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PARTIAL MATCHINGS AND PATTERN AVOIDANCE

Toufik Mansour, Mark Shattuck

A partition of a finite set all of whose blocks have size one or two is called
a partial matching. Here, we enumerate classes of partial matchings charac-
terized by the avoidance of a single pattern, specializing a natural notion of
partition containment that has been introduced by Sagan. Let vn(τ ) denote
the number of partial matchings of size n which avoid the pattern τ. Among
our results, we show that the generating function for the numbers vn(τ ) is
always rational for a certain infinite family of patterns τ. We also provide
some general explicit formulas for vn(τ ) in terms of vn(ρ), where ρ is a pat-
tern contained in τ. Finally, we find, with two exceptions, explicit formulas
and/or generating functions for the number of partial matchings avoiding any
pattern of length at most five.

1. INTRODUCTION

A partition of a finite set is any collection of non-empty, mutually disjoint
subsets, called blocks, whose union is the set. (There is a single empty partition of
the empty set which has no blocks.) From now on, we will use the term partition
when referring to a partition of a finite set. We will denote the set of all partitions
of [n] = {1, 2, . . . , n} by Pn and the set of all partitions of [n] containing exactly k
blocks by Pn,k (note [0] = ∅). A partial matching of [n], also called an involution,
is any member of Pn all of whose blocks contain either one or two elements. The
set of all partial matchings of [n] will be denoted by Vn and the set of all partial
matchings of [n] containing exactly k blocks by Vn,k; note that Vn,k = ∅ if k < n/2.

Let vn = |Vn| and vn,k = |Vn,k| for n, k ≥ 1, with v0 = v0,0 = 1. Then vn =
n∑

k=0

vn,k,

where the vn,k, called Bessel numbers, are given by the explicit formula

vn,k =
n!

2n−k(2k − n)!(n− k)!
, n/2 ≤ k ≤ n,
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see, e.g., [5]. The n-th Bessel polynomial yn(x) may be expressed using Bessel

numbers as yn(x) =
n∑

k=0

vn+k,nx
k and satisfies the differential equation

x2y′′ + (2x+ 2)y′ = n(n+ 1)y,

see, e.g., [2, 8, 14]. For further information on the sequences vn and vn,k, see, re-
spectively, [20, A000085] and [20, A144299]. In this paper, we will be enumerating
various restricted subsets of Vn and Vn,k characterized by the avoidance of certain
patterns.

A partition Π is said to be in standard form if it is written as Π = B1/B2/ · · · ,
where min(B1) < min(B2) < · · · . One may also represent the partition Π =
B1/ · · · /Bk ∈ Pn,k, equivalently, by the canonical sequential form π = π1 · · ·πn,
wherein j ∈ Bπj

, 1 ≤ j ≤ n (see, e.g., [21]). For example, the partition Π =
1, 2, 7/3, 5, 10/4, 8/6, 9 ∈ P10,4 has the canonical sequential form π = 1123241342,
and in such case we write Π = π. Note that π = π1π2 · · ·πn ∈ Pn,k is a restricted

growth function from [n] to [k] (see, e.g., [17] for details), meaning that it satisfies
the following three properties: (i) π1 = 1, (ii) π is onto [k], and (iii) πi+1 ≤
max{π1, π2, . . . , πi}+ 1 for all i, 1 ≤ i ≤ n− 1.

In what follows, we will represent partial matchings by their canonical se-
quential forms as described above for partitions. Note that a sequential form
π = π1π2 · · · of a partition corresponds to a partial matching if and only if each
letter appears either once or twice. For example, Π = 1, 4/2/3, 6/5 ∈ V6,4 is given
by π = 123143. We now define the notion of avoidance. Let σ = σ1σ2 · · ·σn and
τ = τ1τ2 · · · τm be two partial matchings, represented by their canonical sequences.
We say that σ contains τ if σ contains a subsequence that is order-isomorphic to τ ;
that is, σ has a subsequence σf(1), σf(2), . . . , σf(m), where 1 ≤ f(1) < f(2) < · · · <
f(m) ≤ n, such that for each i, j ∈ [m], we have σf(i) < σf(j) if and only if τi < τj
and σf(i) > σf(j) if and only if τi > τj . Otherwise, we say that σ avoids τ. In this
context, τ is usually called a pattern. For example, the partial matching σ avoids
the pattern 1221 if there exist no indices i < j < k < ℓ with σi = σℓ < σj = σk

and avoids 1232 if there exist no such indices with σi < σj = σℓ < σk.

The concept of pattern-avoidance described above is the restriction to partial
matchings of Sagan’s concept of avoidance on finite set partitions [18]. See also
Klazar [12], Chen et al [3], Goyt [7], and Jeĺınek and Mansour [9] for further
work on the pattern avoidance question for partitions. The avoidance problem on
involutions obtained by restricting the usual avoidance problem on permutations
(represented as words), considered first by Knuth [13] and Simion and Schmidt

[19], is studied in [6] (see also the references therein), where the Wilf equivalence
classes are determined for patterns up to length seven. In [10], the authors con-
sidered the avoidance problem on complete matchings, i.e., partitions all of whose
blocks have size two, and Wilf equivalence classes were deduced for patterns up to
length seven. See also the related paper by Chen et al [4].

We will use the following notation. If τ is a pattern, then let Vn(τ) and Vn,k(τ)
denote the subsets of Vn and Vn,k, respectively, all of whose members avoid τ. We
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will denote the cardinalities of Vn(τ) and Vn,k(τ) by vn(τ) and vn,k(τ), respectively.

From the definitions, note that vn(τ) =
∑

k≥0

vn,k(τ). We will say that two patterns

τ and σ are (Wilf) equivalent, denoted by τ ∼ σ, if vn(τ) = vn(σ) for all n ≥ 0.

In the next section, we prove some general enumerative results concerning
pattern avoidance by partial matchings, represented canonically. Among our re-
sults is the equivalence of the patterns 12 · · · ki and 12 · · · (k − 1)ik for all i and

k and the fact that the generating function
∑

n≥0

vn(12 · · · ki)x
n is always rational.

We also present several ways of deriving an enumerative formula for vn(τ) from
one for vn(ρ), where ρ is some shorter pattern contained in τ. In the subsequent
two sections, we then supply an explicit formula for the number vn(τ) and/or its
generating function in the cases when τ has length four or five. We use both al-
gebraic and combinatorial techniques to establish our results. In the cases of 1123
and 12331, we use the kernel method to solve the functional equations that arise
once certain parameters related to the patterns in question have been introduced.
In the former case, an explicit formula results which may then be explained com-
binatorially, while in the latter case, no such formula seems to exist, though it is
possible to write an expression for the generating function showing it is algebraic.

We will employ the following notation: if τ = τ1, τ2, . . . , τm is a sequence of
numbers and i is an integer, then τ+i refers to the sequence τ1+i, τ2+i, . . . , τm+i.
Also, if m and n are positive integers, then [m,n] denotes the set {m,m+1, . . . , n}
if m ≤ n, with [m,n] = ∅ if m > n. Throughout, let Fn denote the sequence of
Fibonacci numbers defined by Fn = Fn−1+Fn−2 if n ≥ 2, with F0 = 0 and F1 = 1.
Henceforth, the terms involution and partial matching will be used interchangeably.

2. SOME GENERAL RESULTS

Before we present the main results, we first state, without proof, three pre-
liminary observations.

Observation 1. The set Vn(12 · · ·k) is empty for n ≥ 2k − 1.

Observation 2. A partial matching π of length n avoids the pattern 121 if and

only if π has the form 1α12α2 · · · , where α1 + α2 + · · · = n and αi ∈ {1, 2} for all

i. Therefore, vn(121) = Fn+1 if n ≥ 0. Furthermore, we have vn,r(121) =
(

r
n− r

)

for all n and r, where r ∈ [n].

