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FIXED POINT THEORY FOR MULTIVALUED

GENERALIZED NONEXPANSIVE MAPPINGS

Jesús Garćıa-Falset, Enrique Llorens-Fuster, Elena Moreno-Gálvez

A very general class of multivalued generalized nonexpansive mappings is
defined. We also give some fixed point results for these mappings, and finally
we compare and separate this class from the other multivalued generalized
nonexpansive mappings introduced in the recent literature.

1. INTRODUCTION

Fixed point theory for multivalued mappings has many useful applications in
various fields, in particular game theory and mathematical economics. Thus, it is
natural to extend the known fixed point results for single-valued mappings to the
setting of multivalued mappings. Some famous results of existence of fixed points for
single-valued mappings (e.g. Banach’s Contraction Principle, Schauder Fixed Point
Theorem) have already been extended to the multivalued case. Nevertheless, the
fixed point theory of multivalued nonexpansive mappings is much more complicated
and difficult than the corresponding theory of single-valued nonexpansive mappings
and many problems remain unsolved in it.

Although nonexpansive mappings are perhaps one of the most important
topics in the so called metric fixed point theory, one can find in the literature
considerable amount of research about more general classes of mappings than the
nonexpansive ones. For instance, Tomonari Suzuki [25] defined in 2008 a class
of generalized nonexpansive mappings, which he called (C)-type mappings, whose
setvalued version was defined and studied in [1, 2, 22, 26]. In 2011, in [11], some
fixed point results for two classes of single-valued mappings enlarging the family
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of (C)-type mappings were presented. Again these new classes were generalized to
the setvalued case in [5, 14, 19] and [4].

Finally, in [20] fixed point results for a class of (single-valued) generalized
nonexpansive mappings were studied. This class properly contains Suzuki’s (C)-
type mappings as well as several of its generalizations given in [11]. The aim of
these notes is to extend the class of mappings introduced in [20] to the multivalued
case and to give some fixed point results for multivalued mappings in this setting.
In the last section we discuss some relationships between the proposed class of
multivalued mappings and several others which have been recently introduced in
[9, 10, 14] as well as in [5, 14, 19].

2. NOTATIONS AND PRELIMINARIES

We assume throughout this paper that (X, ‖ · ‖) is a Banach space and C is
a nonempty closed convex bounded subset of X. Let D be a nonempty subset of
X. We use the following symbols:

P(D) = {Y ⊂ D| Y is nonempty} Pb(D) := {Y ∈ P(D)| Y is bounded}
Pcℓ(D) := {Y ∈ P(D)| Y is closed} Pb,cℓ(D) := Pb(D) ∩ Pcℓ(D)
Pcp(D) := {Y ∈ P(D)| Y is compact} Pcv(D) := {Y ∈ P(D)| Y is convex}
Pcℓ,cv(D) := Pcℓ(D) ∩ Pcv(D)

For a multivalued mapping T : D → P(D), the T -image of a set Y ∈ P(D)

is defined as T (Y ) :=
⋃

x∈Y

T (x).

On Pb,cℓ(X) one defines the Hausdorff distance H

H(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)},

where d(a,B) := inf{‖a− b‖ : b ∈ B} is the standard distance from the point a to
the subset B. For more on the Hausdorff metric see [13].

Finally we recall some geometric properties of normed spaces that appear in
this paper.

1. A normed space (X, ‖·‖) is said to satisfy the Opial condition if for any
sequence (xn) in X such that xn ⇀ x0 it follows that ∀y ∈ X, y 6= x0,

lim inf
n→∞

‖xn − x0‖ < lim inf
n→∞

‖xn − y‖ .

It can be readily established, on the extraction of appropriate subsequences,
that the lower limits can be replaced with upper limits in the above definition.

2. A Banach space (X, ‖·‖) is said to have normal structure if for each bounded,
convex, subset C of X with diam(C) > 0 there exists a nondiametral point
p ∈ C, that is, a point p ∈ C such that

sup{‖p− x‖ : x ∈ C} < diam (C).
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This property was introduced in 1948 by Brodskii and Milman. Since
1965, it has been widely studied due to its relevance in fixed point theory for
nonexpansive mappings. For more information see, for instance, [12].

3. (L)-TYPE MAPPINGS

A class of (single-valued) non-expansive generalized mappings has been re-
cently considered in [20], under the name of (L)-type mappings. Such class properly
contains several other classes of mappings which in turn are more general than the
class of nonexpansive mappings. Recall that if T : C → X is a mapping, a se-
quence (xn) in C is called an almost fixed point sequence (a.f.p.s for short) for T

in C whenever xn − T (xn) → 0X .

Definition 1. A mapping T : C → X satisfies condition (L), (or it is an (L)-type
mapping), on C provided that it fulfills the following two conditions

1. If a set D ⊂ C is nonempty closed convex and T -invariant, (i.e. T (x) ∈ D

for any x ∈ D), then there exists an a.f.p.s. for T in D.

2. For any a.f.p.s. (xn) of T in C and each x ∈ C

lim sup
n→∞

‖xn − T (x)‖ ≤ lim sup
n→∞

‖xn − x‖.

In order to extend this concept to multivalued mappings we need to precise
the meaning of a.f.p.s. in this setting.

Definition 2. Given a mapping T : C → Pb,cℓ(X), a sequence (xn) in C is called

an a.f.p.s. for T provided that

d(xn, T (xn)) → 0.

If

H({xn}, T (xn)) → 0

we say that (xn) is a strong a.f.p.s. for T.

Definition 3 ([10], Remark 3.15). Given a mapping T : C → P(X) we say that

T satisfies condition (A) on C whenever there exists an a.f.p.s. for T in each

nonempty, closed, convex and T -invariant subset D of C.

Here T -invariant means T (x) ⊂ D for any x ∈ D.

Next we introduce two classes of nonlinear mappings, which are a direct way
to extend the (L)-type mappings defined in [20] to the multivalued case.

