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ON THE SPECTRUM OF THE FINITE LAPLACE

TRANSFORM WITH SOME APPLICATIONS

Hichem Ben Aouicha, Tahar Moumni

This paper is devoted to the computation of the spectrum of the finite Laplace
transform (FLT) and its applications. For this purpose, we give two different
practical methods. The first one uses a discretization of the FLT. The second
one is based on the Gaussian quadrature method. The spectrum of the FLT
is then used to invert the Laplace transform of time limited functions as
well as the Laplace transform of essentially time limited functions. Several
numerical results are given to illustrate the results of this work.

1. INTRODUCTION

The finite Laplace transform (FLT) defined as

L0,bf(x) =

∫ b

0

e−xyf(y)dy, b > 0,

plays an important role in solving boundary value problems for ordinary and partial
differential equations, see [7]. It is also used to solve a weakly singular integral
equation in transfer theory, see [18]. Several applications of this transform in
linear control problems have been studied in [15]. The finite Laplace transform was
studied first by Debnath and Thomas in [8]. They have given some properties
of the FLT. Some other properties can be found in [20]. In [4], the authors have
considered the following integral transform

(1) La,bf(x) =

∫ b

a

e−xyf(y)dy,
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from L2[a, b] to L2 ([0,+∞[) which is also the finite Laplace transform. Here 0 <
a < b are two positive real numbers. They have proved that the differential operator
˜D given by

˜Df = −
(

(x2 − 1)(α2 − x2)f ′
)′
+ 2(x2 − 1)f

commutes with the Stieltjes transform

Sαf(x) = (La,b)
∗ La,bf(x) =

∫ α

1

f(y)

x+ y
dy,

where α =
b

a
. In [3], the authors have studied the spectral properties of ˜D.

Note here that the parameter a, introduced in (1), cannot be equal to 0. In
this paper, we complete the work given in [3]. We suppose that a = 0, we study
the spectrum of the operator L0,b defined from L2[0, b] into itself and we give some
of its applications. The eigenfunctions of FLT and their corresponding eigenvalues
are computed by two methods. The first one is based on the discretization of L0,b

following a suitable set of orthogonal polynomials while the second method is based
on the use of a Gaussian quadrature method. Finally, we use such eigenfunctions
and eigenvalues to invert the finite Laplace transform as well as the Laplace trans-
form over the set of essentially time limited functions. In the following, the Laplace
transform is given by

Lf(x) =

∫ +∞

0

e−xyf(y)dy,

see [7]. Note here that a large number of different methods for the inversion of
the Laplace transform can be found in the literature, see for example the extensive
list of papers collected in [16, 17]. A comparison of methods of inversion of the
Laplace transform is given in a survey by Davies and Martin in [5].

The outline of this paper is as follows. In section 2, we provide two meth-
ods of computation of the eigenfunctions of the finite Laplace transform and their
corresponding eigenvalues. The first method is based on the discretization of L0,b.
The second method is based on the Gaussian quadrature method. Section 3 is
devoted to some applications of the results given in section 2. The first application
is the inversion of the finite Laplace transform while the second one is the inversion
of the Laplace transform of functions essentially time limited to [0, b]. In section 4,
we illustrate such methods by several numerical results.

2. ON THE COMPUTATION OF THE SPECTRUM OF THE
FINITE LAPLACE TRANSFORM OPERATOR

It is easy to see that L0,b observed as a map from L2[0, b] to itself is a Hilbert-
Schmidt operator, with the Hilbert-Schmidt norm

‖L0,b‖HS
=

(

∫ b

0

∫ b

0

e−2xydxdy

)1/2

≤ b.
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Let (µn)n≥0 denote the infinite set of the eigenvalues of L0,b, arranged in the
decreasing order of their magnitude, that is

|µ0| > |µ1| > · · · > |µn| > · · ·

In the following, we denote by ϕn the nth eigenfunction of L0,b associated with µn,

that is

(2) L0,b(ϕn)(x) =

∫ b

0

e−xyϕn(y)dy = µnϕn(x),

and we adopt the following normalization of ϕn

‖ϕnχ[0,b]‖2 =

(

∫ b

0

|ϕn(x)|
2dx

)1/2

= |µn|.

