more general sets [12]. One disadvantage
of the referee’s approach is that it does not yield an explicit error term like that in
Theorem 1; however, it would certainly allow the lengthy calculations of Theorems
3, 4, and 5 to be bypassed.

4. METHOD OF CONCATENATED COMPOSITIONS

In this section we present a method for breaking down a composition con-
sisting of a random number of parts into a sequence consisting of a deterministic
number of subcompositions (of approximately the same size). The approach is
stylistically similar to Bernstein’s blocking method, which separates a sequence
of dependent random variables into an alternating sequence of “large blocks” and
“small blocks.” Before giving a precise, notation-laden version of the technique,
we give an informal description in terms of the classical bijection between compo-
sitions of n and sequences of n balls colored white or black with the last ball black.
(A composition ~λ = (λ1, λ2, . . . ) corresponds to the sequence of n colored balls in

which the position of the i’th black ball is
i∑

k=1

λk.)

A method that does not quite work is the following: form a sequence of m+1

compositions by using the first
⌊
n

m

⌋
balls as the first composition, the second

⌊
n

m

⌋

balls as the second composition, etc. The main problem with this approach is that
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the ball in position k
⌊
n

m

⌋
need not be colored black, and consequently the k’th

sequence of
⌊
n

m

⌋
balls need not correspond to a composition.

To salvage this idea, we make use of a simple observation: there must be some

part of ~λ corresponding to the ball in position k
⌊
n

m

⌋
. Let Π0 be the composition

that is formed by selecting these m regularly spaced parts of ~λ. The kth part of Π0

is the part of ~λ that contains the ball in position k
⌊
n

m

⌋
. Then the parts of Π0 form

natural dividers for decomposing ~λ. As an example, suppose m = 4 and consider
the composition ~λ = (3, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1) that corresponds to the sequence
shown here:

e e u e u e e uu u e u e u e u e e u e u e u e u u

Note that
⌊
n

m

⌋
=
⌊
25

4

⌋
= 6. The balls at positions 6, 12, 18, and 24 (marked below

with arrows) belong to parts of ~λ with respective sizes 3, 2, 3, and 2. Therefore
Π0 = (3, 2, 3, 2). Circled below are the balls that correspond to the parts of Π0:

e e u e u eg eg ugu u e u eg ug e u eg eg ug e u e u eg ug u

? ? ? ?

If we remove all the balls that correspond to the parts of Π0, then we are left with
a sequence of five compositions Π1,Π2,Π3,Π4,Π5 (of various sizes) as shown here:

e e u e u u e u e u e u e u u

Π1 Π2 Π3 Π4 Π5

In order for this decomposition to be well-defined, it is necessary to bound the sizes
of the parts. (Consider what happens if ~λ is a single part of size n.)

We now proceed with a more formal specification of the decomposition pro-
cess. For any positive integers β and n, let Λβ

n denote the set of compositions of n

whose parts are all in [1, β] ∩ S. Let m be a positive integer such that
⌊
n

m

⌋
> 2β.

For each ~λ in Λβ
n and for i = 1, . . . ,m, define

τi = min

{
t :

t∑

k=1

λk ≥ i

⌊
n

m

⌋}
.

Let τ be the total number of parts of the composition ~λ. In our example, τ1 = 3,
τ2 = 6, τ3 = 8, τ4 = 11, and τ = 12. Define the following compositions:

Π0 = 〈λτj 〉
m
j=1 Π1 = 〈λj〉

τ1−1

j=1
Πi = 〈λj〉

τi−1

j=τi−1+1
for i = 2 ≤ i ≤ m.

If n is not a multiple of m, define Πm+1 = 〈λj〉
τ
j=τm+1

. If n is a multiple of m, then
τm = n and we do not need an (m+1)’st composition. However, it will simplify the
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presentation if we adopt the convention, when n is a multiple of m, that Πm+1 is an
“empty composition of zero with no parts” and that B(Πm+1) = 1. This completes
our definition of what it means to decompose a composition in Λβ

n when m ∈ Z+

and
⌊
n

m

⌋
> 2β.

As a byproduct of the decomposition process, we have a natural way to
partition Λβ

n. This is important for our proof, because it enables us to write logB
as a sum of conditionally independent random variables. Let p1 = 1, and for

2 ≤ i ≤ m + 1 let pi = 1 +
τi−1∑

k=1

λk denote the position of the first ball that

corresponds to Πi. Define Wi = (πi, pi), where πi = |Πi| is the number that Πi

composes. Finally, let ~W = (W1, . . . ,Wm+1). Note that ~W is determined by ~λ, but

that many compositions correspond to a given choice of ~W. Define an equivalence
relation on Λβ

n by declaring two compositions to be equivalent if and only if they

determine the same ~W. Let Λ ~W be the equivalence class of compositions in Λβ
n that

correspond to a given choice of ~W, and let Wn be the set of equivalence classes.