Definition 4. A mapping T : C → Pcℓ(C) satisfies condition (L), (or it is an

(L)-type mapping), on C provided that it fulfills Condition (A) on C and

(B) For any a.f.p.s. (xn) of T in C and each x ∈ C

lim sup
n→∞

d(xn, T (x)) ≤ lim sup
n→∞

‖xn − x‖.
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If x0 ∈ C is a fixed point for the mapping T : C → Pcℓ(C), and this mapping
satisfies Condition (L) on C, taking xn = x0 for every positive integer n, we obtain
an a.f.p.s. for T, and from Condition (B), one has for all x ∈ C,

d(x0, T x) = lim sup
n→∞

d(xn, T x) ≤ lim sup
n→∞

‖xn − x‖ = ‖x0 − x‖,

in other words, T is a quasi-nonexpansive mapping in this case.

Definition 5. A mapping T : C → Pcℓ(C) satisfies strong condition (L), (or it is

an (SL)-type mapping), on C provided that it fulfills Condition (A) on C and

(Bs) For any a.f.p.s. (xn) of T in C and each x ∈ C

lim sup
n→∞

H({xn}, T (x)) ≤ lim sup
n→∞

‖xn − x‖.

It is obvious that mappings that satisfy condition (SL) also satisfy condition
(L). Of course, in the single-valued case, both classes (L) and (SL) coincide and
recover the original definition given in [20].

Remark 1. According to [8], a mapping T : C → Pcℓ(C) satisfies condition (A) on C

whenever one of the following statements holds.

1. T is (Hausdorff) nonexpansive on C, that is H(Tx,Ty) ≤ ‖x− y‖ for x, y ∈ C.

2. T is 1-set contractive on C. Recall that T : C → Pcℓ(C) is 1-set contractive if T is
Hausdorff continuous and α(T (M)) ≤ α(M) for every M ⊂ C, where α stands for
the Kuratowski measure of noncompactness on Pb(X). (See [8], Lemma 4).

3. T satisfies condition (Cλ) on C. Following [2, 3], for λ ∈ (0, 1) a mapping T :
C → Pcℓ(C) is said to satisfy condition (Cλ) in C provided that for every x, y ∈ C,

λd(x, Tx) ≤ ‖x − y‖ ⇒ H(Tx,Ty) ≤ ‖x − y‖. According to [3, Lemma 2.6] or
[14, Lemma 2.8], if C is weakly compact and D ⊂ C is nonempty weakly compact
convex and T -invariant, we can assure the existence of an a.f.p.s. for T in D, that
is, T satisfies condition (A) on C.

First, we show that every multivalued nonexpansive mapping is an (L)-type
mapping. In the last section we study other relationships between the class of (L)-
type mappings and some classes of generalized nonexpansive setvalued mappings.

Lemma 1 ([13], Theorem 1.15). Let A,B ⊂ X, and let x ∈ X. Then

d(x,A) ≤ d(x,B) +H(B,A).

Proposition 1. If T : C → Pcℓ(C) is nonexpansive then it satisfies condition (L).

Proof. Let T : C → Pcℓ(C) be a nonexpansive mapping. It is well known that
if D is a closed convex T -invariant subset of C, then T has a.f.p. sequences in D.

Moreover, since T is nonexpansive on D, for every a.f.p.s. (xn) for T and every
x ∈ C,

lim sup
n→∞

d(xn, T x) ≤ lim sup
n→∞

(d(xn, T xn) +H(Txn, T x)) ≤ lim sup
n→∞

‖xn − x‖.
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Then, T satisfies condition (L). �

In the following example we show that a nonexpansive mapping need not
satisfy condition (SL).

Example 1. [16]. In the Banach space (R2, ‖·‖2) consider the mapping T : [0, 1]×[0, 1] →
Pcℓ([0, 1]× [0, 1]) defined by

T (x, y) = conv{(0, 0), (x, 0), (0, y)}.

The sequence (pn) defined by pn =
(

1,
1

n

)

is an a.f.p.s. for T on [0, 1]× [0, 1], since

d(pn, T (pn)) = d

(

(

1,
1

n

)

, conv
{

(0, 0), (1, 0),
(

0,
1

n

)}

)

≤

1

n
,

which clearly tends to zero.

It is not a strong a.f.p.s., since

H({pn}, T (pn)) = H

(

{(

1,
1

n

)}

, conv
{

(0, 0), (1, 0),
(

0,
1

n

)}

)

= sup

{

∥

∥

∥

(

1,
1

n

)

− x

∥

∥

∥

2
: x ∈ conv

{

(0, 0), (1, 0),
(

0,
1

n

)}

}

= d

(

(

1,
1

n

)

, (0, 0)

)

=

√

1 +
1

n2

which does not converge to 0.

Since T is nonexpansive on C (see [16]) then, from Proposition 1, T satisfies con-
dition (L) on C.

However, this mapping does not satisfy condition (SL) on C. Since (0, 0) ∈ Tx for
any x ∈ [0, 1]× [0, 1],

lim sup
n→∞

H({pn}, T (1, 0)) ≥ lim sup
n→∞

‖pn − (0, 0)‖2 = 1 > lim sup
n→∞

‖pn − (1, 0)‖2 = 0.

Remark 2. Let T : C → Pcℓ(C) be a mapping which satisfies condition (SL) on C. Let x0

be a fixed point of T. Then taking xn = x0 for every positive integer n we have an a.f.p.s.
(xn) for T on C. From condition (Bs) we obtain

H({x0}, Tx0) = lim sup
n→∞

H({xn}, Tx0) ≤ lim sup
n→∞

‖xn − x0‖ = 0.

Thus, Tx0 = {x0}, that is, x0 is a stationary point (or endpoint) for T.

4. FIXED POINT RESULTS

Theorem 1. Let C be a nonempty compact convex subset of a Banach space X

and T : C → Pcℓ(C) a mapping satisfying condition (L). Then, T has a fixed point.

Proof. Since C is nonempty closed bounded convex and T -invariant, there exists
an a.f.p.s. for T, say (xn), in C. Since C is compact, there exists a subsequence (xnj

)
of (xn) such that (xnj

) converges to some z ∈ C. By condition (B) of Definition 4,

lim sup
j→∞

d(xnj
, T z) ≤ lim sup

j→∞

‖xnj
− z‖ = 0,
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and hence, d(z, T z) = 0, that is z ∈ Tz.

Remark 3. Notice that in the above proof, Condition (A) of Definition 4 can be replaced
by the weaker assumption

(A′) There exists an a.f.p.s. for T on C.

Theorem 2. Let C be a nonempty closed bounded and convex subset of a Banach

space (X, ‖ · ‖) which satisfies the Opial condition. Let T : C → Pcp(C) be a

mapping satisfying condition (L). Then, if (xn) is an a.f.p.s. for T such that it

converges weakly to x ∈ C, we have that x is a fixed point for T.