Note here that both ϕn and µn depend on b, but for simplicity of notation we have
omitted this. In accordance with the previous statements, we state the following
result about the eigenfunctions of L0,b.

Proposition 1. The set B = {ϕn, n ∈ N} is an orthogonal basis of L2[0, b].

The following lemma gives the derivative of µn with respect to b.

Lemma 1. Let ψn be the function given by ψn(x) = ϕn(bx). Then

(3)
∂µn

∂b
=

(ψn(1))
2

µn

.

Proof. We adopt the techniques used in [19] to prove a similar result for the
eigenvalue of the finite Hankel transform. Let us introduce the following changes
in the integral equation (2):

y = bu, x = bv, ψn(x) = ϕn(bx),

to obtain the equivalent integral equation

(4) b

∫ 1

0

e−b2uvψn(u)du = µnψn(v).

By differentiating both members of the previous equality with respect to b, we
obtain

∫

1

0

e−b2uvψn(u)du− 2b2v

∫

1

0

ue−b2uvψn(u)du+ b

∫

1

0

e−b2uv ∂ψn(u)

∂b
du =(5)

∂µn

∂b
ψn(v) + µn

∂ψn(v)

∂b
.
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Differentiating (4) with respect to v, we get

(6) −b3
∫ 1

0

ue−b2uvψn(u)du = µn

∂ψn(v)

∂v
.

Using (5) and (6) together with (4), we obtain

(7)
µn

b
ψn(v) + 2

µn

b
v
∂ψn(v)

∂v
+ b

∫

1

0

e−b2uv ∂ψn(u)

∂b
du =

∂µn

∂b
ψn(v) + µn

∂ψn(v)

∂b
.

Multiplying both sides of (7) by ψn(v) and integrating over (0, 1), one finds

µn

b
‖ψnχ(0,1)‖

2

2
+ 2

µn

b

1
∫

0

vψn(v)
∂ψn(v)

∂v
dv + b

1
∫

0

ψn(v)

1
∫

0

e−b2uv ∂ψn(u)

∂b
du dv(8)

=
∂µn

∂b
‖ψnχ(0,1)‖

2

2
+ µn

1
∫

0

ψn(v)
∂ψn(v)

∂b
dv.

By using Fubini’s theorem and (4), the equality (8) can be simply written as follows

(9)
µn

b
‖ψnχ(0,1)‖

2

2 + 2
µn

b
I =

∂µn

∂b
‖ψnχ(0,1)‖

2

2,

where I =
1
∫

0

vψn(v)
∂ψn(v)

∂v
dv. Integrating I by parts one can easily check that

(10) I =
1

2

(

(ψn(1))
2 − ‖ψnχ(0,1)‖

2

2

)

.

Remark also that ‖ψnχ(0,1)‖
2

2 =
(µn)

2

b
. Thanks to (9) and (10) and the normaliza-

tion of ψn, one obtains (3).

Let (Pk)k≥0
be the set of polynomials given by:

(11) Pk (x) =

√
2k + 1

√
b2k+1k!

dk

dxk
[

xk (x− b)
k ]

, k ≥ 0.

The following properties of {Pk, k ∈ N} will be used in the following (see [11], for
example):

P1 : The set {Pk, k ∈ N} is an orthonomal basis of L2 (0, b) .