Now observe that

(4) logB(~λ) =
m+1∑

i=0

logB(Πi(~λ)).

The next theorem says that the random variables Li = logB(Πi(~λ)) are condition-

ally independent given ~W.

Theorem 6. If Qn is the uniform probability measure on Λβ
n, then for all ~W and

all y1, y2, . . . , ym+1,

Qn

(
∀i Li = yi| ~W

)
=

m+1∏

i=1

Qn(Li = yi| ~W ).

Proof. For each choice of ~W, there is an obvious bijection Ψ ~W from Λ ~W onto the

product Λβ
π1

× Λβ
π2

· · · × Λβ
πm+1

, namely Ψ ~W (~λ) = (Π1, . . . ,Πm+1). Hence

(5) |Λ ~W | =
m+1∏

i=1

|Λβ
πi
|.

For any choice of y1, . . . , ym+1, we have

Qn

(
∀i Li = yi| ~W

)
=

|{~λ ∈ Λ ~W : ∀i Li = yi}|

|Λ ~W |

=
|{(Π1, . . . ,Πm+1) : ∀i Li = yi}|

|Λ ~W |
=

m+1∏

i=1

|{Πi : Li = yi}|

|Λ ~W |
.
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Recalling (5) then multiplying by a factor of 1, we get

Qn

(
∀i Li = yi| ~W

)
=

m+1∏

i=1

|{Πi : Li = yi}| ·
∏

j 6=i

|Λβ
πj
|

|Λβ
πi | ·

∏

j 6=i

|Λβ
πj |

=

m+1∏

i=1

|{~λ ∈ Λ ~W : Li = yi}|

|Λ ~W |
=

m+1∏

i=1

Qn(Li = yi| ~W ).

Although we do not need it, it is worth mentioning a stronger statement
that is perhaps more intuitive. The following are equivalent methods for picking a
random composition:

Method 1. Pick a composition ~λ from a uniform distribution on the set of all com-
positions in Λβ

n with a given ~W.

Method 2. For each i ≥ 1, independently pick Πi. The numbers πi are determined
by ~W, and each Πi is chosen from a uniform distribution on the set
of compositions in Λβ

πi
. Then concatenate Π1,Π2, . . .Πm+1, using the

parts of Π0 as dividers, to form a composition ~λ.

Finally, for future reference we state a simple lemma that is obvious from the
construction in this section and can be proved using calculations similar to those
in the proof of Theorem 6.

Lemma 3. Consider Li = logB(Πi(~λ)) as a random variable on Λβ
n with respect

to the conditional probability measure Pn(·|Λ
β
n). Assume β is chosen in such a way

that ~W is well-defined and Λ ~W 6= ∅. If i ≤ m, then for any choice of t,

En(L
t
i|Λ

β
n, ~W ) = Eπi

((logB)t|Λβ
n).

5. COMPARING CONDITIONAL DISTRIBUTIONS

Recall that logB =
m+1∑

i=0

Li. Reasoning heuristically, one might expect Theo-

rem 1 to be a consequence of the central limit theorem. There are two problems
with this idea.

First, the random variables Li are defined on Λβ
n, not Λn; it does not make

sense to talk about the probability measure Pn in reference to Li. This problem is
only a minor technicality because most compositions have no large parts, and we
can, without loss of generality, reduce to the case of compositions selected from Λβ

n

using the uniform probability measure Qn(·) = Pn(·|Λ
β
n).

The second problem is that the random variables Li are not independent with
respect to the probability measure Qn(·). However, we can use Theorem 6 to obtain
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the necessary conditions. Conditioning on our choice of ~W, we have

(6) Pn

(
logB− µn

σn
≤ x

∣∣∣∣Λ
β
n

)
=

∑

~W∈Wn

Pn( ~W )Pn




m+1∑

i=0

Li − µn

σn
≤ x

∣∣∣∣Λ
β
n, ~W


 .

The central limit theorem can be applied |Wn| times: Once for each of the terms in

the right hand side of (6), using a different probability measure Pn(·|Λ
β
n,

~W ) each
time. This may not seem like a promising approach, since a mixture of normal
distributions is not necessarily normal. However, in our case, the normal distribu-
tions all have approximately the same mean and variance, so we do in fact get the
desired result.

The preceding paragraphs contain the main idea of the proof. However the
reasoning is necessarily vague and incomplete. The remainder of this section con-
tains a series of elementary lemmas that are needed before a mathematically sound
version of the argument can be completed in the next section.