Proof. Let (xn) be an a.f.p.s. for T on C which converges weakly to x ∈ C. Since
Tx is a compact set, there exists a point wn ∈ Tx such that

‖xn − wn‖ = d(xn, T x).

Again from the compactness of the set Tx we may assume that wn → w ∈ Tx.

Suppose that w 6= x. Then, since T satisfies condition (L) and X satisfies the Opial
condition,

lim sup
n→∞

‖xn − w‖ ≤ lim sup
n→∞

‖xn − wn‖+ lim sup
n→∞

‖wn − w‖

= lim sup
n→∞

‖xn − wn‖ = lim sup
n→∞

d(xn, T x)

≤ lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − w‖.

This is a contradiction which leads to x = w ∈ Tx, which means that x is a fixed
point for T.

Corollary 1. Let C be a nonempty weakly compact and convex subset of a Banach

space (X, ‖ · ‖) which satisfies the Opial condition. Let T : C → Pcp(C) be a

mapping satisfying condition (L). Then, T has a fixed point in C.

Since every nonexpansive mapping is an (L)-type mapping, the above result
is a generalization of Theorem 3.2. in Lami Dozo [18]. On the other hand, one
can note that in the above proof, Condition (A) of Definition 4 can be replaced by
the weaker assumption (A′).

Remark 4. Let C be a nonempty closed bounded and convex subset of a Banach space
(X, ‖ · ‖). Let T : C → Pcℓ(C) be a mapping satisfying condition (SL) on C. Then, if (xn)
is an a.f.p.s. for T, the level sets defined as

Dr := {x ∈ C : lim sup
n→∞

‖xn − x‖ ≤ r}

are T -invariant whenever they are nonempty. Indeed, take x ∈ Dr, and take y ∈ Tx. It
follows that

lim sup
n→∞

‖xn − y‖ ≤ lim sup
n→∞

sup{‖xn − w‖ : w ∈ Tx}

= lim sup
n→∞

H({xn}, Tx) ≤ lim sup
n→∞

‖xn − x‖ ≤ r,
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and then Tx ⊆ Dr.

Let C be a nonempty closed and convex subset of a Banach space X, let (xn) be a
bounded sequence on X. Recall that the asymptotic radius of (xn) at x ∈ X is the number

r(x, (xn)) = lim sup
n

‖x− xn‖.

In the same way, the asymptotic radius of (xn) in C is the number

r(C, (xn)) = inf{lim sup
n

‖xn − x‖ : x ∈ C} = inf{r(x, (xn)) : x ∈ C},

and the asymptotic center of (xn) in C is defined as the (possibly empty) set

A(C, (xn)) = {x ∈ C : lim sup
n

‖xn − x‖ = r(C, (xn))}.

Since A(C, (xn)) = {x ∈ C : lim supn ‖xn − x‖ ≤ r(C, (xn))}, a consequence
of the above remark is the following.

Proposition 2. Let C be a nonempty closed bounded and convex subset of a Banach

space (X, ‖ ·‖). Let T : C → Pcℓ(C) be a mapping satisfying condition (SL). If (xn)
is an a.f.p.s. for T on C, then A(C, (xn)) is T -invariant whenever it is nonempty.

Corollary 2. Let C be a nonempty closed bounded and convex subset of a Banach

space (X, ‖ · ‖). Let T : C → Pcp(C) be a mapping satisfying condition (SL) on C.

Then, if there exists an a.f.p.s. (xn) for T on C such that A(C, (xn)) is nonempty

and compact, T has a fixed point in C.

Proof. By our assumption A(C, (xn)) is nonempty and compact. Since the map-
ping T satisfies condition (SL), the asymptotic center is T -invariant. From Theorem
4.1, given that the mapping T satisfies condition (L), T has a fixed point. �

It is well known, (see [12] for instance), that A(C, (xn)) 6= ∅ whenever C

is weakly compact, and that if C is convex, then A(C, (xn)) is convex. On the
other hand, we do not know a complete characterization of those spaces in which
asymptotic centers of bounded sequences are compact. Nevertheless, there are
some partial answers. For example, k-uniformly convex Banach spaces satisfy that
condition [15]. However, an example given by Kuczumov and Prus [17] shows
that in nearly uniformly convex spaces, the asymptotic center of a bounded sequence
with respect to a closed bounded convex subset is not necessarily compact.

Nevertheless, the level sets, as well as the asymptotic centers of bounded
a.f.p. sequences, need not be invariant under mappings satisfying condition (L), as
seen in the following example.

Example 2. Let (X, ‖ · ‖) be the Banach space (R2, ‖.‖∞) where ‖.‖∞ is the sup norm. If

C := {(x1, x2) :∈ R
2 : |x1|+ |x2| ≤ 1},

let T : C → Pcp,cv(C) be the mapping given by

T ((x1, x2)) := {x1} × [|x1| − 1, 1− |x1|].

One can see that T (x) is the largest vertical segment included in C which contains the
point x. Hence the set of fixed points of T is C.
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Let H∞ be the Hausdorff metric associated to the sup metric d∞(x, y) = ‖x−
y‖∞. First let us point out that, if A = {x}× [a, b] ⊂ R

2, then it is straightforward
to check that, given ε > 0,

Aε := {y ∈ R
2 : dist∞(y,A) < ε} = (x− ε, x+ ε)× (a− ε, b+ ε).

We claim that
H∞(T ((x1, x2)), T ((y1, y2))) ≤ |x1 − y1|.

Indeed, let ε′ > ε := |x1 − y1|.

As |y1| − |x1| ≤ |x1 − y1| < ε′, then

|y1| − ε′ − 1 < |x1| − 1
1− |x1| < 1 + ε′ − |y1|

}

⇒ [|x1| − 1, 1− |x1|] ⊂ (|y1| − 1− ε′, 1− |y1|+ ε′).

This inclusion, together with the fact that x1 ∈ (y1 − ε′, y1 + ε′) yields

T ((x1, x2)) := {x1} × [|x1| − 1, 1− |x1|]

⊂ (y1 − ε′, y1 + ε′)× (|y1| − 1− ε′, 1− |y1|+ ε′).