P2 : For all k ∈ N we have

Pk+1(x) = (αkx+ βk)Pk(x)− γkPk−1(x),

where

(12) αk =
2

b

√

(2k + 3)(2k + 1)

k + 1
, βk =

√

(2k + 3)(2k + 1)

k + 1
, γk =

k

k + 1

√

2k + 3

2k − 1
.
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Note that from the theory of orthogonal polynomials it follows that ∀n ≥ 0,
Pn(x) has n distinct zeros inside [0, b]. Moreover, these n different zeros are simply
given as the eigenvalues of a tridiagonal symmetric matrix D of order n, given by

(13)
D = [di,j ]1≤i,j≤n

, di,i = −
βi−1

αi−1

,

di,i+1 = di+1,i =
−1

αi−1

, di,j = 0 if j 6= i− 1, i, i+ 1,

where the αi and βi are given by (12).

2.1. Matrix representation of L0,b

In this section, we follow the techniques introduced in [10, 11] to compute
the spectrum of the finite Fourier transform. For the sake of completeness of the
paper, we describe briefly such techniques. First, we introduce the finite moments

Mij =

∫ b

0

xiPj(x)dx, i, j ∈ N,

of the polynomials given by (11). Using a similar method to [10], we can easily
get:

(m1) For i < j, Mij = 0.

(m2) For j ≤ i,

Mij =
bi+1/2

√
2j + 1 (i!)

2

(i+ j)! (i− j)!
.

(m3) For j ≤ i,

(14) |Mij | ≤
bi+1/2

√
2i+ 1

.

To proceed further, we first expand ϕn into its Fourier series following the
polynomials Pk

(15) ϕn(x) =
+∞
∑

k=0

ηnkPk(x), x ∈ [0, b],

where

(16) ηnk =

∫ b

0

ϕn(x)Pk(x)dx.

As in [10], the following lemma gives the decay rate of the coefficients ηnk given in
(15).
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Lemma 2. Under the previous notations and assumptions, for any positive integer

k ≥ [2eb2], we have the following upper bound of ηnk :

(17) |ηnk | ≤
beb

2

√
2kπ

1

2k
.

Here [x] denotes the integer part of x.

Proof. By combining (16) and (2) with (14) and Hölder’s inequality, we obtain

|ηnk | =

∣

∣

∣

∣

∣

1

µn

∫ b

0

(

∫ b

0

e−xyϕn(y)dy

)

Pk (x) dx

∣

∣

∣

∣

∣

=
1

|µn|

∣

∣

∣

∣

∣

∣

∫ b

0





∫ b

0

∑

j≥0

(−1)
j

j!
xjyjϕn(y)dy



Pk (x) dx

∣

∣

∣

∣

∣

∣

≤
1

|µn|

∑

j≥0

1

j!

∣

∣

∣

∣

∣

∫ b

0

yjϕn(y)dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ b

0

xjPk (x) dx

∣

∣

∣

∣

∣

≤
1

|µn|

∑

j≥k

1

j!

bj+1/2

√
2j + 1

(

∫ b

0

y2jdy

)1/2

‖ϕnχ[0,b]‖2 ≤ b
∑

j≥k

b2j

j!
≤ beb

2 b2k

k!
.

From Stirling’s formula, [1] we have that

Γ(s+ 1) ≥
√
2πss+1/2e−s, ∀ s > 0,

hence (17) follows.

To proceed further, we need the following lemma

Lemma 3. Let k; ℓ ≥ 0 be two integers and let b be a positive real number. The

coefficients akℓ = 〈L0,b(Pk), Pℓ〉 satisfy the following two conditions :

(c1) akℓ =
∑

n≥ν

(−1)n

n!
MnℓMnk.

(c2) |akl| ≤
1

ν!
|MνℓMνk|, where ν = max(k, ℓ).

Proof. Note that the proof of this lemma is based on some techniques similar to
those used in [10]. We have that

L0,b(Pk) (x) =

∫ b

0

e−xyPk(y)dy =

∫ b

0

+∞
∑

n=0

(−1)
n

n!
xnynPk(y)dy.
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It is well known, see [2], that

max
x∈[0,b]

| Pk(x) |≤

√

b

2

√

2k + 1

2
.