Observation 3. Similarly, we have vn(112) = Fn+1 and vn,r(112) =
(

r
n− r

)
,

the members of Vn,r(112) being of the form π = 12 · · · rrβr (r − 1)βr−1 · · · 1β1 and

β1 + β2 + · · ·+ βr = n− r, with βi ∈ {0, 1} for all i.

The next result provides a way showing how from a given pair of equivalent
patterns we can construct new equivalent pairs of longer patterns.
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Proposition 4. Let σ be a non-empty pattern. If n ≥ 2, then

(1) vn(1(σ + 1)) = vn−1(σ) + (n− 1)vn−2(σ).

Thus, if f(x) =
∑

n≥0

vn(σ)x
n, then the generating function g(x) =

∑

n≥0

vn
(
1(σ+1)

)
xn

is given by

(2) g(x) = 1 + (x + x2)f(x) + x3f ′(x).

In particular, if α and β are two patterns and α ∼ β, then 1(α+ 1) ∼ 1(β + 1).

Proof. Since each involution has either one occurrence of the letter 1 or two
occurrences, we obtain (1). Note that in the second case, there are n− 1 possible
positions for the second 1. Formula (2) follows from multiplying (1) by xn, summing
over n ≥ 2, and noting initial values. The last statement follows from either of the
first two. 2

Example 5. Note that vn(11) = 1 for all n ≥ 0. Using (1) repeatedly, we obtain

vn(122) = vn−1(11) + (n− 1)vn−2(11) = 1 + n− 1 = n, n ≥ 1,

vn(1233) = vn−1(122) + (n− 1)vn−2(122) = n− 1 + (n− 1)(n− 2) = (n− 1)2, n ≥ 3,

vn(12344) = (n− 2)2 + (n− 1)(n− 3)2 = (n− 1)(n− 2)(n− 3) + 1, n ≥ 5,

vn(123455) = (n− 2)(n− 3)(n− 4) + 1 + (n− 1)
(
(n− 3)(n− 4)(n− 5) + 1

)

= n4 − 12n3 + 50n2 − 80n+ 36, n ≥ 7.

By induction, one sees that vn(12 · · · kk) is a polynomial in n of degree k− 1 and that the
coefficient of nk−1 in vn(12 · · · kk) is 1.

Example 5 together with the observations above are sufficient to enumerate
the involutions avoiding a pattern of length three.

τ\n 4 5 6 7 8 9 Reference

112, 121 5 8 13 21 34 55 Observations 2 and 3

122 4 5 6 7 8 9 Example 5

123 3 0 0 0 0 0 Observation 1

Table 1. Values of vn(τ ), where τ is a pattern of length three.

Our next result is a general equivalence.

Theorem 6. If k ≥ 2 and i ∈ [k − 1], then 12 · · · ki ∼ 12 · · · (k − 1)ik.

Proof. If 2 ≤ i ≤ k − 1, then 12 · · · (k − i+ 1)1 ∼ 12 · · · (k − i)1(k − i+ 1) implies
12 · · ·ki ∼ 12 · · · (k−1)ik, by Proposition 4 (applied i−1 times). Thus, it is enough
to consider the case when i = 1. Let σ = 12 · · · k1 and τ = 12 · · · (k− 1)1k. We will
define an explicit bijection f between Vn,m(σ) and Vn,m(τ) for all n and m.

If 1 ≤ m ≤ k − 1, then we may take f to be the identity, so assume m ≥ k.
Let us write π = 1w12w2 · · ·mwm ∈ Vn,m(σ), where each wi is a word in [i]. We will
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call an occurrence of τ in an involution ρ in which the letter 1 in τ corresponds to
the actual letter j in ρ a j-occurrence of τ, and, similarly, for σ. Suppose π contains
a j-occurrence of τ ; note that 1 ≤ j ≤ m− (k− 1) since π contains m blocks. Then
the second j of π must occur in the word wj+k−2, for if the second j were in wℓ

for some ℓ < j + k − 2, then there would not exist a j-occurrence of τ in π, and if
it were in wℓ for some ℓ > j + k − 2, then there would be a j-occurrence of σ in π
and there isn’t.

Now suppose that π has j-occurrences of τ for j = j1, j2, . . . , jr, where j1 <
j2 < · · · < jr. Then ji lies in the word wji+k−2 for each i ∈ [r], that is, wji+k−2 =
αijiβi, where αi and βi are (possibly empty) words in [ji + k− 2]. Observe further
that αi and βi are actually words in [ji + 1, ji + k − 2] since π avoids σ. Let
S = {j1+k−2, j2+k−2, . . . , jr+k−2}; note that m /∈ S. Let π′ be the involution
obtained from π as follows:

(i) If ℓ ∈ [m− 1]− S, then leave the word wℓ unchanged in π,

(ii) If ℓ = ji+k− 2 for some i ∈ [r], then replace the word wji+k−2 = αijiβi with
αi,

(iii) Replace the word wm with the (concatenated) word wmjrβrjr−1βr−1 · · · j1β1.

One may verify that the mapping π 7→ π′ is a bijection from Vn,m(σ) to
Vn,m(τ). Note that the mapping is reversed upon considering the word w′

m in
π′ = 1w′

12w
′
2 · · ·mw′

m, where each w′
i is i-ary. First decompose w′

m as w′
m =

γy1γ1y2γ2 · · · yrγr, where γ consists only of letters greater than or equal to m −
(k − 2), y1 ≤ m− (k − 1), and each yi, i > 1, represents the i-th left-to-right min-
imum in the subword of w′

m consisting of all letters past y1, inclusive. To reverse
the mapping π 7→ π′, insert the word yiγi just before the first occurrence of the
letter yi + k − 1 for each i ∈ [r] and replace the word w′

m with γ.

We now show that the generating function for the numbers vn(12 · · · k1) =
vn(12 · · · (k − 1)1k) is always rational.

Theorem 7. Let k ≥ 2. Then the generating function fk(x) =
∑

n≥0

vn(12 · · · k1)x
n

is a rational function.

Proof. If τ = τ1τ2 · · · τi is a sequence, then we will denote the largest term of τ by
m(τ) and the number of terms in τ by |τ |, that is, m(τ) = max

1≤j≤i
{τj} and |τ | = i.

Let Tk be the set of all non-empty involutions τ with m(τ) ≤ k − 1, that is, Tk =
∪2k−2

i=1

(
∪k−1

j=1
Vi,j

)
. We denote the generating function for the number of involutions

π = π1π2 · · ·πn of length n that avoid 12 · · ·k1 with π1π2 · · ·πi = τ1τ2 · · · τi by
fk,τ1τ2···τi(x). We let fk,∅(x) = fk(x). From the definitions, we have

fk(x) = 1 + fk,1(x), fk,τ (x) = x|τ | +

m(τ)+1∑

j=1

fk,τj(x), τ ∈ Tk.
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Note that fk,τj(x) = 0 when j already appears twice in τ, since no letter can
occur three times in a matching. Also, if the letter 1 appears twice in τ, then
fk,τ (x) = x2fk,τ ′(x), where τ ′ is the involution obtained from τ by deleting the two
occurrences of the letter 1 and decreasing any other letters by 1. We now consider
τ of the following three forms:

(i) τ = 1(τ ′ + 1) ∈ Tk,

(ii) τ = 1(τ ′ + 1)1 ∈ Tk,

(iii) τ = 1(τ ′ + 1)k, where 1(τ ′ + 1) ∈ Vi,k−1 for some i.

In case (iii), note that fk,τ (x) = xfk,τ ′(k−1)(x), since involutions starting with τ
and avoiding 12 · · · k1 cannot have a second 1.