Thus, for all ε′ > ε,

T ((x1, x2)) ⊂ (T ((y1, y2)))ε′

and, by the same argument,

T ((y1, y2)) ⊂ (T ((x1, x2)))ε′ .

Therefore, for all ε′ > ε

H∞(T ((x1, x2)), T ((y1, y2))) ≤ ε′,

which proves the claim.

As a direct consequence we have that T is ‖.‖∞-nonexpansive, that is

H∞(T ((x1, x2)), T ((y1, y2))) ≤ |x1 − y1| ≤ ‖(x1, x2)− (y1, y2)‖∞.

From Proposition 1 the mapping T satisfies condition (L) with respect to the norm
‖ · ‖∞. However, it does not satisfy condition (SL) with respect to any equivalent
norm ‖ · ‖ on R

2. Indeed, taking xn ≡ x /∈ {(1, 0), (−1, 0)}, of course (xn) is an
a.f.p.s. for T, while

lim sup
n

H({xn}, T x) = H({x}, T x) > 0 = lim sup ‖xn − x‖.

Bearing in mind that any point is a fixed point for the mapping T, and
hence any arbitrary sequence on C is an almost fixed point sequence for T, we can
consider the level subsets with respect to the a.f.p.s. sequence (xn) ≡ (0R2) for any
0 ≤ r < 1/2

Dr = {x ∈ C : lim sup
n→∞

‖xn − x‖∞ ≤ r}.
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Taking x = (x1, x2) ∈ Dr, we have that (x1, 1− |x1|) ∈ Tx\Dr and then Tx 6⊆ Dr,

that is the level set Dr is not T -invariant. In particular, for r = 0 we obtain that

A(C, (xn)) = D0 = {(0, 0)}

is not T -invariant.

Let C be a nonempty weakly compact and convex subset of a Banach space
X. Let T : C → Pcℓ(C) be a mapping. Since K is weakly compact, a standard
application of Zörn’s Lemma yields a subset K of C which is minimal, that is, with
no closed convex T -invariant nontrivial subsets of K.

The next proposition can be regarded as a multivalued weaker version of
the classical Goebel-Karlovitz well known Lemma for single-valued nonexpansive
mappings.

Proposition 3. Let C be a nonempty weakly compact and convex subset of a

Banach space X. Let T : C → Pcℓ(C) be a mapping satisfying condition (SL). Let
K be a minimal subset of C for T. Then, there exists k ∈ R such that for any

a.f.p.s. (xn) for T in K and any x ∈ K,

lim sup
n→∞

‖xn − x‖ = k.

Proof. Since T satisfies condition (SL), we can consider an almost fixed point
sequence (xn) for T on K, and the function

φ(xn)
: K → R

x 7→ φ(xn)
(x) = lim sup

n→∞

‖xn − x‖.

Suppose that such function is not constant. Hence, there are two points z1, z2 in the
minimal set K, such that φ(xn)

(z1) = α1, φ(xn)
(z2) = α2 with α1 < α2. Consider

the set,

K ′ =

{

z ∈ K : φ(xn)
(z) ≤

α1 + α2

2

}

.

This subset K ′ of K is nonempty (since z1 ∈ K ′) closed bounded convex and T -

invariant, by Remark 4. Moreover, z2 /∈ K ′, since φ(xn)
(z2) = α2 >

α1 + α2

2
, which

contradicts the minimality of K. Consequently, the function φ(xn)
is constant on

the minimal set K.

Let us see now that, in addition, such constant does not depend on the
almost fixed point sequence which we previously chose. Take two almost fixed
point sequences (xn) and (yn) for T on K. We call k1 = lim sup

n→∞

‖xn − x‖ and

k2 = lim sup
n→∞

‖yn − x‖ for any x ∈ K. Since K is weakly compact, after passing

to subsequences if necessary we may assume that xn ⇀ x0 ∈ K, yn ⇀ y0 ∈ K.

Since K is convex then
x0 + y0

2
∈ K. Then, by the weak lower semicontinuity of
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the norm, we have
∥

∥

∥

∥

x0 + y0

2
− xn

∥

∥

∥

∥

≤
1

2
‖x0 − xn‖+

1

2
‖y0 − xn‖ ≤

1

2
‖x0 − xn‖+

1

2
lim inf
m→+∞

‖ym − xn‖

≤
1

2
‖x0 − xn‖+

1

2
lim sup
m→∞

‖ym − xn‖ =
1

2
‖x0 − xn‖+

1

2
k2.

Taking upper limits on n we obtain

k1 = lim sup
n→∞

∥

∥

∥

∥

xo + y0

2
− xn

∥

∥

∥

∥

≤
1

2
lim sup
n→∞

‖x0 − xn‖+
1

2
k2 =

1

2
k1 +

1

2
k2.

Considering now the analogous reasoning starting from
∥

∥

∥

x0 + y0

2
− yn

∥

∥

∥
and taking

limits on n we also get

k2 ≤
1

2
k1 +

1

2
k2,

and then k1 = k2.

Remark 5. Notice that the constant k in the above result does not depend on the almost
fixed point sequence (xn) nor the point x ∈ K. We do not know if for this constant k, it
happens that k = diam(K), as in the single-valued nonexpansive case.

Theorem 3. Let X be a Banach space with normal structure. Let C be a nonempty

weakly compact and convex subset of X. Let T : C → Pcℓ(C) be a mapping satisfying

condition (SL) on C. Then, T has a stationary point.

Proof. Since C is weakly compact, it contains a closed convex T -invariant minimal
subset, say K. If K = {x0}, then x0 is a stationary point of T. Otherwise, since
T satisfies condition (SL) there exists an a.f.p.s. (xn) for T in K. This sequence
is either eventually constant, that is xn = x0 ∈ K for n ≥ n0, and hence x0 is a
fixed point of T (and hence a stationary point according Remark 2), or it is non
constant. In this case, since X has normal structure, from Corollary 1 of [6], the
real function g : K → [0,∞) given by

g(x) := lim sup
n

‖x− xn‖

is not constant in conv{xn : n = 1, 2, . . .} ⊂ K, which contradicts the above
proposition.

5. RELATED CLASSES OF MAPPINGS

Closely patterned on the nonexpansive type generalized mappings defined in
[11] (which in turn extended the class of such mappings defined by T. Suzuki in
[25]), in [14, 1] the following classes of multivalued mappings were introduced.