Hence, ∀x ∈ [0, b], the series
+∞
∑

n=0

(−1)
n

n!
xnynPk(y) converges uniformly in [0, b].

Consequently, we have

L0,b(Pk) (x) =

+∞
∑

n=0

(−1)
n

n!
xn
∫ b

0

ynPk(y)dy =

+∞
∑

n=0

(−1)
n

n!
xnMnk.

Since, for j < k, we have Mj,k = 0, then, for all k, ℓ ≥ 0,

akℓ =
∑

n≥ν

(−1)
n

n!
MnℓMnk.

Moreover, we have |akℓ| ≤
1

ν!
|MνlMνk| , which completes the proof of the previous

lemma.

As in [10, 11], we can easily check that the spectrum of L0,b coincides with the
spectrum of A = (akℓ)k,ℓ≥0, where akℓ is given by (c1). Moreover, the coefficients
of the Fourier series given by (15) are nothing but the components of the nth

eigenvector of A. In practice, one can get a highly accurate approximation µ̃n of
µn by using a submatrix of A of order K > 0. The eigenvector (η̃nk )0≤k≤K

is taken

as a good approximation in the L2-norm of (ηnk )k≥0
. Consequently

(18) ϕ̃n(x) =

K
∑

k=0

η̃nkPk(x), x ∈ [0, b]

is the approximation of the exact eigenfunction ϕn(x) on the interval [0, b].

To approximate the spectrum of the operator L0,b, by its matrix representa-
tion, we need the following perturbation result on the spectrum of matrices, cited
in [12].

Theorem 1 (Weyl’s perturbation theorem). Let A and B be two Hermitian ma-

trices of order n. Let σ(A) = {α0 ≥ · · · ≥ αn−1} and σ(B) = {β0 ≥ · · · ≥ βn−1}
denote the spectrums of A and B, respectively. Then, we have

(19) max
0≤j≤n−1

|αj − βj | ≤ ‖A−B‖ .

Remark 1. The previous theorem holds for more general hermitian operators on a Hilbert
space.
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As a consequence of (c2), we deduce that the coefficients akl decay exponentially to
0 as k+ l → +∞. Hence, by using the previous theorem, we conclude that, for any
positive integer K we get highly accurate approximation of the first K eigenvalues
of L0,b by considering the first K eigenvalues of the appropriate submatrix of A
given by AK = (akℓ)0≤k,ℓ≤K .

2.2. Gaussian quadrature method

In this paragraph, we use the polynomials (Pk)k and their properties to con-
struct a quadrature method for the eigenvalue problem (2). Note that the Gaussian
quadrature method of order 2n, associated with the orthogonal Pn(x), given by (11)
over [0, b] is given by

∫

1

0

f(x)xdx ≈
n
∑

k=1

ωkf(xk), 1 ≤ k ≤ n,

where the nodes xk are the eigenvalues of the matrix D given by (13) and the
different quadrature weights (ωk)1≤k≤n are simply given by the following practical
formula

ωk = −
kn+1

kn

1

Pn+1(xk)P ′
n(xk)

, 1 ≤ k ≤ n.

Here, kn =

√
2k + 1(2k)!

√
b2k+1(k!)2

is the highest coefficient of Pn(x). For more details on

the Gaussian quadrature method, the reader is referred to [9].

The following theorem provides a discretization formula for the eigenproblem (2).

Theorem 2. Let ǫ be an arbitrary real number satisfying 0 < ǫ < 1. For a fixed

positive integer n, let Nε,n = min

{

m ∈ N,
22mb4m+3/2

(2m + 1)!
(

2m
m

)2
< ε |µn|

}

. Then for any

integer N ≥ Nε,n, we have

sup
x∈[0,b]

∣

∣

∣

∣

∣

ϕn(x)−
1

µn

N
∑

p=1

ωp exp(−xxp)ϕn(xp)

∣

∣

∣

∣

∣

≤ ε.