We now write a linear system of equations in the variables fk(x) and fk,τ (x),
where τ has one of the three forms above. Our equations are fk(x) = 1 + fk,1(x)
and

fk,τ (x) =





x|τ | +
m(τ)+1∑

j=1

fk,τj(x), if τ is of form (i);

x2fk,τ ′(x), if τ is of form (ii);
xfk,τ ′(k−1)(x), if τ is of form (iii).

Note that in case (iii), if τ ′(k− 1) contains two 1’s and does not end in 1, then the
pattern τ ′(k−1) may be reduced until it is empty or is of the form (i) or (ii) above.
This implies that the generating functions fk(x) and fk,τ (x), where τ is of one of
the three forms above, satisfy a system of linear equations having a solution whose
coefficients are polynomials in x.

Let C = C(x) denote the coefficient matrix corresponding to the aforemen-
tioned system of equations. Then the determinant |C(x)| is non-zero for all x
sufficiently close to zero. To see this, suppose that the equations for fk,τ (x) are
written from top to bottom in ascending order according to the length of τ. If
x = 0, then C is upper triangular with all 1’s on the main diagonal, which implies
|C(0)| = 1. By continuity, there exists an interval containing the origin over which
|C(x)| is non-zero, as desired.

For such x, the system above then has a unique solution. By Cramer’s The-
orem, this solution is a vector of rational functions in x. In particular, fk(x) =
∑

n≥0

vn(12 · · · k1)x
n is a rational function.

Combining formula (2) with the prior theorem yields the following result.

Corollary 8. The generating functions
∑

n≥0

vn(12 · · · ki)x
n are rational for all 1 ≤

i ≤ k.

Example 9. If k = 2, then the proof of the prior theorem gives

f2(x) = 1 + f2,1(x), f2,1(x) = x+ f2,11(x) + f2,12(x),
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f2,11(x) = x2f2(x), f2,12(x) = xf2,1(x).

Solving this system implies f2(x) =
1

1− x− x2
.

When k = 3, we have

f3(x) = 1 + f3,1(x), f3,1(x) = x+ f3,11(x) + f3,12(x), f3,11(x) = x2f3(x),

f3,12(x) = x2 + f3,121(x) + f3,122(x) + f3,123(x), f3,121(x) = x2f3,1(x),

f3,122(x) = x3 + f3,1221(x) + f3,1223(x), f3,123(x) = xf3,12(x),

f3,1221(x) = x2f3,11(x), f3,1223(x) = xf3,112(x) = x3f3,1(x).

Solving this system implies f3(x) =
1− x2

1− x− 2x2 − x4
.

Similarly, we have f4(x) =
1− 2x2 − x3 − 2x4 − x6

1− x− 3x2 − 2x4 − x5 − 5x6 − x8
.

The following results provide ways of deriving enumerative formulas for longer
patterns from shorter ones, thereby extending equivalences to pairs of patterns of
greater length.

Theorem 10. Suppose σ and τ are patterns both having two occurrences of the

symbol 1, with σ ∼ τ. Then 11(σ + 1) ∼ 11(τ + 1). Furthermore, we have

vn(11(σ + 1)) = 1 +

n−1∑

r=1

r∑

i=1

r

(
r − 1

i− 1

)
vn−r−i(σ)

i−1∏

j=1

(n− r − j),

where vm(σ) = 0 if m < 0.

Proof. We prove the second statement. Let σ′ = 11(σ + 1). First note that π =
12 · · ·n ∈ Vn(σ

′). Otherwise, let us count the members π = π1π2 · · ·πn ∈ Vn(σ
′) of

the form π = 12 · · · rjπ′, where r ∈ [n − 1] is fixed and j ∈ [r]. Let us condition
further on the number i of letters in [r] that are repeated in π. Note first that there

are r choices for the element j and
(
r − 1
i− 1

)
choices for the additional letters in [r]

that are to be repeated.

Now observe that a member of [r] within the involution of the given form can
act only as a 1 within a possible occurrence of σ′, as there are two occurrences of
the symbol 2 in σ + 1 and there are no two occurrences of a letter a preceding the
two occurrences of a letter b, where 1 ≤ a < b ≤ r. Thus, there are

(n− r − 1)(n− r − 2) · · · (n− r − (i − 1))

choices regarding the positions within π for the additional i − 1 letters in [r] that
are to be repeated. Finally, the remaining n − r − i positions of π are to be filled
with letters in {r+1, r+2, . . .}, and the involution comprising these positions must
avoid σ due to the two occurrences of the letter j ≤ r. That is, there are vn−r−i(σ)
choices for these positions. Conversely, any involution of the form π = 12 · · · rjπ′
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and having exactly i repeated members of [r], where the other letters are arranged as

described above, is seen to avoid σ′. Thus, there are r
(
r − 1
i− 1

)
vn−r−i(σ)

i−1∏

j=1

(n−r−j)

such involutions, and summing over all possible r and i gives the result.

Theorem 11. Suppose σ and τ are patterns both having two occurrences of the

symbol 1, with σ ∼ τ. Then 121(σ + 2) ∼ 121(τ + 2). Furthermore, we have

vn(121(σ + 2))

= Fn+1 +

n−2∑

r=1

2r∑

j=r

2r−j∑

i=1

(2r − j)

(
r

j − r

)(
2r − j

i− 1

)
vn−j−i−1(σ)

i∏

t=2

(n− j − t)

+

n−3∑

r=1

2r∑

j=r

2r−j∑

i=1

(2r − j)

(
r

j − r

)(
2r − j − 1

i− 1

)
vn−j−i−2(σ)

i+1∏

t=3

(n− j − t),

where vm(σ) = 0 if m < 0.

Proof. We prove the second statement. Let σ′ = 121(σ + 2). Note first that
Vn(121) ⊆ Vn(σ

′), with vn(121) = Fn+1, by Observation 2. So suppose π =
π1π2 · · ·πn ∈ Vn(σ

′)− Vn(121) is of the form

π = 1α12α2 · · · (r + 1)αr+1ℓπ′,

where r ∈ [n− 2] is fixed, αs = 1 or 2 for s ∈ [r + 1], and ℓ ∈ [r].

First suppose αr+1 = 1. Let j = α1 + α2 + · · ·+ αr and i be the number of

members of [r+1] that occur in ℓπ′. Note first that there are
(

r
j − r

)
choices for the

indices s ∈ [r] for which αs = 2. There are then 2r−j choices for the letter ℓ in π and
(
2r − j
i− 1

)
choices for the letters in [r+1] that occur in π′. There are then

i∏

t=2

(n−j−t)

ways to arrange these letters within the n− j − 2 positions of π′ and vn−j−i−1(σ)
choices for the remaining letters of π′, which belong to {r+2, r+3, . . .} and comprise
a member of Vn−j−i−1(σ) (on those letters). Summing over all possible r, j and i
gives the first sum on the right-hand side above. Similar reasoning applies to the
case when αr+1 = 2 and gives the second sum, which completes the proof.

We will say that the two involution patterns σ and τ are strongly equivalent

(following the terminology used in [10] in conjunction with complete matchings), if
there exists a bijection f between the sets of σ-avoiding and τ -avoiding involutions
with the property that for any σ-avoiding involution λ, the number of blocks of λ
is equal to the number of blocks of f(λ), and moreover for any i, the i-th block of
λ has the same size as the i-th block of f(λ). The following result, which we state
without proof, may be obtained by modifying slightly the proof of the comparable
result for complete matchings found in [10, Lemma 3.10].
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Proposition 12. Let σ and τ be strongly equivalent patterns both containing k
distinct letters. Let ρ be a pattern that has two occurrences of the symbol 1. Then
the patterns σ(ρ+ k) and τ(ρ + k) are strongly equivalent.

Example 13. Since the patterns 112 and 121 are seen to be strongly equivalent, so are
the patterns 112(σ+2) and 121(σ +2), and thus vn(112(σ+2)) is given explicitly by the
formula in Theorem 11 above, where σ is a pattern having two occurrences of the symbol
1.