Definition 6 ([14]). Given λ ∈ (0, 1), a mapping T : C → Pcℓ,b(X) is said to

satisfy condition (Cλ) on C if for any x, y ∈ C such that λd(x, Tx) ≤ ‖x− y‖ then

H(Tx, T y) ≤ ‖x− y‖.
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The particular case λ =
1

2
was also studied in [1, 2]. Of course, every

nonexpansive mapping satisfies condition (Cλ) for each λ ∈ (0, 1).

Definition 7 ([4]). For µ ≥ 1, a mapping T : C → Pb,cℓ(X) is said to satisfy

condition (Eµ) if, for any x, y ∈ C,

d(x, T y) ≤ µd(x, Tx) + ‖x− y‖.

We say that T satisfies condition (E) on C whenever T satisfies (Eµ) for some

µ ≥ 1.

Every nonexpansive mapping satisfies condition (E1). Moreover, if x0 ∈ C

is a fixed point of the mapping T : C → Pb,cℓ(X), and this mapping satisfies
Condition (Eµ) on C, then for all x ∈ C,

d(x0, T x) ≤ ‖x0 − x‖.

In other words, T is a quasi-nonexpansive mapping.

Also inspired on [25, 11], but in a different way, in [5, 22] the following class
of mappings is studied.

Definition 8 ([22], see also [5]). Let X be a metric space and C a nonempty subset

of X. A mapping T : C → P(X) is said to satisfy condition (C) if, for each x, y ∈ C

and ux ∈ T (x) such that
1

2
d(x, ux) ≤ d(x, y), there exists uy ∈ T (y) such that

d(ux, uy) ≤ d(x, y).

Definition 9 ([5]). Let X be a Banach space and C ∈ P(X). A mapping T : C →
P(X) is said to satisfy condition (Eµ) for some µ ≥ 1 if for each x, y ∈ C and

ux ∈ T (x) there exists uy ∈ T (y) such that

‖x− uy‖ ≤ µ‖x− ux‖+ ‖x− y‖.

Again mappings satisfying condition (Eµ) are quasi-nonexpansive provided
that they have fixed points. Of course these concepts coincide with the respective
standard ones in the single-valued case.

On the other hand, apart from the evident confusion of names, the relation-
ship between the classes of mappings obtained by these two ways of generalization
is unclear. In order to clarify the notation we refer to the two last classes as (C′)
and (E′

µ), respectively.

Of course, if T takes compact values it is easy to see that condition (C1/2)
implies condition (C′) and that condition (Eµ) implies condition (E′

µ).

Remark 6. The names of the above classes of mappings are far from being unified in the
literature. For instance, the family of mappings which is called C1/2 in [4], is also referred
is also referred to as a family that satisfies condition (D) in [26], condition (C) in [1] and
condition (E) in [2].

On the other hand, the name ‘Condition (E)’ is used in [26] for the class of mappings
satisfying the so called condition I in [21, 23]. This condition I refers to mappings in a
very different setting.
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First we study some direct relationships between these classes of mappings.

Proposition 4. Let T : C → Pcℓ(C) be a mapping satisfying condition (C1/2).
Then, T satisfies condition (E3).

Proof. Let x ∈ C. Since for any z ∈ Tx,

(1) d(x, Tx) ≤ ‖x− z‖,

then
1

2
d(x, Tx) ≤

1

2
‖x − z‖ ≤ ‖x − z‖. This implies, by condition (C1/2) that for

any x ∈ C and any z ∈ Tx

(2) H(Tx, T z) ≤ ‖x− z‖.

Consider now x, y ∈ C, z ∈ Tx. Then we claim that either
1

2
d(x, Tx) ≤ ‖x− y‖ or

1

2
H(Tx, T z) ≤ ‖y − z‖. On the contrary, bearing in mind (1) and (2),

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ <
1

2
d(x, Tx) +

1

2
H(Tx, T z)

≤
1

2
‖x− z‖+

1

2
‖x− z‖ = ‖x− z‖,

which is a contradiction.

By our claim, in the first case, since
1

2
d(x, Tx) ≤ ‖x−y‖, we have by condition

(C1/2) that H(Tx, T y) ≤ ‖x− y‖ and hence

d(x, T y) ≤ d(x, Tx) +H(Tx, T y) ≤ d(x, Tx) + ‖x− y‖ ≤ 3d(x, Tx) + ‖x− y‖.

In the second case,
1

2
H(Tx, T z) ≤ ‖y − z‖ and then

1

2
d(z, T z) ≤

1

2
sup
w∈Tx

d(w, Tz)

≤
1

2
max{ sup

w∈Tx

d(w, Tz), sup
w∈Tz

d(w, Tx)} =
1

2
H(Tx, T z) ≤ ‖y − z‖

and applying condition (C1/2)

(3) H(Ty, T z) ≤ ‖z − y‖.

Then, bearing in mind (1), (2) and (3),

d(x, T y) ≤ d(x, Tx) +H(Tx, T y)

≤ d(x, Tx) +H(Tx, T z) +H(Tz, T y) ≤ ‖x− z‖+ ‖x− z‖+ ‖z − y‖

≤ 2‖x− z‖+ ‖z − x‖ + ‖x− y‖ = 3‖x− z‖+ ‖x− y‖.
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Since this is accomplished for any z ∈ Tx, by taking the infimum

d(x, T y) ≤ 3d(x, Tx) + ‖x− y‖,

T satisfies condition (E3). �

In [5, Lemma 3.2] a similar result for conditions (C′) and (E′
3
) is given.

Proposition 5. Let T : C → Pb,cℓ(X) be a mapping satisfying conditions (E) and
(A) on C. Then T satisfies condition (L) on C.

Proof. Let (xn) be any a.f.p.s. for T in C. Let x ∈ C. Then,

lim sup
n→∞

d(xn, T x) ≤ lim sup
n→∞

(µd(xn, T xn) + ‖xn − x‖)

≤ µ lim sup
n→∞

d(xn, T xn) + lim sup
n→∞

‖xn − x‖ = lim sup
n→∞

‖xn − x‖

Proposition 6. Let T : C → Pcℓ(C) be a mapping which fails to satisfy condition

(E) on C. Then T contains an a.f.p.s. on C, that is T satisfies condition (A′) in

Remark 3.