Here, xp, 1 ≤ p ≤ n are different zeros of the orthogonal polynomial Pn(x) and

ϕn(·), µn are as given by (2).

As a consequence of the previous theorem, we obtain the following discretization
scheme for the eigenvalue problem (2),

N
∑

j=1

ωje
−xiyj ϕ̃n(yj) = µ̃nϕ̃n(xi), 1 ≤ i, j ≤ N,

where xi, yj and ωi denote the different nodes and weights of our proposed quadra-
ture method. If AK denotes the square matrix of order K, defined by

AK =
(

ωje
−xiyj

)

1≤i,j≤K
,
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then the set of the eigenvalues of AK is an approximation of a finite subset of the
eigenvalues of the operator L0,b given by (2). Moreover, for any integer 0 ≤ n ≤ K,

the eigenvector ˜Un corresponding to the approximate eigenvalue µ̃n is given by
˜Un = (ϕ̃n(xi))1≤i≤K . Finally, to provide approximate values ϕn(x) of ϕ̃n(x) along
the interval [0, b], we use the following interpolation formula,

(20) ϕ̃n(x) =
1

µn

K
∑

j=1

ωje
−xyj ϕ̃n(yj), 0 ≤ x ≤ b.

Remark 2. As stated by the previous theorem, the interpolation formula (20) is highly
accurate. As an example, for b = 5, n = 0 and K = 40, we have found that

1

K

(

K
∑

i=0

(ϕn(xi)− ϕ̃n(xi))
2

)

1
2

= 2.038073914E − 02,

where xi =
ib

K
.

Now, using similar techniques as in [2, 10, 11], we assert that the firstK eigenvalues
of L0,b are well approximated by the eigenvalues of AK . This is given by the
following theorem.

Theorem 3. Let σ (L0,b) = (µn)n≥0 and σ (AN ) = (µ̃n)0≤n≤N−1
denote the spec-

trum of the finite Laplace operator L0,b and the matrix AN , where N is a positive

integer larger then Nǫ,n. Then we have

sup
0≤n≤N−1

|µn − µ̃n| ≤ εb
√
N.

3. APPLICATIONS

Our goal here is to invert the Laplace transform of time limited functions as
well as essentially time limited functions by the use of the eigenfunctions ϕn of the
finite Laplace transform. Suppose that the Laplace transform Lf of an L2−unit
norm function f , is known at least on [0, b]. We find f .

3.1. Inversion of the Laplace transform of time limited functions

Suppose that f is time-limited on [0, b]. That is, f(x) = f(x)χ[0,b](x). To
find the unknown function f , we expand it into its Fourier series with respect to
{ϕn, n ∈ N},

(21) f(y) =
∑

k∈N

ak(f)ϕk(y), y ∈ [0, b],
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where ak(f) =
1

µk

b
∫

0

ϕk(y)f(y)dy are the Fourier coefficients of f to be determined

in the following. Combining (21) and (2), we obtain

(22) L0,bf(y) =
∑

k∈N

ak(f)µkϕk(y), y ∈ [0, b].

Multiplying both sides of (22) by ϕk(y) and integrating over [0,b], we conclude that

ak(f) =
1

µk

∫ b

0

ϕk(y)L0,bf(y)dy, k ∈ N.

Once (ak(f))k are known, we use (21) to obtain the unknown f. Note here that in
practice the series given by (21) is truncated to an order N to obtain the following
function

fN (y) =

N
∑

k=0

ak(f)ϕk(y), y ∈ [0, b].

Then, an error bound of the approximation of f by fN , over [0, b] is given by the
following proposition.

Proposition 2. Under the above notations and assumption, we have

‖f − fN‖2
2
=

∑

k=N+1

|ak(f)|
2µ2

k ≤ (µN+1)
2.

