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NONLINEAR GENERALIZED CONTRACTIONS ON

MENGER PM SPACES

Nataša A. Babačev

This paper presents a fixed point theorem for a self-mapping defined on
probabilistic Menger spaces satisfying nonlinear generalized contractive type
conditions. The theorem is an improvement of a result presented by B.S.

Choudhury, K. Das: A new contraction principle in Menger spaces, Acta
Math. Sin. (Engl. Ser.), 24 (2008), 1379–1386. This is illustrated with an
example.

1. INTRODUCTION

The notion of probabilistic metric spaces, as a generalization of metric spaces,
was introduced byK. Menger [9] in 1942. Schweizer and Sklar [12] studied the
properties of spaces introduced by K. Menger and gave some basic results on these
spaces. They studied topology, convergence of sequences, continuity of mappings,
defined the completeness of these spaces, etc.

Fixed point properties for mappings defined on probabilistic spaces were stud-
ied by many authors ([1], [13], [6], [14], [11]). Most of the properties which provide
the existence of fixed point and common fixed point are of linear contractive type
conditions.

The results in fixed point theory including nonlinear type contractive condi-
tions were given by D. W. Boyd and J. S. W. Wong [2], S. Ješić et al. [7] and
recently D. O’Regan and R. Sadaati [11].

Altering distance functions in Menger PM-spaces have been recently consid-
ered by B. S. Choudhury and K. Das [3]. Some fixed point results involving
altering distances in Menger PM-spaces were given by D. Miheţ in [10].
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Generalized contractions of linear type on probabilistic metric spaces are in-
troduced by Ćirić [4]. Many authors studied existence of fixed points for mappings
satisfying generalized contractive type conditions, defined on various spaces [5]. We
define nonlinear generalized contractive type condition involving altering distances
in Menger PM-spaces. Also, we prove a fixed point result for mappings satisfying
such type of conditions.

Many authors studied fixed point results considering different classes of t-
norm [3, 10]. We consider t-norm which satisfies T (a, a) ≥ a.

2. PRELIMINARIES

In the standard notation, let D+ be the set of all distribution functions
F : R → [0, 1], such that F is a nondecreasing, left-continuous mapping, which
satisfies F (0) = 0 and supx∈R

F (x) = 1. The space D+ is partially ordered by the
usual point-wise ordering of functions, i.e. F ≤ G if and only if F (t) ≤ G(t) for all
t ∈ R. The maximal element for D+ in this order is the distribution function given
by

ε0(t) =

{

0, t ≤ 0,
1, t > 0.

Definition 2.1. ([12]) A binary operation T : [0, 1]× [0, 1] → [0, 1] is continuous

t-norm if T satisfies the following conditions :

(a) T is commutative and associative ;

(b) T is continuous ;

(c) T (a, 1) = a for all a ∈ [0, 1];

(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norm are T (a, b) = min{a, b} and T (a, b) = ab.

The t-norms are defined recursevly by T 1 = T and

T n(x1, . . . , xn+1) = T (T n−1(x1, . . . , xn), xn+1).

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . , n+ 1}.

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-space)
is a triple (X,F , T ) where X is a nonempty set, T is a continuous t-norm, and F
is a mapping from X ×X into D+ such that, if Fx,y denotes the value of F at the

pair (x, y), the following conditions hold :

(PM1) Fx,y(t) = ε0(t) if and only if x = y;

(PM2) Fx,y(t) = Fy,x(t);

(PM3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.3. ([13]) Every metric space is a PM-space. Let (X, d) be a metric space and

T (a, b) = min{a, b} is a continuous t-norm. Define Fx,y(t) = ε0(t−d(x, y)) for all x, y ∈ X

and t > 0. The triple (X,F , T ) is a PM-space induced by the metric d.
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Definition 2.4. Let (X,F , T ) be a Menger PM-space.

(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0 and

λ > 0 there exists positive integer N such that Fxn,x(ε) > 1− λ whenever n ≥ N.

(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and λ > 0
there exists positive integer N such that Fxn,xm

(ε) > 1− λ whenever n,m ≥ N.

(3) A Menger PM-space is said to be complete if every Cauchy sequence in X is

convergent to a point in X.