Proof. Since T fails to satisfy condition (E) on C, for every positive integer n

there exist xn, yn ∈ C such that

d(xn, T yn) > nd(xn, T xn) + ‖xn − yn‖.

Then,
0 ≤ n d(xn, T xn) < d(xn, T yn)− ‖xn − yn‖ ≤ diam(C).

Therefore, lim supn d(xn, T xn) ≤ lim
n

diam(C)

n
= 0, that is, (xn) is an a.f.p.s. for T

on C.

Corollary 3. Let T : C → Pcℓ(C) be a mapping satisfying on C both condition

(Cλ), for some λ ∈ (0, 1), and condition (E) on C. Then T satisfies condition (L)
on C.

Proof. By Remark 1, since T satisfies condition (Cλ), then the mapping T also
satisfies condition (A) on C. Since T also satisfies condition (E) on C, the result
now follows from Proposition 5.

Corollary 4. Let T : C → Pcℓ(C) be a mapping satisfying condition (C1/2), then
it satisfies condition (L).

Proof. By Proposition 4, T satisfies condition (E3), and then, by the corollary
above, T satisfies condition (L).

Proposition 7. Let C ∈ Pcℓ(X), T : C → Pcℓ(X) a mapping which satisfies

conditions (A) and (E′
µ), for some µ ≥ 1, on C. Then T satisfies condition (L).
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Proof. Consider an almost fixed point sequence (xn) for T on C. For each positive
integer n there exists un ∈ Txn such that

d(xn, T xn) +
1

n
> ‖xn − un‖.

Since T satisfies condition (E′
µ), for xn, un and y ∈ C, there exists uyn

∈ Ty such
that

d(xn, T y) ≤ ‖xn−uyn
‖ ≤ µ‖xn−un‖+‖xn−y‖ < µ

(

d(xn, T xn)+
1

n

)

+‖xn−y‖,

and consequently

lim sup
n→∞

d(xn, T y) ≤ µ

(

lim sup
n→∞

(

d(xn, T xn) +
1

n

)

)

+ lim sup
n→∞

‖xn − y‖

= lim sup
n→∞

‖xn − y‖,

that is, T satisfies condition (L). �

The following examples are given to compare and even separate (L)-type
multivalued mappings from the above classes of mappings.

Example 3. Let (X, ‖ · ‖) be a Banach space and let BX its closed unit ball. Let T :
BX → Pcl,cv(BX) be defined as

T (x) =







BX x = 0X

B
[

−
x

‖x‖
, 1− ‖x‖

]

∩ BX x 6= 0X ,

(where it is assumed that B[y, 0] = {y} if y ∈ X).

We show that for this mapping T it holds that

1. It satisfies condition Eµ on BX for every µ ≥ 1.

2. If dim(X) < ∞ then it satisfies condition E′

µ on BX for every µ ≥ 1.

3. It fails to satisfy condition (Cλ) on BX for every λ ∈ (0, 1).

4. It satisfies condition (L) on BX .

5. It fails to satisfy condition (SL) on BX .

6. It fails to satisfy condition (C′) on BX .

For all x ∈ BX one has that d(x, T (x)) = 2‖x‖ and −x ∈ T (x). Since for every x, y ∈ BX ,

d(x, T (y)) ≤ d(x,−y) = ‖x+ y‖ ≤ ‖x‖+ ‖y‖

≤ ‖x‖+ ‖y − x‖+ ‖x‖ = d(x, T (x)) + ‖x− y‖,

the mapping T satisfies condition (E1) on BX . If dim(X) < ∞ then T is compact-valued
and hence T also satisfies condition (E′

1).
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On the other hand, for every λ ∈ (0, 1), condition (Cλ) for T reads

λ2‖x‖ ≤ ‖x− y‖ ⇒ H(T (x), T (y)) ≤ ‖x− y‖.

If we take x ∈ BX such that ‖x‖ =
1

2
and y = −x, it is obvious that λ = λ2‖x‖ ≤

‖x− y‖ = 1 while

H(T (x), T (−x)) =
3

2
.

Hence, T does not satisfy condition (Cλ) on BX . In particular T fails to be
nonexpansive on BX .

Finally, the unique T -invariant closed convex subset of BX is just BX . Since
d(x, T (x)) = 2‖x‖, a sequence (xn) in BX is an a.f.p.s. for T if and only if xn → 0X .

Then, for every x ∈ BX ,

lim sup
n→∞

d(xn, T (x)) = d(0X , T (x)) = ‖x‖ = lim sup
n→∞

‖xn − x‖.

This means that T satisfies condition (L) on BX .

Moreover, if ‖x‖ < 1,

lim sup
n→∞

H(xn, T (x)) = H(0X , T (x)) = 1 > lim sup
n→∞

‖xn − x‖ = ‖x‖,

that is, T is not a (SL)-type mapping.

Finally, take x ∈ BX with ‖x‖ =
1

2
, and choose y = ux = −2x ∈ T (x). One

has that T (y) = {−y} = {2x} and the unique element in T (y) is just uy = 2x for
which

d(ux, uy) = d(−2x, 2x) = 2 >
3

2
= d(x,−2x) = d(x, y).

Hence T fails to satisfy condition (C′) on BX .

The following example shows that the converse of Proposition 5 is not gen-
erally true.

Example 4. Let f : [−1, 1] → [−1, 1] be the mapping given by

f(x) =

{

x

1 + |x|
sin

(

1

x

)

x 6= 0

0 x = 0.

Let T : [−1, 1] → Pcℓ,cv([−1, 1]) be defined by

T (x) =

[

1

2
f(x) ∧ f(x),

1

2
f(x) ∨ f(x)

]

,

where a ∧ b, a ∨ b denote respectively the minimum and the maximum of the real
numbers a, b.

It is easy to check that 0 is the only fixed point of T.

For this mapping T we will see that:
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1. It fails to satisfy condition Eµ on [−1, 1] for every µ ≥ 1.

2. It fails to satisfy condition C1/2 on [−1, 1].

3. It satisfies condition (L) on [−1, 1].

4. It satisfies condition (SL) on [−1, 1].

If we take for each positive integer xn :=
1

2πn+ π/2
and yn :=

1

2πn
, then

we have T (xn) =
[

1

2

xn

1 + |xn|

,
xn

1 + |xn|

]

. Since
xn

1 + |xn|

< xn, we can choose uxn
=

xn

1 + |xn|

and

|xn − uxn
| = d(xn, T (xn)) = xn −

xn

1 + |xn|
.