Let us say that two involution patterns σ and τ are block equivalent, which
we’ll denote by σ

.
∼ τ, if there exists a bijection from Vn,m(σ) to Vn,m(τ) for all n

and m. For example, the proof of Proposition 4 above shows further that if σ
.
∼ τ,

then 1(σ+1)
.
∼ 1(τ+1), which may be extended to 12 · · ·k(σ+k)

.
∼ 12 · · · k(τ+k) for

any k ≥ 1. The following result provides another way of extending block equivalence
to pairs of patterns of greater length.

Theorem 14. Suppose σ and τ are non-empty patterns on [k − 1], with σ
.
∼ τ.

Then σkk
.
∼ τkk. Furthermore, we have

vn,r(σkk)

=

r−1∑

m=0

n−r−1∑

ℓ=0

(r −m+ ℓ)ℓ!

(
r −m− 1 + ℓ

ℓ

)(
m+ r + 1− n+ ℓ

ℓ

)
vm+n−r−ℓ−1,m(σ),

where 1 ≤ r ≤ n− 1.

Proof. We prove the second statement. Let σ′ = σkk. Let π = π1π2 · · ·πn ∈
Vn,r(σ

′), where 1 ≤ r ≤ n− 1, and suppose that m + 1 is the largest letter which
occurs twice in π, where 0 ≤ m ≤ r − 1. Then we may write π in the form

(3) π = π′(m+ 1)w,

where π′ ∈ Vℓ,m(σ) for some ℓ ≥ m and w is a word having all distinct letters and
containing m + 1. Conversely, note the any involution of this form indeed avoids
the pattern σ′.

To enumerate the σ′-avoiding involutions π of length n having the form (3),
first note that there are vℓ,m(σ) choices for π′ and n− ℓ− 1 choices for the position

of the second m + 1. There are then
(
n− ℓ− 2
r −m− 1

)
ways to choose the positions in

w to be occupied by letters in [m + 2, r], each of which occurs singly. Once these
positions in w are taken, we fill in the remaining positions of w, and for this, we
must select n− ℓ − 2 − (r −m− 1) = m+ n − r − ℓ − 1 letters from those in [m]
that were not repeated in π′. There are m− (ℓ−m) = 2m− ℓ such letters and thus(

2m− ℓ
m+ n− r − ℓ− 1

)
ways to select them and (m+ n− r − ℓ − 1)! ways to arrange

them in the remaining positions of w, once selected. Thus, the number of members
of Vn,r(σ

′) of the form (3) is

(n− ℓ− 1)(m+ n− r − ℓ− 1)!

(
n− ℓ− 2

r −m− 1

)(
2m− ℓ

m+ n− r − ℓ− 1

)
vℓ,m(σ).
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Summing this over 0 ≤ m ≤ r − 1 and m ≤ ℓ ≤ m+ n− r − 1, and then replacing
ℓ with m+ n− r − 1− ℓ, gives the result.

3. AVOIDING A PATTERN OF LENGTH FOUR

In this section, we consider the problem of avoiding a single pattern of length
four by involutions. The cases of avoiding either 1212 or 1221 have been previously
encountered, see [16].

Fact 15. If n ≥ 1, then vn(1212) = vn(1221) = mn, where mn denotes the n-th
Motzkin number (see [20, A001006]).

The cases 1234 or 1233 were covered by Observation 1 and Example 5, re-
spectively. We now consider the cases of avoiding 1223 or 1232.

Proposition 16. If n ≥ 1, then vn(1223) = vn(1232) = Fn + (n− 1)Fn−1.

Proof. By (1), we have vn(1223) = vn−1(112) + (n − 1)vn−2(112) if n ≥ 2. By
Observation 3, we have vn(112) = Fn+1, which completes the first case. A similar
argument applies to the second.

In the proofs of the next three propositions, we let an = vn(τ), where τ is the
pattern in question, and let an,j denote the number of members of Vn(τ) such that
the block {1, j} occurs if j > 1 and the number of members of Vn(τ) such that the
block {1} occurs if j = 1. Using a different approach, we first consider the cases of
avoiding 1231 and 1213, which were done already in Example 9.

Proposition 17. The generating function for the numbers vn(1231) or vn(1213)
is given by

1− x2

1− x− 2x2 − x4
.

Proof. We first treat the case 1231. From the definitions, we have an,1 = an−1,
an,2 = an,3 = an−2, an,4 = an−4, and an,j = 0 for all 5 ≤ j ≤ n. Thus, the sequence
an satisfies

an = an−1 + 2an−2 + an−4, n ≥ 4,

with a0 = a1 = 1, a2 = 2 and a3 = 4. The rest follows easily. The second
case follows from the first and Theorem 6, or can be done directly by similar
reasoning.

We now consider the case of avoiding 1122. Here and elsewhere, we take(
n
k

)
= 0 if k > n ≥ 0 or if k < 0.

Proposition 18. If n ≥ 1, then

vn(1122) = n+

n−1∑

m=1

n−1−m∑

j=n−1−2m

j(n− 1−m− j)!

(
n− 1−m

j

)(
m

n− 1−m− j

)
.
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Proof. Let us assume n ≥ 4, for the formula is easily seen to hold otherwise. From
the definitions, we have an,1 = an−1 and an,2 = 1. If the element 2 shares a block
with a member of [3, n], then let j′ denote this other member, with j′ = 2 if the
block {2} occurs. Fix 3 ≤ j ≤ n. Within members of Vn(1122) enumerated by
an,j, we have j′ ∈ [2, n] − {j}. Considering whether j′ = 2 or 3 ≤ j′ ≤ j − 1 or
j + 1 ≤ j′ ≤ n yields the recurrence

an,j = an−1,j−1 +

j−1∑

i=3

an−2,i−1 + (n− j)an−2,j−1, 3 ≤ j ≤ n,

where an,2 = 1 (and so an,3 = n− 2). Thus, for all j = 4, 5, . . . , n, we have

bn,j := an,j − an,j−1 = bn−1,j−1 + (n− j)bn−2,j−1.

Define b′n,j = bn,j/(n− j)!, so

b′n,j = b′n−1,j−1 + b′n−2,j−1,

with b′n,3 = 1/(n− 4)!.

Define b′n(u) =
n∑

j=3

b′n,ju
j. Therefore,

b′n(u) =
u3

(n− 4)!
+ ub′n−1(u) + ub′n−2(u),

for all n ≥ 4.

Define b′(v, u) =
∑

n≥4

b′n(u)v
n. Therefore,

b(v, u) =
u3v4ev

1− uv(1 + v)
= u3v4

∑

j≥0

∑

i≥0

uivi+j(1 + v)i

j!
.

Hence,

b′n,m =

n−m−1∑

j=n+2−2m

1

j!

(
m− 3

2m− 2 + j − n

)
,

which implies

bn,m =

n−m−1∑

j=n+2−2m

(j + 1)(n− 1−m− j)!

(
n−m

j + 1

)(
m− 3

n−m− 1− j

)
.

By definition of bn,m, we have

an,s = an,3 +

s∑

m=4

bn,m,
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which implies

an,s = n− 2 +

s∑

m=4

n−m∑

j=n+3−2m

j(n−m− j)!

(
n−m

j

)(
m− 3

n−m− j

)
.

Since an,n = an−2, we obtain

an = n+

n+2∑

m=4

n+2−m∑

j=n+5−2m

j(n+ 2−m− j)!

(
n+ 2−m

j

)(
m− 3

n+ 2−m− j

)
,

which completes the proof.

Corollary 19. If n ≥ 1, then

n/2∑

k=0

(
n

2k

)
k! = n+

n−1∑

m=1

n−1−m∑

j=n−1−2m

j(n− 1−m− j)!

(
n− 1−m

j

)(
m

n− 1−m− j

)
.