We need a precise statement of the fact that a typical composition has no large
parts. The following crude first moment estimate is convenient for our purposes;
more in-depth studies have been carried out by others, leading to more precise [28]
and more general [3] results. First we set the parameters m and β:

(7) m =

⌊
n1/3

(5 log1/p n)
2/3

⌋
β = ⌊5 log

1/p n⌋.

Lemma 4. Let Λβ
n be the event that an S-restricted composition of n has no parts

of size larger than β. Then

Pn(Λ
β
n) = O(npβ).

Proof. Let Ai,j be the event that a part of size j begins in position i. Then

Λβ
n =

n⋃

i=1

⋃

j>β

Ai,j .

Compositions in Ai,j are constructed by first choosing a composition of i− 1,
then appending a part of of size j, then appending a composition of n− (i− 1)− j.
If we adopt the convention that |Λ0| = 1, then for all i and j

Pn(Ai,j) =
|Λi−1| · |Λn−i−j+1|

|Λn|
.

Using first Boole’s inequality and then Theorem 2 and (7), we get

Pn(Λ
β
n) ≤

n∑

i=1

∑

β<j≤n

|Λi−1| · |Λn−i−j+1|

|Λn|
= O(npβ).



64 Eric Schmutz, Caroline Shapcott

The next lemma says that the moments are only slightly perturbed if we
impose a reasonable bound β on the sizes of the parts.

Lemma 5. For any t and any choice of β,

En((logB)t) = En((logB)t|Λβ
n) +O(nt+1pβ).

Proof. The largest value that logB can possibly attain is O(n). Therefore, by
Lemma 4, we have

En((logB)t) = En((logB)t|Λβ
n)Pn(Λ

β
n) + En((logB)t|Λβ

n)Pn(Λ
β
n)

≤ En((logB)t|Λβ
n) + max((logB)t)Pn(Λ

β
n)

= En((logB)t|Λβ
n) +O(nt) · O(npβ) = En((logB)t|Λβ

n) +O(nt+1pβ).

By a similar argument, En((logB)t) ≥ En((logB)t|Λβ
n)−O(nt+1pβ).

For future reference, we note the following immediate corollary of Lemma 5.

Corollary 2. The mean, variance, and fourth moment of logB are respectively

En(logB) = En(logB|Λβ
n) +O(n2pβ)

Vn(logB) = Vn(logB|Λβ
n) +O(n3pβ)

Rn(logB) = Rn(logB|Λβ
n) +O(n5pβ).

As a direct consequence of Lemma 3 and Corollary 2, we note the following.

Corollary 3. For i = 1, . . . ,m,

En(Li|Λ
β
n,

~W ) = Eπi
(logB) +O(π2

i p
β)

Vn(Li|Λ
β
n, ~W ) = Vπi

(logB) +O(π3

i p
β)

Rn(Li|Λ
β
n,

~W ) = Rπi
(logB) +O(π5

i p
β).

Corollary 4.

m∑

i=1

En(Li|Λ
β
n, ~W ) = En(logB) +O(mβ)

m∑

i=1

Vn(Li|Λ
β
n,

~W ) = Vn(logB) +O(mβ).

Proof. By Corollary 3 and Theorem 3, we have

En(Li|Λ
β
n, ~W ) = Eπi

(logB) +O(π2

i p
β) = a1πi + a0 +O

(
πi

(
p

q

)πi

)
+O(π2

i p
β).
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Note that, for i = 1, . . . ,m,

(8)
n

m
− 2β ≤ πi ≤

n

m
.

Therefore

En(Li|Λ
β
n,

~W ) = a1

(
n

m
+O(β)

)
+ a0 +O

(
n

m

(
p

q

) n
m−2β

)
+O

((
n

m

)2
pβ
)
.

Noting the definitions of m and β in (7), we have

m∑

i=1

En(Li|Λ
β
n,

~W ) = a1n+O(mβ).

We make a similar calculation for the variance, using Theorem 4:

Vn(Li|Λ
β
n, ~W ) = Vπi

(logB) +O(π3

i p
β) = b1πi + b0 +O

(
π2

i

(
p

q

)πi

)
+O

(
π3

i p
β
)

= b1

(
n

m
+O(β)

)
+ b0 +O

((
n

m

)2(p
q

) n
m−2β

)
+O

((
n

m

)3
pβ
)
.

Noting (7), we have

m∑

i=1

Vn(Li|Λ
β
n, ~W ) = b1n+O(mβ).

Theorems 3 and 4 give the statement of the corollary.