Moreover, T (yn) = {0}, and for every uyn
∈ T (yn) we have.

|xn − uyn
| − |xn − yn|

|xn − uxn
|

=
xn − (yn − xn)

xn −
xn

1 + |xn|

=
xn − (yn − xn)

x2
n

1 + xn

=
(1 + xn)

(

2−
yn

xn

)

xn

→ +∞

Consequently, the mapping T does not satisfy condition (E′
µ) on [−1, 1] for any

µ ≥ 1. Since T is compact-valued then T fails condition (Eµ) on [−1, 1] for any
µ ≥ 1. Hence T fails conditions (C′) and (C1/2).

On the other hand, let D ⊂ [−1, 1] be a closed convex T -invariant set. We
claim that 0 ∈ D. If D = {0} our claim is obvious. Starting from x0 ∈ D, choose
xn+1 = f(xn) ∈ T (xn). In this way we have built a sequence in D. Our claim is
also obvious if there exists a positive integer n0 such that xn0

= 0. Otherwise for
all positive integers n, xn 6= 0, and

xn+1 =
xn

1 + |xn|
sin

(

1

xn

)

.

Hence

|xn+1| =
|xn|

1 + |xn|

∣

∣

∣

∣

sin
( 1

xn

)

∣

∣

∣

∣

=
|xn|

1 + |xn|

∣

∣

∣

∣

sin
( 1

|xn|

)

∣

∣

∣

∣

.

Since |f(x)| ≤ |x| for every x ∈ [−1, 1], there exists lim
n→∞

|xn| =: a. If a = 0 then

limxn = 0 ∈ D and again our claim holds. Finally, if a 6= 0 then, from the above
equality we obtain that

a =
a

1 + a

∣

∣

∣

∣

sin
( 1

|a|

)

∣

∣

∣

∣

,
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which implies that

1 + a =

∣

∣

∣

∣

sin
( 1

|a|

)

∣

∣

∣

∣

,

a contradiction for a > 0.

Thus, 0 ∈ D for every closed T -invariant subset of [−1, 1]. Since T (0) = {0},
the sequence (xn) ≡ (0) is an a.f.p.s. in D for T, and the mapping T satisfies
condition (A).

We claim that (xn) is an a.f.p.s. for T if and only if xn → 0. It is obvious
that (xn) is an a.f.p.s. if xn → 0. If (xn) is an a.f.p.s. and xn 6→ 0 we may suppose
that xn → x 6= 0. Since

d(xn, T (xn)) = min

{

d(xn, f(xn)), d
(

xn,
1

2
f(xn)

)

}

,

and f is continuous, then

min

{

d(xn, f(xn)), d
(

xn,
1

2
f(xn)

)

}

→ min

{

d(x, f(x)), d
(

x,
1

2
f(x)

)

}

.

But the only fixed point for f or for
1

2
f is just x = 0. Then

min

{

d(x, f(x)), d
(

x,
1

2
f(x)

)

}

> 0,

and we have a contradiction because d(xn, T (xn)) → 0.

Let (xn) be an a.f.p.s. for T, and x ∈ [−1, 1]. If xn ∈ T (x) then d(xn, T (x)) =

0. If xn 6∈ T (x), d(xn, T (x)) = min
{

d(xn, f(x)), d
(

xn,
1

2
f(x)

)}

. In any case

lim sup d(xn, T (x)) = min

{

d(0, f(x)), d
(

0,
1

2
f(x)

)

}

≤ |x| = lim sup |xn − x|,

which yields that T is an (L)-type mapping on [−1, 1].

Finally, if (xn) is an a.f.p.s. for T, and x ∈ [−1, 1], H({xn}, T (x)) =

max
{

d(xn, f(x)), d
(

xn,
1

2
f(x)

)}

, and

lim supH({xn}, T (x)) = max

{

d(0, f(x)), d
(

0,
1

2
f(x)

)

}

≤ |x| = lim sup |xn − x|,

which yields that T is an (SL)-type mapping on [−1, 1].

5.1. Remarks on other classes of multivalued mappings

In 2005, N. Shahzad and A. Lone introduced in [24] a class of multivalued
mappings which is seemingly near the class of (SL) mappings.
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Definition 10. Let C be a nonempty weakly compact convex subset of X. The

continuous map T : C → Pcp(X)∩Pcv(X) is called subsequentially limit-contractive

if for every a.f.p.s. (xn) in C we have

lim supH(T (xn), T (x)) ≤ lim sup ‖xn − x‖

for all x ∈ A(C, (xn)), the asymptotic center of (xn) in C.

Of course, for the consistence of this definition, it is required that the domain
C of such a mapping needs to be a nonempty weakly compact convex subset of X.

Otherwise the asymptotic center of (xn) in C could be empty. Even more, for the
consistence of this definition, the existence of one a.f.p.s. in C should be required
for T. Notice that our condition (SL) does not require weak compactness of the
domain C nor continuity of the mapping T.

Very recently, S. Dhompongsa and N. Nanan [10] introduced two further
classes of setvalued mappings. The first one, which is inspired on a class of mappings
defined in [7], (which in turn properly contains the class of mappings defined in
[25]) is:

Definition 11. Let C be a nonempty subset of a Banach space X. A mapping

T : C → Pb,cℓ(X) is said to satisfy condition (*) if

1. T has an a.f.p.s. in C,

2. T has an a.f.p.s. in A(C, (xn′ )) for some subsequence (xn′) of any given

a.f.p.s. (xn) for T in C.

The second one, which is not too far from the single-valued case in [20], is
the following.

Definition 12. Let U be a free ultrafilter defined on N. Let C be a bounded closed

and convex subset of a Banach space X. A mapping T : C → Pb,cℓ(X) is said to

satisfy condition (**) if it fulfills the following conditions

(4) T has an a.f.p.s. in C;

If (xn) is an a.p.f.s. for T in C and x ∈ C, then

(5) lim
n→U

H(Txn, T x) ≤ lim
n→U

‖xn − x‖.

Notice that assumption (4) is just condition (A′) and hence it is weaker than
condition (A) in our definitions. Nevertheless, if there exists a T -invariant subset,
say D, of C, such that condition (4) is not satisfied in D, then T could satisfy
Definition 12 in C. This means that, among other things, we cannot use this type
of condition in order to obtain results such as Theorem 4.3.