The (ε, λ)-topology ([12]) in Menger PM-space (X,F , T ) is introduced by
the family of neighbourhoods Nx of a point x ∈ X given by

Nx = {Nx(ε, λ) : ε > 0, λ ∈ (0, 1)}

where
Nx(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

The (ε, λ)-topology is a Hausdorff topology. In this topology the function f is
continuous in x0 ∈ X if and only if for every sequence xn → x0 it holds that
f(xn) → f(x0).

The following lemma is proved by B. Schweizer and A. Sklar.

Lemma 2.5. ([12]) Let (X,F , T ) be a Menger PM-space. Then the function F
is lower semi-continuous for every fixed t > 0, i.e. for every fixed t > 0 and every

two convergent sequences {xn}, {yn} ⊆ X such that xn → x, yn → y it follows that

lim inf
n→∞

Fxn,yn
(t) = Fx,y(t).

Khan et al. in [8] introduced the concept of altering distance functions that
alter the distance between two points in metric spaces.

Definition 2.6. ([8]) A function h : [0,∞) → [0,∞) is an altering distance

function if

(i) h is monotone increasing and continuous and

(ii) h(t) = 0 if and only if t = 0.

B. S. Choudhury and K. Das [3] extended the concept of altering distance
functions to Menger PM-spaces.

Definition 2.7. ([3]) A function φ : [0,∞) → [0,∞) is said to be a Φ-function if

the following conditions hold :

(i) φ(t) = 0 if and only if t = 0;

(ii) φ is strictly increasing and φ(t) → ∞ as t → ∞;

(iii) φ is left-continuous in (0,∞);

(iv) φ is continuous at 0.

The class of all Φ-functions will be denoted by Φ.
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Theorem 2.8. ([3]) Let (X,F , TM) be a complete Menger PM-space, with contin-

uous t-norm TM given by TM (a, b) = min{a, b} and f be a continuous self-mapping

on X such that for every x, y ∈ X, and all t > 0 holds

(1) Ffx,fy(φ(t)) ≥ Fx,y(φ(t/c))

where φ is a Φ-function and 0 < c < 1. Then f has a unique fixed point.

Lemma 2.9. Let (X,F , T ) be a Menger PM-space. Let φ : [0,∞) → [0,∞) be a

Φ-function. Then the following statement holds.

If for x, y ∈ X, 0 < c < 1, we have Fx,y(φ(t)) ≥ Fx,y(φ(t/c)) for all t > 0
then x = y.

Proof. From the fact that φ is strictly increasing, and since 0 < c < 1, by induction
we get Fx,y(φ(t)) ≥ Fx,y(φ(t/c)) ≥ · · · ≥ Fx,y(φ(t/c

n)) Taking lim inf as n → ∞
we get Fx,y(φ(t)) ≥ 1, i. e. x = y.

3. MAIN RESULTS

The motivation for this paper is provided in [4] where Ćirić introduced a
notion of generalized contraction on PM-spaces of linear type and proved a fixed
point theorem for generalized contraction f defined on f -orbitally complete Menger
PM-space with continuous t-norm T which satisfies T (a, a) ≥ a for every a ∈ [0, 1].

In this paper we will improve this result by introducing the generalized con-
traction of nonlinear type on PM-spaces with t-norm which satisfies T (a, a) ≥ a for
every a ∈ [0, 1].

Theorem 3.1. Let (X,F , T ) be a complete Menger PM-space with continuous t-

norm T which satisfies T (a, a) ≥ a for every a ∈ [0, 1]. Let c ∈ (0, 1) be fixed. If for

a Φ-function φ and a self-mapping f on X holds

(2) Ffx,fy(φ(t)) ≥ min {Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c)),

Fx,fy(2φ(t/c)), Fy,fx(2φ(t/c))}

for every x, y ∈ X and all t > 0, then f has a unique fixed point in X.

Proof. First note that for every t-norm T which satisfies T (a, a) ≥ a, for every
a, b ∈ [0, 1] it holds T (a, b) ≥ T (min{a, b},min{a, b}) ≥ min{a, b}. From previ-
ous, property (PM3) and the fact that T is nondecreasing we have that for every
x, y, z ∈ X and all t > 0 holds

(3) Fx,y(2t) ≥ min{Fx,z(t), Fy,z(t)}.

We shall prove that from previous inequalities follows that

(4) Ffx,fy(φ(t)) ≥ min{Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c))}
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holds for every x, y ∈ X and all t > 0.

From the property of t-norm and (2) we have that following inequalities hold.