The following two theorems are very well-known. For example, in [9], see
page 544 for Theorem 7 and page 155 for Theorem 8. We use Φ(x) to denote the
standard normal distribution.

Theorem 7 (Esseen inequality). There is a positive constant A such that, for

any choice of mutually independent (not necessarily identically distributed) random
variables X1, . . . , Xm, if E(Xi) = 0 and E(|Xi|)

3 < ∞ for i = 1, . . . ,m, then

sup
x

∣∣∣∣∣∣∣∣∣∣

P




m∑

i=1

Xi

√
m∑

i=1

E(X2

i )

< x


− Φ(x)

∣∣∣∣∣∣∣∣∣∣

≤

A
m∑

i=1

E(|Xi|
3)

( m∑

i=1

E(X2

i )
)3/2 .

Theorem 8. If a random variable X has a moment of order s, then for positive

r ≤ s,

E(|X |r)1/r ≤ E(|X |s)1/s.
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Corollary 5.

m∑

i=1

En(|Li − En(Li|Λ
β
n, ~W )|3 |Λβ

n, ~W ) = O
(
n3/2

m1/2

)
.

Proof. By Theorem 8, we have

En(|Li − En(Li|Λ
β
n,

~W )|3|Λβ
n,

~W ) ≤ Rn(Li|Λ
β
n,

~W )3/4.

Applying Corollary 3 followed by Theorem 5, we have

m∑

i=1

En(|Li − En(Li|Λ
β
n, ~W )|3|Λβ

n, ~W ) ≤

m∑

i=1

Rn(Li|Λ
β
n, ~W )3/4

=

m∑

i=1

(
Rπi

(logB) +O(π5

i p
β)
)3/4

=

m∑

i=1

(
O(π2

i ) + O(π5

i p
β)
)3/4

.

Recalling (8) and noting (7), the righthand side becomes

m∑

i=1

O
(

n2

m2

)3/4
=

m∑

i=1

O
(
n3/2

m3/2

)
= O

(
n3/2

m1/2

)
.

6. ASYMPTOTIC LOGNORMALITY OF B

Proof of Theorem 1. We will use the following shorthand notation:

µn = En(logB), en =

m∑

i=1

En(Li|Λ
β
n, ~W ), σ2

n = Vn(logB),

vn =

m∑

i=1

Vn(Li|Λ
β
n,

~W ), tn =

m∑

i=1

En(|Li − En(Li|Λ
β
n,

~W )|3|Λβ
n,

~W ).

By Lemma 4, Corollary 4, and Corollary 5, we have

Pn(Λ
β
n) = O

(
1

n4

)
(9)

µn = en +O((n log n)1/3)(10)

σ2

n = vn +O((n log n)1/3)(11)

tn = O(n4/3(logn)1/3).(12)

We begin the calculation by using (9) to obtain

Pn

(
logB− µn

σn
≤ x

)
= Pn

(
logB− µn

σn
≤ x|Λβ

n

)
Pn(Λ

β
n)(13)

+ Pn

(
logB− µn

σn
≤ x|Λβ

n

)
Pn(Λ

β
n)

= Pn

(
logB− µn

σn
≤ x|Λβ

n

)
+O

(
1

n4

)
.
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We recall that, for a composition in Λβ
n,

logB =

m+1∑

i=0

Li.

Conditioning on our choice of ~W, we have

Pn

(
logB− µn

σn
≤ x|Λβ

n

)
=

∑

~W∈Wn

Pn( ~W )Pn




m+1∑

i=0

Li − µn

σn
≤ x|Λβ

n, ~W


 .(14)

Using (10) and (11), and also noting that L0 ≤ m log β < mβ ≤ (n logn)1/3 and
Lm+1 ≤ m log β < mβ ≤ (n logn)1/3, we have

m+1∑

i=0

Li − µn =
m∑

i=1

Li − en +O((n log n)1/3) and σn =
√
vn +O((n log n)1/3).

Therefore,

Pn




m+1∑

i=0

Li − µn

σn
≤ x|Λβ

n,
~W


(15)

= Pn




m∑

i=1

Li − en +O((n log n)1/3)

√
vn +O((n logn)1/3)

≤ x|Λβ
n,

~W


= Pn




m∑

i=1

Li − en

√
vn

≤ sn,x|Λ
β
n,

~W




where sn,x =

(
x−

O((n log n)1/3)√
vn +O((n log n)1/3)

)√
1 +

O((n log n)1/3)

vn
. We can now apply

to (15) the Esseen inequality from Theorem 7, followed by (12) and Theorem 4 to
obtain

Pn




m∑

i=1

Li − en

√
vn

≤ sn,x|Λ
β
n,

~W


 = Φ(sn,x) +O

(
tn

(vn)3/2

)
(16)

= Φ(sn,x) +O
(
(log n)1/3

n1/6

)
.