Next, we see that the use of ultrafilters in (5) is not necessary, in the following
sense: condition (5) is equivalent to

(6) lim sup
n

H(Txn, T x) ≤ lim sup
n

‖xn − x‖.
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Indeed, if there exists (xn) an a.f.p.s. for T in C such that

lim sup
n

H(Txn, T x) > lim sup
n

‖xn − x‖,

then, there exists a subsequence (xnk
) of (xn) such that

lim
k

H(Txnk
, T x) = lim sup

n
H(Txn, T x) > lim sup

n
‖xn − x‖,

then
lim
k

H(Txnk
, T x) > lim sup

n
‖xn − x‖ ≥ lim sup

k

‖xnk
− x‖.

Since there exists a subsequence (xnks
) of (xnk

) such that

lim sup
k

‖xnk
− x‖ = lim

s
‖xnks

− x‖,

then
lim
s

H(Txnks
, T x) > lim

s
‖xnks

− x‖.

In other words, if (6) does not hold for some a.f.p.s. (xn) in C and some x ∈ C,

then there exists a subsequence, say (xnk
), such that

lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖.

Moreover, if (xn) is an a.f.p.s. for T in C such that it admits a subsequence, say
(xnk

), such that
lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖,

then T does not satisfy (5) for every free ultrafilter U defined on N. Indeed, take
yk = xnk

for k = 1, 2, . . . . Since (yk) is again an a.f.p.s. for T, then, for every free
ultrafilter U defined on N,

lim
k→U

H(Tyk, T x) = lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖ = lim
k→U

‖yk − x‖,

and T does not satisfy condition (5), as claimed.

Conversely, if it does not have Condition (5), that is, if there exists a free
ultrafilter U defined on N such that

a := lim
n→U

H(Txn, T x) > lim
n→U

‖xn − x‖ =: b,

for some a.f.p.s. (xn) for T in C and some x ∈ C, then for every ε > 0, the set

{n ∈ N : |H(T (xn), T x)− a| < ε} ∩ {n ∈ N : |‖xn − x‖ − b| < ε} ∈ U .

Moreover, U cannot contain finite sets. Then there exists the natural number

min({n ∈ N : |H(T (xn), T x)− a| < ε} ∩ {n ∈ N : |‖xn − x‖ − b| < ε}).
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Hence we may obtain a subsequence (xnk
) of (xn) such that

a = lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖ = b.

That is, equality (5) does not hold if and only if there exists an a.f.p.s. (xn) such
that

lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖,

for some subsequence (xnk
). In particular, taking yk = xnk

for k = 1, 2, . . . , since
(yk) is again an a.f.p.s. for T, then,

lim sup
k

H(Tyk, T x) = lim
k

H(Txnk
, T x) > lim

k
‖xnk

− x‖ = lim sup
k

‖yk − x‖,

which means that it fails to satifsy (6).

Remark 7. Notice that in our Definition 3.5 it is required that for all a.f.p.s. (xn) for T

in C and any x ∈ C, then

(7) lim sup
n

H({xn}, Tx) ≤ lim sup
n

‖xn − x‖.

while in Definition 5.7 it it is required that for all a.f.p.s. (xn) for T in C and any x ∈ C,

then

(8) lim sup
n

H(Txn, Tx) ≤ lim sup
n

‖xn − x‖.

First, notice that every nonexpansive mapping satisfies condition (8). Hence the
nonexpansive mapping considered in Example 1 satisfies condition (8), but not condition
(7). Hence condition (8) does not imply condition (7).

On the other hand, we do not know whether the converse statement holds, that is,
if condition (7) implies condition (8).

Moreover, if a mapping T : C → Pcℓ(C) satisfies condition (8), then it is easy to
check that it satisfies the following condition.

For all a.f.p.s. (xn) for T in C and any x ∈ C, then

(9) lim sup
n

d(xn, Tx) ≤ lim sup
n

‖xn − x‖.

The converse statement does not hold, because the mapping considered in Example 3
satisfies condition (9) but it fails condition (8). Indeed, for the a.f.p.s. (xn) ≡ 0X , if
x ∈ C one has

lim sup
n→∞

H(T (xn), T (x)) = H(BX , T (x)) = 1 + ‖x‖ > ‖x‖ = lim sup
n→∞

‖xn − x‖.
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11. J. Garćıa-Falset, E. Llorens-Fuster, T. Suzuki: Fixed point theory for a class

of generalized nonexpansive mappings. J. Math. Anal. Appl., 375 (2011), 185–195.

12. K. Goebel, W. A. Kirk: Topics in Metric Fixed Point Theory. Cambridge Univ.
Press, Cambridge, 1990.

13. S. Hu, N. S. Papageorgiou: Handbook of Multivalued Analysis. Math and Its Appl.,
vol 419, Kluwer Academic Publishers, 1997.

14. A. Kaewcharoen, B. Panyanak: Fixed point theorems for some generalized multi-

valued nonexpansive mappings. Nonlinear Anal., 74 (2011), 5578–5584.

15. W. A. Kirk: Nonexpansive mappings in product spaces, set-valued mappings and

k-uniform rotundity. In Nonlinear Functional Analysis and Its Applications, Part 2
(Berkeley, Calif., 1983), vol. 45 of Proc. Sympos. Pure Math., pp. 51–64, American
Mathematical Society, Providence, RI, USA, 1986.

16. H. M. Ko: Fixed point theorems for point-to-set mappings and the set of fixed points.

Pacific J. Math., 42 (1972), 369–379.

17. T. Kuczumow, S. Prus: Compact asymptotic centers and fixed points of multivalued

nonexpansive mappings. Houston J. Math., 16 (1990), 465-468.

18. E. Lami Dozo: Multivalued nonexpansive mappings and Opials condition. Proc.
Amer. Math. Soc., 38 (1973), 286–292.

19. W. Laowang, B. Panyanak: Common fixed points for some generalized multivalued

nonexpansive mappings in uniformly convex metric spaces. Fixed Point Theory Appl.,
vol. 2011 (2011), 20.

20. E. Llorens-Fuster, E. Moreno-Galvez: The Fixed Point Theory for some gener-

alized nonexpansive mappings. Abstr. Appl. Anal., vol. 2011 (2011), Article ID 435686,
15 pages.
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