Proof. To show this, we argue combinatorially that the left-hand side counts the
members of Vn(1122). Let Z = Zk denote the subset of Vn(1122) whose members
have exactly k doubleton blocks, where 0 ≤ k ≤ n/2. We will show that |Z| =(
n
2k

)
k!, whence the result follows from summing over k. To do so, we first argue that

the number of members of Z in which 1 belongs to a doubleton block is
(
n− 1
2k − 1

)
k!.

Let S = {a1 = 1 < a2 < · · · < a2k} denote the set of elements in [n] comprising the
doubleton blocks within such a member of Z. Note that no block of the form {ai, aj}
can occur, where 1 ≤ i < j ≤ k. Otherwise, each ar, where r ∈ [k + 1, 2k], would
have to be paired with some as, where s ∈ [k], in order to avoid an occurrence
of 1122, which is impossible. Therefore, only blocks of the form {ai, aj}, where
1 ≤ i ≤ k < j ≤ 2k, are possible, which implies that there are k! ways in which

to pair the elements of S. Thus, there are
(
n− 1
2k − 1

)
k! members of Z in which the

element 1 belongs to a doubleton block. Similarly, there are
(
n− 1
2k

)
k! members of

Z in which the block {1} occurs and thus
(
n− 1
2k − 1

)
k!+

(
n− 1
2k

)
k! =

(
n
2k

)
k! members

of Z altogether, as desired.

Proposition 20. The generating function for the numbers vn(1123) is given by

4(x3 − x2 − x+ 1)
(
x− 1−

√
1− 2x− 3x2 + 4x3

)2 .

Proof. Clearly, an,2 = 0 if n ≥ 5, with an,1 = an−1 and an,n−1 = an,n = an−2. If
the element 2 shares a block with a member of [3, n], then let i′ denote this other
member, with i′ = 2 if the block {2} occurs. Fix 3 ≤ i ≤ n. Note that within
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members of Vn(1123) enumerated by an,i, we have i′ ∈ [2, i− 1]∪ {n}. Considering
whether i′ = 2 or 3 ≤ i′ ≤ i− 1 or i′ = n yields

an,i = an−1,i−1 +
i−1∑

j=3

an−2,j−1 + an−2,i−1, 3 ≤ i ≤ n.

Let an(u) =
n∑

j=1

an,ju
j ; note that an(1) = an. Multiplying the above recurrence by

ui and summing over i = 3, 4, . . . , n yields

an(u)− an−1(1)u = u(an−1(u)− an−2(1)u) +

n−1∑

j=3

uj − un+1

1− u
an−2,j−1,

which implies for n ≥ 5,

an(u) = an−1(1)u+ uan−1(u)− an−2(1)u
2 +

u

1− u
(an−2(u)− an−3(1)u)

−
un+1

1− u
(an−2(1)− an−3(1)).

Let a(x, u) =
∑

n≥2

an(u)x
n. Multiplying the last recurrence by xn/un, sum-

ming over n ≥ 5, and noting the initial conditions a2(u) = u + u2, a3(u) =
2u+ u2 + u3 and a4(u) = 4u+ u2 + 2u3 + 2u4, we obtain

u(1− x)(1 − u)− x2

u(1− u)
(a(x/u, u)− xa(x/u, 1))

=
(1− x)(1 + x)(1 + u)x2

u
−

ux2(1− x)

1− u
a(x, 1).

We use the kernel method (see, e.g., [1]) and substitute u =
1− x+

√
1− 2x− 3x2 + 4x3

2(1− x)
in the above functional equation to cancel out the left-hand side and obtain

∑

n≥0

anx
n = 1 + x+ a(x, 1) = 1 + x+

(1 + x)(1 − u2)

u2
=

1 + x

u2

=
4(x3 − x2 − x+ 1)

(x− 1−
√
1− 2x− 3x2 + 4x3)2

,

which completes the proof.

Using the previous result, one may determine an explicit formula for vn(1123).

Let cn =
1

n+ 1

(
2n
n

)
denote the n-th Catalan number.
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Corollary 21. If n ≥ 3, then

(4) vn(1123) =

n/2∑

m=0

((
n−m

m

)
−

(
n− 2−m

m

))
cm+1.

Proof. Let c(y) =
∑

n≥0

cny
n.We may rewrite the generating function in Proposition

20 as

4(1− x)2(1 + x)

(1− x+
√
(1− x)2 − 4x2(1− x))2

= (1 + x)

(
1−

√
1− 4x2/(1− x)

2x2/(1− x)

)2

= (1 + x)c2(x2/(1− x)),

where c(y) =
1−

√
1− 4y

2y
=
∑

n≥0

cny
n. Expanding the last expression, with use of

the facts (see, e.g., [22, Equations 2.5.7 and 2.5.16])

cj(y) =
∑

i≥0

j(2i+ j − 1)!

i!(i+ j)!
yi, j ≥ 1,

and
1

(1− y)j+1
=

∑

i≥0

(
i+ j

j

)
yi,

yields

(1 + x)
∑

m≥0

2

m+ 2

(
2m+ 1

m

)
x2m

(1− x)m

= (1− x2)
∑

m≥0

2

m+ 2

(
2m+ 1

m

)
xm

∑

r≥m

(
r

m

)
xr

= (1− x2)
∑

r≥0

xr
r∑

m=0

2

m+ 2

(
2m+ 1

m

)(
r

m

)
xm.

Extracting the coefficient of xn, where n ≥ 3, in the last expression yields

n/2∑

m=0

2

m+ 2

(
2m+ 1

m

)(
n−m

m

)
−

(n−2)/2∑

m=0

2

m+ 2

(
2m+ 1

m

)(
n− 2−m

m

)

=

n/2∑

m=0

cm+1

(
n−m

m

)
−

(n−2)/2∑

m=0

cm+1

(
n− 2−m

m

)
,

which gives the desired formula.
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It is possible to explain directly the explicit formula (4).

Combinatorial proof of Corollary 21. For n ≥ 3, we’ll show

(5) vn,m(1123) =

(
m

n−m

)
cn−m+1 −

(
m− 1

n−m− 1

)
cn−m, n/2 ≤ m ≤ n.

Summing (5) overm, and replacingm by n−m and by n−1−m, then gives (4). To
show (5), first note that σ ∈ Vn,m(1123) must be of the form σ = 12 · · · (m− 1)σ′,
where σ′ is a 123-avoiding word of length n−m+1 containing letters from [m− 1]
at most once and containing m once or twice. Conversely, any involution of the
form σ belongs to Vn,m(1123). Suppose first that m occurs once in σ′. There are

then
(
m− 1
n−m

)
choices for the letters of [m− 1] appearing in σ′ and cn−m+1 ways in

which to order the letters of σ′ since they must form a 123-avoiding permutation of

length n−m+1 (see, e.g., [13] or [15]). Thus, there are
(
m− 1
n−m

)
cn−m+1 members

of Vn,m(1123) in this case.

Now supposem occurs twice in σ′. We first show that there are ci+1−ci words
of length i+1 that avoid the pattern 123 in which each letter of [i−1] appears once
and the letter i appears twice, where i ≥ 1. To see this, let Wi+1(123) denote the set
of words in question and let Sj(123) denote the set of 123-avoiding permutations

of length j. Given λ ∈ Wi+1(123), let λ̃ denote the member of Si+1(123) obtained

by changing the first i occurring in λ to i + 1. Then the mapping λ 7→ λ̃ is a
bijection from Wi+1(123) to the subset of Si+1(123) consisting of those members in
which i+ 1 comes to the left of i. Note that these permutations number ci+1 − ci,
by subtraction, as there are ci members of Si+1(123) in which i + 1 comes to the
right of i (note that such members must start with i, with the remaining letters
constituting a member o f Si(123)).