Ffx,fy(φ(t))

≥ min {Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c)), Fx,fy(2φ(t/c)), Fy,fx(2φ(t/c))}

≥ min {Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c)),

T (Fx,fx(φ(t/c)), Ffx,fy(φ(t/c))), T (Fy,fy(φ(t/c)), Ffy,fx(φ(t/c)))}

≥ min {Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c)),

min{Fx,fx(φ(t/c)), Ffx,fy(φ(t/c))},min{Fy,fy(φ(t/c)), Ffy,fx(φ(t/c))}}

≥ min{Fx,y(φ(t/c)), Fx,fx(φ(t/c)), Fy,fy(φ(t/c)), Ffx,fy(φ(t/c))}.

If we assume that Ffx,fy(φ(t/c)) is the minimum, then from Lemma 2.9 it
holds that fx = fy, i.e. Ffx,fy(φ(t)) = 1 and it follows that inequality (4) holds.

If we assume that the element Ffx,fy(φ(t/c)) is not the minimum, then in-
equality (4) holds.

Now let x0 ∈ X be an arbitrary point. Let us define a sequence by xn =
fxn−1. We will show that {xn} is a Cauchy sequence.

Let t > 0 and ε ∈ (0, 1). From properties (i) and (iv) of Φ-function it follows
that there exists r > 0 such that t > φ(r). Then for n ∈ N we get that

Fxn,xn+1
(t) ≥ Fxn,xn+1

(φ(r)) = Ffxn−1,fxn
(φ(r))

≥ min{Fxn−1,xn
(φ(r/c)), Fxn−1,fxn−1

(φ(r/c)), Fxn ,fxn
(φ(r/c))}

= min{Fxn−1,xn
(φ(r/c)), Fxn ,xn+1

(φ(r/c))}.

We shall prove that

(5) Fxn,xn+1
(φ(r)) ≥ Fxn−1,xn

(φ(r/c))

holds.

If we assume that Fxn,xn+1
(φ(r/c)) is the minimum, then from Lemma 2.9 it

holds that Fxn,xn+1
(φ(r)) = 1, i. e. inequality (5) holds.

If we assume that Fxn,xn+1
(φ(r/c)) is not the minimum, then the minimum

is Fxn−1,xn
(φ(r/c)), i.e. inequality (5) holds.

Since φ is strictly increasing, we have

Fxn,xn+1
(t) ≥ Fxn,xn+1

(φ(r)) ≥ Fxn−1,xn
(φ(r/c)) ≥ · · · ≥ Fx0,x1

(φ(r/cn)),

i.e.

(6) Fxn,xn+1
(t) ≥ Fx0,x1

(φ(r/cn))

for arbitrary n ∈ N.

Let m,n ∈ N, we can assume that m ≥ n. From (3), by induction we get

Fxn,xm
((m− n)t) ≥ min{Fxn,xn+1

(t), . . . Fxm−1,xm
(t)}.
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From previous and (6) we get

Fxn,xm
((m− n)t) ≥ min{Fx0,x1

(φ(r/cn)), . . . , Fx0,x1
(φ(r/cm−1)).

From the fact that Fx0,x1
is non-decreasing and Φ-function is strictly increasing,

the minimum of the right hand side is Fx0,x1
(φ(r/cn)), i.e.

Fxn,xm
((m− n)t) ≥ Fx0,x1

(φ(r/cn)).

Since φ is strictly increasing and lim inf
n→∞

φ(t) = ∞, there exists n0 ∈ N such that

Fx0,x1
(φ(r/cn)) > 1 − ε, whenever n ≥ n0. From the previous it follows that for

every m ≥ n ≥ n0 holds

(7) Fxn,xm
((m− n)t) ≥ 1− ε.

Since t > 0 and ε ∈ (0, 1) are arbitrary, we have that {xn} is Cauchy sequence
in complete Menger PM-space, thus there exists z ∈ X such that z = lim

n→∞
xn. We

will show that z is a fixed point of f.

From properties of t-norm T and Φ-function φ we have that for every x, y ∈ X

and all t > 0 there exist r > 0 such that t > φ(r) and n0 ∈ N such that for all
n ≥ n0 holds

Ffz,z(t) ≥ T (Ffz,xn
(φ(r)), Fxn ,z(t− φ(r))) ≥ min{Ffz,xn

(φ(r)), Fxn ,z(t− φ(r))}.

Since z = lim
n→∞

xn, for arbitrary ε ∈ (0, 1) holds Fxn,z(t− φ(r)) > 1− ε.