The approximation error in the previous proposition can be assessed via the fol-
lowing lemma [13, 14].

Lemma 4. Let T be the integral operator given by :

Tx(t) =

∫ b

a

k(t, s)x(s)ds,

where k(., .) is symmetric, positive definite and has pth order continuous partial

derivatives. Then, the nth eigenvalue λn of T satisfies λn = o
(

1

np+1

)

.

3.2. Inversion of the Laplace transform of essentially time limited
functions

In the sequel, we suppose that f is time-limited to [0, b] at level ǫb. That is
f ∈ E(ǫb) = {f ∈ L2 ([0,+∞[) , ‖f‖2 = 1, ‖fχ]b,+∞[‖2 ≤ ǫb}. Remark that, by
the use the Hölder’s inequality, one gets for x > 0,

|Lf(x)− L0,bf(x)| =

∫

+∞

b

e−xyf(y)dy(23)

≤

(
∫ +∞

b

e−2xydy

)1/2(∫ +∞

b

|f(y)|2dy

)1/2

≤
e−2xb

√
2x

.
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Note that

(24) L0,bf(x) =

∫ b

0

e−xyfb(y)dy,

where fb(y) = f(y)χ[0,b](y). Our aim is to find fb and to show that fb is a good
approximation of f. As in 3.1., we expand fb into its Fourier series following {ϕn, n ∈
N}

(25) fb(y) =
N
∑

k=0

ak(fb)ϕk(y), y ∈ [0, b].

By using (24), one gets

ak(fb) =
1

µk

∫ b

0

ϕk(y)L0,bfb(y)dy, k ∈ N.

Once (ak(fb))k are known, we use (25) to obtain the unknown fb. Note here that
in practice the series given in (25) is truncated to an order N and the function fb

is approximated byfb,N(y) =

N
∑

k=0

ak(fb)ϕk(y), y ∈ [0, b].

Note that the error of such approximation is given by

‖fb − fb,N‖2
2
=

∑

k=N+1

|ak(f)|
2µ2

k ≤ (µN+1)
2.

Under the assumption that f ∈ E(ǫb) we get the following estimate of approxima-
tion error for f .

Proposition 3. Under the above notations and assumptions, we have

‖f − fb,N‖2 ≤ ǫb + |µN+1|.

4. NUMERICAL EXAMPLES

To illustrate the results of section 2, we have considered different values of the
bandwidth b. Also, we have applied the Gaussian quadrature based method for the
computation of the spectrum and the eigenfunctions of the finite Laplace transform
L0,b with N = 40 quadrature points. Table 1 shows the obtained eigenvalues
µn with different values of the parameter b. Moreover, we have used (20) with
a maximum truncation order K = N to obtain accurate approximations to the
normalized ϕn(x) along the interval [0, b]. Table 2 lists, for b = 5, the approximate
values ϕ̃0(x) of ϕ0(x), for different values of x as well as the different approximation
errors in absolute value |ϕ0(x)− ϕ̃0(x)|. Also, in figure 1 and 2, we have plotted the
graphs of the first three normalized eigenfunctions of the finite Laplace operator
L0,b corresponding respectively to the parameter b = 1 and b = 5 (ϕ0 = solid, ϕ1 =
dot and ϕ2 = dash).
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b = 1 b = 5 b = 10

n µn µn µn

0 0.809579221e-00 1.343346838e-00 1.440931952e-00
2 0.216334666e-02 2.168106787e-01 0.386895185e-01
5 0.929136341e-08 3.806005533e-03 0.247988181e-02
10 0.299404378e-18 5.676369190e-07 0.101780894e-04
15 0.798452541e-30 1.167244175e-11 0.176316362e-07

Table 1. Values of the eigenvalues µn of the finite Laplace transform L0,b corresponding

to the different values of parameter b = 2, 5, 10.

Figure 1 Figure 2
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