So if m occurs twice in σ′, then there are
(

m− 1
n−m− 1

)
choices for the letters

in [m − 1] which also occur twice in σ′ and, once these letters have been selected,
cn−m+1 − cn−m ways in which to order them within σ′. Note that such orderings
are synonymous with members of Wn−m+1(123). Thus, there are

(
m− 1

n−m− 1

)
(cn−m+1 − cn−m)

members of Vn,m(1123) in which m occurs twice. In all, there are
(
m− 1

n−m

)
cn−m+1 +

(
m− 1

n−m− 1

)
(cn−m+1 − cn−m)

=

(
m

n−m

)
cn−m+1 −

(
m− 1

n−m− 1

)
cn−m

members of Vn,m(1123), as desired.
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We summarize the results of this section in the table below.

τ\n 5 6 7 8 9 10 Reference

1122 21 52 134 361 1009 2926 Proposition 18

1212,1221 21 51 127 323 835 2188 Fact 15

1123 19 43 95 217 493 1139 Corollary 21

1213, 1231 18 38 78 163 337 701 Proposition 17

1223, 1232 17 33 61 112 202 361 Proposition 16

1233 16 25 36 49 64 81 Example 5

1234 15 15 0 0 0 0 Observation 1

Table 2. Values of vn(τ ), where τ is a pattern of length four.

4. AVOIDING A PATTERN OF LENGTH FIVE

In this section, we enumerate the involutions which avoid a single pattern of
length five. Our work is shortened by first noting the following.

Observation 22. Explicit formulas and/or generating functions for the ten pat-

terns of length five of the form 1(σ+1) can be derived from the results in the prior

section using (1) and (2).

Other results from the second section apply.

Remark 23. Since 112 ∼ 121, we have from Theorem 10 that 11223 ∼ 11232. Furthermore,
since vn(112) = Fn+1, we obtain the explicit formula

vn(11223) = 1 +
n−1∑

r=1

r∑

i=1

r

(
r − 1

i− 1

)
Fn+1−r−i

i−1∏

j=1

(n− r − j),

where we assume Fm = 0 if m < 0.

Remark 24. Since 112
.

∼ 121, we have from Theorem 14 that 11233
.

∼ 12133. Furthermore,

since vn,r(112) =
( r
n− r

)
, we obtain the explicit formula

vn,r(11233)

=

r−1∑

m=0

n−r−1∑

ℓ=0

(r −m+ ℓ)ℓ!

(
r −m− 1 + ℓ

ℓ

)(
m+ r + 1− n+ ℓ

ℓ

)(
m

n− r − ℓ− 1

)
,

where 1 ≤ r ≤ n− 1.

Remark 25. From Theorem 6 and Example 9, we see that the numbers an = vn(12341) =
vn(12314) both satisfy the recurrence

an = an−1 + 3an−2 + 2an−4 + an−5 + 5an−6 + an−8, n ≥ 8.

We now consider the remaining cases for a pattern of length five.

Theorem 26. Each of the following patterns τ are equivalent to one another :
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(1) 12123 (2) 12132 (3) 12213
(4) 12231 (5) 12312 (6) 12321.

Furthermore, vn(τ) is given in all cases by

n∑

m=1

1

m




m∑

j=0

j∑

i=0

(−1)m+j−n2m−j

(
m

j

)(
j

i

)(
m+ i+ j

m− 1

)(
j − i

m+ j − n

)
 , n ≥ 1.

Proof. To prove the first statement, we consider more general results concerning
set partitions. Let Pn(σ) denote the set of partitions of [n] which avoid the pattern
σ, where partitions are represented canonically. Two patterns σ and τ are said to
be strongly partition-equivalent if for each n there exists a bijection from Pn(σ)
to Pn(τ) which preserves the size of the i-th block for each i. From [11, Fact 4.8]
(see also [9, Theorem 48]), all the patterns of a given size k that start with 12 and
that contain two occurrences of the symbol 1 and one occurrence of the symbol 3,
with each of their remaining symbols equal to 2, are mutually strongly partition-
equivalent. Particularizing these results to the case when k = 5 and involutions
implies the equivalence of the patterns listed above.

To complete the proof, we determine an explicit formula for vn(τ) in the case
τ = 12312. Define m(π) to be the maximal letter of π. By induction on s, one may
verify that π belongs to Vn(12312) if and only if π = 1π(1) or there exists s ≥ 1
such that

π = 1π(1)1π(2)m(π(1))π(3)m(π(2)) · · ·π(s)m(π(s−1))π(s+1),

where any letter of π(j) is greater than any letter of π(j−1) for j = 1, 2, . . . , s + 1
(we define π(0) = 1), with each π(j) avoiding 12312. Let f(x) be the generating
function for the number of 12312-avoiding involutions of length n, and let g(x) be
the generating function for the number of 12312-avoiding involutions π of length n
where the letter m(π) appears exactly once in π. From the above decomposition,
we have

f(x) = 1 + xf(x) +
x2f2(x)

1− xg(x)
,

g(x) = x+ xg(x) +
x2g(x)(f(x) + 1)

1− xg(x)
.

Solving for the quantity
x2

1− xg(x)
in these two equations, and equating results,

gives
(1 − x)f(x)− 1

f2(x)
=

(1 − x)g(x) − x

g(x)(f(x) + 1)
,

which reduces to (xf(x)+1)g(x) = xf2(x). Now substituting into this last equation

g(x) =
1

x
−

xf2(x)

(1− x)f(x)− 1
, and simplifying, implies that the generating function

f(x) satisfies
f(x) = 1 + 2xf(x) + x(x − 1)f2(x) + x2f3(x).
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Let h(x) = f(x)− 1, so that

h(x) = x(h(x) + 1)(2 + (x− 1)(h(x) + 1) + x(h(x) + 1)2).

By the Lagrange inversion formula, we have

h(x) =
∑

m≥1

[ym−1]

m

(
xm(y + 1)m(2 + (x− 1)(y + 1) + x(y + 1)2)m

)

=
∑

m≥1

[ym−1]

m




m∑

j=0

j∑

i=0

(
m

j

)(
j

i

)
2m−j(y + 1)m+j+i(x− 1)j−ixm+i




=
∑

m≥1

1

m




m∑

j=0

j∑

i=0

(
m

j

)(
j

i

)(
m+ i + j

m− 1

)
2m−j(x− 1)j−ixm+i


 .

Extracting the coefficient of xn in h(x) completes the proof.

The cases left now are 12313, 12331, 11234, and 12134, the last two of which
we were unable to find explicit expressions for vn(τ) or its generating function. The
remainder of this section is then devoted to the cases 12313 and 12331.

Proposition 27. If n ≥ 0, then

vn(12313) = 1 +

n/2∑

m=1

m∑

j=1

n∑

b=0

(−1)b

m

(
m

j

)(
2m+ j

m− 1

)(
n− b

2m+ 2j

)(
j − 1 + b

b

)

+

n/2∑

m=1

1

m+ 1

(
2m

m

)(
n

2m

)
.

Proof. Let f = f(x) =
∑

n≥0

vn(12313)x
n. We first write an equation for f. Let

π ∈ Vn(12313), where n ≥ 1. Then π must have one of the following three forms:
(i) 1α, where α does not contain 1; (ii) 1α1β, where neither α nor β contains 1
and any letter of α is less than any letter of β; or (iii) 1α1β, where neither α nor β
contains 1 and α and β have a letter in common. Combining the three cases above
implies

f = 1 + xf + x2f2 + g,

where g = g(x) is the generating function that counts involutions of length n of the
form (iii).