Hence we get that the following holds

Ffz,z(t) ≥ min{Ffz,xn
(φ(r)), 1 − ε}.

Since ε > 0 is arbitrary, we have that Ffz,z(t) ≥ Ffz,xn
(φ(r)).

From the definition of {xn}, (4) and (7) we have that

Ffz,z(t) ≥ Ffz,xn
(φ(r)) = Ffz,fxn−1

(φ(r))

≥ min{Fz,xn−1
(φ(r/c)), Fz,fz(φ(r/c)), Fxn−1,fxn−1

(φ(r/c))}

= min{Fz,xn−1
(φ(r/c)), Fz,fz(φ(r/c)), Fxn−1,xn

(φ(r/c))}

≥ min{1− ε, Fz,fz(φ(r/c)), 1 − ε}.

Since ε ∈ (0, 1) is arbitrary, we have that

Ffz,xn
(φ(r)) ≥ Fz,fz(φ(r/c)).

Taking lim inf as n → ∞ we get

Ffz,z(φ(r)) ≥ Fz,fz(φ(r/c)),

and applying Lemma 2.9 we have that z = fz, i.e. z is a fixed point of f.
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Let us prove that z is a unique fixed point of f. Let y ∈ X be another fixed
point of f, i.e. f(y) = y. For all t > 0 there exists r > 0 such that t > φ(r) and
from (4) it follows that the following holds

Fz,y(t) ≥ Fz,y(φ(r)) = Ffz,fy(φ(r))

≥ min{Fz,y(φ(r/c)), Fz,fz(φ(r/c)), Fy,fy(φ(r/c))}

= min{Fz,y(φ(r/c)), Fz,z(φ(r/c)), Fy,y(φ(r/c))}

= min{Fz,y(φ(r/c)), 1, 1} = Fz,y(φ(r/c)).

From Lemma 2.9 it follows that y = z, i.e. z is a unique fixed point of f.

It is clear that the result presented in Theorem 3.1 is an improvement of
result given by B.S. Choudhury and K. Das in [3] here stated in Theorem 2.8.

Remark 3.2. Theorem 2.8 is a consequence of Theorem 3.1.

Example 3.3. Let (X,F , T ) be a complete Menger PM-space induced by a metric

d(x, y) = |x− y| on X = [0, 1] ⊂ R given in Remark 2.3. Let φ(t) = t, for all t > 0, c =
1

2
and

f(x) =















x

4
, x ∈

[

0,
1

2

)

∪

(

1

2
, 1

]

0, x =
1

2
.

Note that φ is a Φ-function.

We shall prove that the condition (2) of Theorem 3.1 is satisfied. We will consider three
possibilities.

If x, y ∈

[

0,
1

2

)

∪

(1

2
, 1
]

we get

Ffx,fy(φ(t)) = ε0

(

t−

∣

∣

∣

x

4
−

y

4

∣

∣

∣

)

= ε0(4t− |x− y|) ≥ ε0(2t− |x− y|) = Fx,y(φ(2t)),

thus the condition (2) is satisfied.

If x ∈

[

0,
1

2

)

∪

(1

2
, 1
]

and y =
1

2
we get

Ffx,fy(φ(t)) = ε0

(

t−

∣

∣

∣

x

4
− 0

∣

∣

∣

)

= ε0(4t− x)

≥ ε0(4t− 1) = ε0

(

2t−

∣

∣

∣

∣

1

2
− 0

∣

∣

∣

∣

)

= ε0(2t− |y − fy|) = Fy,fy(φ(2t)),

thus the condition (2) is satisfied, too.

If x = y =
1

2
we get

Ffx,fy(φ(t)) = ε0(t− |0− 0|) = ε0

(

2t−

∣

∣

∣

∣

1

2
−

1

2

∣

∣

∣

∣

)

= Fx,y(φ(2t)),

thus the condition (2) is satisfied as well.

From the previous we conclude that the condition (2) of Theorem 3.1 is satisfied,
thus the function f(x) has a unique fixed point. It is easy to see that this point is x = 0.
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Note that for function f(x) Theorem 2.8 is not conclusive, for the case when x ∈
[

0,
1

2

)

∪

(1

2
, 1
]

and y =
1

2
. We conclude that the result presented in Theorem 3.1 is an

improvement of result presented in Theorem 2.8.
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