Next we note the approximation

sn,x = x

(
1 +O

(
(log n)1/3

n2/3

))
+O

(
(log n)1/3

n1/6

)
.
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If x is positive, then there exist positive constants c1 and c2 such that, for any n,

x

(
1−

c1(log n)
1/3

n2/3

)
−

c2(log n)
1/3

n1/6
≤ sn,x ≤ x

(
1 +

c1(log n)
1/3

n2/3

)
+

c2(logn)
1/3

n1/6
.

Since 0 ≤ e−t2/2 ≤ 1,

Φ(sn,x) ≤ Φ(x) +
1

√
2π

∫ x
(
1+

c1(logn)1/3

n2/3

)
+

c2(logn)1/3

n1/6

x

e−t2/2 dt

≤ Φ(x) +

(
x
(
1 +

c1(log n)
1/3

n2/3

)
+

c2(log n)
1/3

n1/6
− x

)

= Φ(x) +O
(
x(log n)1/3

n2/3
+

(log n)1/3

n1/6

)
.

Similarly, Φ(sn,x) ≥ Φ(x)−O

(
x(logn)1/3

n2/3
+

(logn)1/3

n1/6

)
and consequently

(17) Φ(sn,x) = Φ(x) +O

(
x(log n)1/3

n2/3
+

(log n)1/3

n1/6

)
.

By a similar argument, equation (17) holds for x ≤ 0 too. We combine the results
from (13), (14), (15), (16), and (17) to obtain

Pn

(
logB− µn

σn
≤ x

)
=
∑

~W

Pn( ~W )

(
Φ(x) +O

(
x(logn)1/3

n2/3
+

(log n)1/3

n1/6

))
+O

(
1

n4

)

= Φ(x) +O
(
|x|(log n)1/3

n2/3
+

(log n)1/3

n1/6

)
.

Therefore, for any c > 0, there is a constant kc > 0 such that, for all n,

sup
|x|≤c

√
n

∣∣∣∣Pn

(
logB− µn

σn
≤ x

)
− Φ(x)

∣∣∣∣ ≤
kc(log n)

1/3

n1/6
.

To complete the proof of Theorem 1, all that remains is to consider the case when
|x| > c

√
n. However, this case is a standard Chernoff-type calculation using the

moment generating function. If x > c
√
n, then

∣∣∣∣Pn

(
logB− µn

σn
≤ x

)
− Φ(x)

∣∣∣∣ =
∣∣∣∣Pn

(
logB− µn

σn
> x

)
− (1− Φ(x))

∣∣∣∣

≤ Pn

(
logB− µn

σn
> x

)
+ (1− Φ(x)) = Pn

(
elogB > eµn+xσn

)
+

1
√
2π

∞∫

x

e−t2/2dt

≤ Mn(1)e
−µn−xσn +

1
√
2π

∞∫

x

e−t2/2dt.
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The integral is negligible because e−t2/2 ≤ e−c
√
nt/2 for all t > c

√
n. As a crude but

simple bound on Mn(1) = En(B), we use the well-known fact that the maximum
value of B over all compositions of n is no greater than 3n/3. If we choose c suf-
ficiently large, then 3n/3e−µn−xσn is also exponentially small. A similar argument
applies when x < 0.

7. ADDITIONAL COMMENTS

A possible alternative approach to our problem is to use Hwang’s quasi-powers
theorem or related techniques ([24], page 645 of [11]). A second remark is that
the referee’s method of moments idea (outlined at the end of Section 3) could be
used to prove asymptotic normality for more general sets S. However, we prefer
to record the combinatorial technique of this paper in a relatively simple setting
where technical details do not obscure the main ideas.

We thank the Perline brothers, Richard and Ron, for motivation [29] and
helpful comments.

REFERENCES

1. M. Archibald, A. Knopfmacher: The largest missing value in a composition of an

integer. Discrete Math., 311 (8–9) (2011), 723–731.

2. C. Banderier, P. Hitczenko: Enumeration and asymptotics of restricted compo-

sitions having the same number of parts. Discrete Appl. Math. Preprint available at
http://www.math.drexel.edu/∼phitczen/BaHi arx.pdf (2011).

3. E. A. Bender, E. R. Canfield: Locally restricted compositions I. Restricted adjacent

differences. Electron. J. Combin., 12 (2005), Research Paper 57, 27 pp. (electronic).
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sommes de quantités dépendantes. Math. Ann., 97 (1) (1927), 1–59.
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