Let us now write an equation for g. Suppose that α and β share the letter
r in the third case above. If r > 2, then we would have the subsequence 12r1r
in π, which is an occurrence of 12313, so r = 2. Thus α = 2α′ and β = β′2β′′ in
(iii), with α′, β′ and β′′ each not containing 1 or 2. If α′ is empty, then we have
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π = 121β′2β′′, and considering whether or not β′ and β′′ share a letter gives a
contribution of x2g + x4f2 in this case. If α′ is non-empty, then π = 12α′1β′2β′′

and π avoiding 12313 implies α′, β′ and β′′ are mutually disjoint, which gives a
contribution of x4f2(f−1) in this case. Thus, we have g = x2g+x4f2+x4f2(f−1),

or g =
x4

1− x2
f3, which implies

f = 1 + xf + x2f2 +
x4

1− x2
f3.

We rewrite this last equality as

h =
x2

1− x

(
h+

1

1− x

)2 (
1 +

x2

1− x2

(
h+

1

1− x

))
,

where h = h(x) = f(x)−
1

1− x
. By the Lagrange inversion formula, we have

h(x) =
∑

m≥1

x2m

m(1− x)m
[ym−1]

[(
y +

1

1− x

)2m (
1 +

x2

1− x2

(
y +

1

1− x

))m
]

=
∑

m≥1

m∑

j=0

x2m+2j

m(1− x)m(1− x2)j

(
m

j

)
[ym−1]

[(
y +

1

1− x

)2m+j
]

=
∑

m≥1

m∑

j=0

x2m+2j

m(1− x)2m+j+1(1− x2)j

(
m

j

)(
2m+ j

m− 1

)

=
∑

m≥1

m∑

j=0

x2m+2j

m(1− x)2m+2j+1(1 + x)j

(
m

j

)(
2m+ j

m− 1

)

=
∑

m≥1

m∑

j=1

∑

a,b≥0

(−1)b
x2m+2j+a+b

m

(
m

j

)(
2m+ j

m− 1

)(
2m+ 2j + a

a

)(
j − 1 + b

b

)

+
∑

m≥1

∑

a≥0

x2m+a

m

(
2m

m− 1

)(
2m+ a

a

)
.

Thus, the coefficient of xn in h is given by

n/2∑

m=1

m∑

j=1

n∑

b=0

(−1)b

m

(
m

j

)(
2m+ j

m− 1

)(
n− b

2m+ 2j

)(
j − 1 + b

b

)

+

n/2∑

m=1

1

m+ 1

(
2m

m

)(
n

2m

)
.

Noting f(x) = h(x) +
1

1− x
completes the proof.
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We now consider the case 12331. Given n ≥ 1 and 1 ≤ k ≤ n − 1, let an,k
count the members π = π1π2 · · ·πn ∈ Vn(12331) containing a single 1 of the form
π = 12 · · ·kjπ′ for some j ∈ [k]. Let bn,k count the members of Vn(12331) having
this same form, but instead containing two 1’s. For example, we have a5,3 = 4,
the enumerated involutions being 12323, 12324, 12332, 12334, and b6,4 = 5, the
involutions being 12341i, where i ∈ [2, 5], and 123421. Furthermore, let us take
an,0 = δn,0, an,n = 1, and bn,0 = bn,n = 0 for all n ≥ 0 (note an,n = 1 counts the
single involution 12 · · ·n).

Lemma 28. The arrays an,k and bn,k can assume non-zero values only when 0 ≤
k ≤ n and satisfy the recurrences

an,k = an−1,k−1 + bn−1,k−1, 1 ≤ k ≤ n,(6)

and

bn,k =
n−2∑

i=k−1

(an−2,i + bn−2,i) +
n−3∑

i=k−1

n−4∑

j=i−1

(an−4,j + bn−4,j), 2 ≤ k ≤ n− 1.

(7)

If n ≥ 0, then an,0 = δn,0 and bn,n = bn,0 = 0, with bn,1 =
n−2∑

k=0

(an−2,k + bn−2,k) for

n ≥ 2.

Proof. The initial values are easily verified. Note that bn,1 =
n−2∑

k=0

(an−2,k+ bn−2,k)

if n ≥ 2, which is seen upon deleting both letters 1 at the beginning. Removing the
1 from an involution π = π1π2 · · ·πn enumerated by an,k yields either an involution
counted by bn−1,k−1 or by an−1,k−1, depending on whether or not the letter 2 is
repeated, which gives (6).

To show (7), first note that there are
n−2∑

i=k−1

(an−2,i + bn−2,i) members of

Vn(12331) enumerated by bn,k, where 2 ≤ k ≤ n− 1, of the form 12 · · ·k1π′, upon
deleting both occurrences of 1 and considering whether or not the resulting involu-
tion 2 · · · kπ′ has two occurrences of 2. Otherwise, we have π = 12 · · · kr(k+1)(k+
2) · · · (i+1)1π′ for some r ∈ [2, k] and i ∈ [k−1, n−3]. Note that r = 2, for if r > 2,
then we would have the subsequence 12rr1, which is an occurrence of 12331. Dele-
tion of both 1’s and both 2’s then results in involutions of the form 34 · · · (i+1)π′,

which are counted by
n−4∑

j=i−1

(an−4,j + bn−4,j), upon considering whether or not the

letter 3 is repeated. Summing this over i gives (7) and completes the proof.

If n ≥ 0, then let an =
n∑

k=0

an,k and bn =
n∑

k=0

bn,k. From the definitions, we

have vn(12331) = an + bn for all n.
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The function

g(v, t) = 1− vt+
v2t2

1− v
−

v4t4

(1− v)2

is encountered in our derivation below of the generating function for the numbers
vn(12331). Let us make some preliminary observations concerning it. Upon multi-
plying through by (1 − v)2, we see that the equation g(v, t) = 0 has one negative
root and either one or three positive roots in v where t 6= 0 is fixed, by Descartes’
rule of signs. In fact, for all t sufficiently close to zero, we see that g(v, t) has roots

in both the intervals
(
1

2
, 1
)
and

(
1,

3

2

)
, by the intermediate value theorem. Let us

denote these roots by v±(t). Using the gfun package, it is possible to find formal
power series in t for v±(t), with the other roots of g(v, t) = 0 not admitting to such
an expansion. The first few terms of these series are

v±(t) = 1 + at2 +
1

5
(1 + 3a)t3 +

1

52
(56 + 63a)t4 +

1

53
(407 + 561a)t5

+
1

53
(1198 + 2104a)t6 +

1

55
(71889 + 121847a)t7

+
1

55
(1159237+ 1853401a)t8 +

1

57
(15647267+ 25033591a)t9

+
1

58
(232895389+ 377177972a)t10 +

1

57
(134073521+ 217477958a)t11

+
1

510
(50472627212+ 81681698701a)t12

+
1

511
(751784647481+ 1215815470663a)t13

+
1

512
(11401941720791+ 18446604839668a)t14

+
1

513
(172999678091967+ 279943026628566a)t15+O(t16),

where a =
1±

√
5

2
.

Using v±(t), one may provide an expression for the generating function for
the numbers vn(12331).

Theorem 29. Let f(t) =
∑

n≥0

vn(12331)t
n. Then we have

f(t) =
(1 − v+)(1 − v−)(v+v−(v+ + v−)− v2

+
− v+v− − v2−)

v2+v
2
−t

3 [(1 − v+)(1− v−) + v+v−t2)]
−

1

t
,

where v± = v±(t) are as given above.

Proof. We determine the generating function for the sequence vn(12331) = an+bn,
using the recurrences in the prior lemma. First note that by (6), relation (7) is
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equivalent to

bn,k =

n−1∑

i=k

an−1,i +

n−3∑

i=k−1

n−3∑

j=i

an−3,j , 2 ≤ k ≤ n− 1.(8)

Define An(v) =
n∑

i=0

an,iv
i and Bn(v) =

n∑

i=0

bn,iv
i; note that An(1) = an

and Bn(1) = bn. Multiplying (6) by vk, summing over k = 1, 2, . . . , n and noting
an,0 = 0 if n ≥ 1, we obtain

An(v) = vAn−1(v) + vBn−1(v).

Multiplying (8) by vk, summing over k = 2, 3, . . . , n−1, and noting an,0 = bn,0 = 0
if n ≥ 1 and bn,1 = An−2(1) +Bn−2(1) = An−1(1) if n ≥ 2, we obtain

Bn(v) − vAn−1(1) =

n−1∑

k=2

vk−1

n−1∑

i=k

an−1,i +

n−1∑

k=2

vk
n−3∑

i=k−1

n−3∑

j=i

an−3,j

=
n−1∑

k=1

v2 − vk+1

1− v
an−1,k +

n−3∑

k=1

(kv2 + (k − 1)v3 + · · ·+ vk+1)an−3,k

=
v

1− v
(vAn−1(1)−An−1(v)) +

v3

(1− v)2
(An−3(v) −An−3(1)) +

v2

1− v
hn−3,

where hn−3 =
∂

∂v
An−3(v)

∣∣∣
v=1

. Thus for all n ≥ 2, we have

An(v) = vAn−1(v) + vBn−1(v)

Bn(v) =
v

1− v
(An−1(1)−An−1(v)) +

v3

(1− v)2
(An−3(v) −An−3(1)) +

v2

1− v
hn−3,

with A0(v) = 1, A1(v) = v and B0(v) = B1(v) = 0 (we define A−1(v) = 0).

Let H(t) =
∑

n≥0

hnt
n, A(t, v) =

∑

n≥0

An(v)t
n and B(t, v) =

∑

n≥0

Bn(v)t
n. Mul-

tiplying the last two recurrences by tn and summing over n ≥ 2 yields

A(t, v) − vt− 1 = vt(A(t, v) − 1) + vtB(t, v)(9)

and

B(t, v) =
vt

1− v
(A(t, 1)−A(t, v)) +

v3t3

(1− v)2
(A(t, v)−A(t, 1)) +

v2t3

1− v
H(t).

Hence,

(
1− vt+

v2t2

1− v
−

v4t4

(1− v)2

)
A(t, v)(10)
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= 1 +
v2t2

1− v

(
1−

v2t2

1− v

)
A(t, 1) +

v3t4

1− v
H(t).

From the preceding discussion, we see that the kernel 1 − vt+
v2t2

1− v
−

v4t4

(1− v)2
of

the functional equation (10) has two roots v±(t) which are expressible as formal
power series in t. By substituting v = v+ = v+(t) and v = v− = v−(t) into (10),
we obtain

0 = 1 +
v2
+
t2

1− v+

(
1−

v2
+
t2

1− v+

)
A(t, 1) +

v3
+
t4

1− v+
H(t),

0 = 1 +
v2−t

2

1− v−

(
1−

v2−t
2

1− v−

)
A(t, 1) +

v3−t
4

1− v−
H(t),

which implies

v2
+
v2−t

2

[
v−

(
1−

v2
+
t2

1− v+

)
− v+

(
1−

v2−t
2

1− v−

)]
A(t, 1) = v3

+
(1− v−)− v3−(1 − v+).

Hence,

A(t, 1) =
(1 − v+)(1 − v−)(v+v−(v+ + v−)− v2

+
− v+v− − v2−)

v2
+
v2−t

2 [(1 − v+)(1− v−) + v+v−t2)]
.

By (9), we have A(t, 1)+B(t, 1) =
1

t
(A(t, 1)−1), which implies that the generating

function f(t) =
∑

n≥0

vn(12331)t
n =

∑

n≥0

(an + bn)t
n is given by

(1− v+)(1− v−)(v+v−(v+ + v−)− v2+ − v+v− − v2−)

v2
+
v2−t

3 [(1− v+)(1 − v−) + v+v−t2)]
−

1

t
,

as desired.

It is possible to give more explicit expressions for the functions v± appearing
above.

Let

m1 =
√
−5 + 4t+ 10t2 + 54t3 + 139t4 + 82t5 + 279t6,

m2 =
3

√
24t+ 24t2 − 52t3 + 96t4 − 156t5 − 188t6 − 8 + 12

√
3m1t3,

m3 =

√
8t2(1− 2t− 3t2 + t3 − 11t4)

m2

+ 2t2m2 + (3 + 8t2)(1 + t)2.

Corollary 30. The generating function f(t) is algebraic. In fact if

h(t) =
18

√
3((1 + t)3(1 + 4t2) + 8(2 + t)t5)

m3

−
24t2(1 − 2t− 3t2 + t3 − 11t4)

m2
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and

g(t) =

√
h(t) + 6(3 + 8t2)(1 + t)2 − 3− 3t−

√
3m3

12t3
,

then v+(t) is g(t) with the branch m2
1
< 0 and v−(t) is g(t) with the branch m2

1
> 0

and m3
2
< 0.

Proof. The first statement follows from Theorem 29 since f(t) is a rational function
of v+ and v−, which are both seen to be algebraic. Note that v+(t) and v−(t)
are zeros of the kernel in (10). By using Maple (and simplifying somewhat the
expressions that result), we obtain the given formulas for v+ and v−.

Using the power series of v±, one may find, with the help of Maple, the first
few terms of the generating function f(t):

f(t) = 1 + t+ 2t2 + 4t3 + 10t4 + 25t5 + 67t6 + 182t7 + 512t8 + 1460t9 + 4241t10

+ 12453t11 + 36999t12 + 110865t13 + 334929t14 + 1018545t15 +O(t16).

We summarize the results of this section in the table below.

τ\n 6 7 8 9 10 11 Reference

11223, 11232 69 193 572 1730 5452 17573 Remark 23

11233, 12133 67 183 520 1516 4562 14097 Remark 24

12123, 12132
12213, 12231
12312, 12321 68 187 534 1544 4554 13576 Theorem 26

12233 66 178 498 1433 4258 13016 Observation 22 and
Proposition 18

12331 67 182 512 1460 4241 12453 Theorem 29

12313 67 181 503 1414 4037 11642 Proposition 27

12323, 12332 66 177 484 1339 3742 10538 Observation 22 and
Fact 15

11234 66 173 473 1290 3623 10193 Open

12134 65 164 428 1104 2904 7607 Open

12234 64 157 396 977 2446 6069 Observation 22 and
Corollary 21

12314, 12341 64 154 381 924 2272 5545 Remark 25

12324, 12342 63 146 344 787 1804 4071 Observation 22 and
Proposition 17

12334, 12343 62 135 292 600 1210 2381 Observation 22 and
Proposition 16

12344 61 121 211 337 505 721 Example 5

12345 60 105 105 0 0 0 Observation 1

Table 3. Values of vn(τ ), where τ is a pattern of length five.
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5. CONCLUSION

Making use of both algebraic and combinatorial methods, we have provided
explicit expressions for vn(τ) and/or its generating function when τ is a pattern of
length at most five with two exceptions. In some cases, we have found formulas
for vn,k(τ) as well. For the particular patterns 1123 and 12331, we used the kernel
method to solve the functional equations that arise. In the case of 1123, the kernel
method gives a quadratic equation, and there is thus a closed form which may
then be explained by combinatorial reasoning. In the case of 12331, however, the
equation we get is quartic and no compact closed form for vn(12331) seems possible,
though one may express the generating function in terms of certain formal power
series involving two of the real roots of this quartic. Still unresolved are the cases
11234 and 12134. We also have shown several general avoidance results concerning

partial matchings, including the fact that the generating function
∑

n≥0

vn(12 · · · ki)x
n

is rational for all k and i, with 12 · · · ki ∼ 12 · · · ik. In this direction, we still
seek explicit formulas for generating functions of patterns such as 12 · · ·k12 and
12 · · ·k13, which are seen not to be rational in general. We also seek pattern
equivalences for partial matchings which extend the one in Theorem 6.

Acknowledgement. We wish to thankDoron Zeilberger for useful discussions
concerning the formulas in Corollary 30.
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