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THE SECOND ORDER ESTIMATE FOR THE

SOLUTION TO A SINGULAR ELLIPTIC BOUNDARY

VALUE PROBLEM

Ling Mi, Bin Liu

We study the second order estimate for the unique solution near the bound-
ary to the singular Dirichlet problem −△u = b(x)g(u), u > 0, x ∈

Ω, u|∂Ω = 0, where Ω is a bounded domain with smooth boundary in R
N ,

g ∈ C1((0,∞), (0,∞)), g is decreasing on (0,∞) with lim
s→0+

g(s) = ∞ and g

is normalized regularly varying at zero with index −γ (γ > 1), b ∈ Cα(Ω̄)
(0 < α < 1), is positive in Ω, may be vanishing on the boundary. Our analysis
is based on Karamata regular variation theory.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the second order estimate for the unique solution
near the boundary to the following singular boundary value problem

(1) −△u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0,

where Ω is a bounded domain with smooth boundary in R
N , b satisfies

(b1) b ∈ Cα(Ω̄) for some α ∈ (0, 1), and is positive in Ω,

(b2) there exist k ∈ Λ and B0 ∈ R such that

b(x) = k2(d(x))(1 +B0d(x) + o(d(x))) near ∂Ω,
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where d(x) = dist(x, ∂Ω), Λ denotes the set of all positive non-decreasing
functions in C1(0, δ0) which satisfy

lim
t→0+

d

dt

(

K(t)

k(t)

)

: = Ck ∈ (0, 1], K(t) =

∫ t

0

k(s)ds,

and g satisfies

(g1) g ∈ C1((0,∞), (0,∞)), lim
s→0+

g(s) = ∞ and g is decreasing on (0,∞);

(g2) there exist γ > 1 and a function f ∈ C1(0, a1] ∩ C[0, a1] for a1 > 0 small
enough such that

−g′(s)s

g(s)
: = γ + f(s) with lim

s→0+
f(s) = 0, s ∈ (0, a1],

i.e.,

g(s) = c0s
−γ exp

(
∫ a1

s

f(ν)

ν
dν

)

, s ∈ (0, a1], c0 > 0;

(g3) there exists η ≥ 0 such that

lim
s→0+

f ′(s)s

f(s)
= η.

The problem (1) arises in the study of non-Newtonian fluids, boundary layer
phenomena for viscous fluids, chemical heterogeneous catalysts, as well as the the-
ory of heat conduction in electrical materials (see [12]-[24]) and has been dis-
cussed and extended by many authors in many contexts, for instance, the existence,
uniqueness, regularity and boundary behavior of solutions, see, [12]-[36] and the
references therein.

For b ≡ 1 in Ω and g satisfying (g1), Fulks and Maybee [12], Stuart [27],
Crandall, Rabinowitz and Tartar [7] derived that problem (1) has a unique
solution u ∈ C2+α(Ω)∩C(Ω̄). Moreover, in [7], the following result was established:
if φ1 ∈ C[0, δ0] ∩ C2(0, δ0] is the local solution to the problem

(2) −φ′′
1
(t) = g(φ1(t)), φ1(t) > 0, 0 < t < δ0, φ1(0) = 0,

then there exist positive constants c1 and c2 such that

c1φ1(d(x)) ≤ u(x) ≤ c2φ1(d(x)) near ∂Ω.

In particular, when g(u) = u−γ , γ > 1, u has the property

(3) c1(d(x))
2/(1+γ) ≤ u(x) ≤ c2(d(x))

2/(1+γ) near ∂Ω.

By constructing global subsolutions and supersolutions, Lazer andMcKenna [20]
showed that (3) continued to hold on Ω̄. Then, u ∈ H1

0
(Ω) if and only if γ < 3. This

is a basic characteristic of problem (1). Moreover, there is the following additional
statement in [20].
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(I1) If, instead of b ≡ 1, we assume that 0 < θ1 ≤ b(x)(ϕ1(x))
̟ ≤ θ2 for x ∈ Ω,

where θ1 and θ2 are positive constants, ̟ ∈ (0, 2), and ϕ1 is the first eigen-
function, corresponding to the first eigenvalue λ1 of the Laplace operator with
Dirichlet boundary conditions and γ > 1, then there exist positive constants
θ3 and θ4 (θ3 is small and θ4 is large) such that

θ3(ϕ1(x))
2

γ+1 ≤ u(x) ≤ θ4(ϕ1(x))
2−̟
γ+1 , ∀x ∈ Ω.

Giarrusso andPorru [13], Berhanu,Gladiali andPorru [3], Berhanu,
Cuccu and Porru [4], McKenna and Reichel [22], Anedda [1], Anedda and
Porru [2], Ghergu and Rǎdulescu [14] considered the first and second or-
der expansions of the solution near the boundary. Specifically, when the function
g : (0,∞) → (0,∞) is locally Lipschitz continuous and decreasing, Giarrusso and
Porru [13] proved that if g satisfies the following conditions

(g′
1
)

∫ 1

0

g(s)ds = ∞,

∫ ∞

1

g(s)ds < ∞, G1(t) :=

∫ ∞

t

g(s)ds;

(g′
2
) there exist positive constants δ and M > 1 such that

G1(t) < MG1(2t), ∀t ∈ (0, δ),

then for the unique solution u of problem (1)

(4) |u(x)− φ2(d(x))| < c0d(x) near ∂Ω,

where c0 is a suitable positive constant and φ2 ∈ C[0,∞) ∩C2(0,∞) is the unique
solution of

(5)

∫ φ2(t)

0

dν
√

2G1(ν)
= t, t > 0.

Later, for b ≡ 1 on Ω, g(u) = u−γ with γ > 0, Berhanu, Gladiali and
Porru [3] showed the following result for γ > 1

(i)

∣

∣

∣

∣

∣

u(x)

(d(x))2/(1+γ)
−

(

(1 + γ)2

2(γ − 1)

)1/(1+γ)
∣

∣

∣

∣

∣

< c3(d(x))
(γ−1)/(1+γ) near ∂Ω.

Then, Berhanu, Cuccu and Porru [4] obtained the following results on a suffi-
ciently small neighborhood of ∂Ω;

(ii) for γ = 1,

u(x) = φ1(d(x))
(

1 +A(x)(− ln(d(x)))−β
)

near ∂Ω,

where φ1 is the solution of problem (2) with γ = 1, φ1(t) ≈ t
√
−2 ln t near

t = 0, β ∈ (0, 1/2) and A is bounded;
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(iii) for γ ∈ (1, 3),

u(x) =

(

(1 + γ)2

2(γ − 1)

)1/(1+γ)

(d(x))2/(1+γ)
(

1 +A(x)(d(x))2(γ−1)/(1+γ)
)

near ∂Ω;

(iv) for γ = 3,

u(x) =
√

2d(x)
(

1−A(x)d(x) ln(d(x))
)

near ∂Ω.

For γ > 3, McKenna and Reichel [22] proved that
∣

∣

∣

∣

∣

u(x)

(d(x))2/(1+γ)
−

(

(1 + γ)2

2(γ − 1)

)1/(1+γ)
∣

∣

∣

∣

∣

< c4(d(x))
(γ+3)/(1+γ) near ∂Ω.

On the other hand, Ĉırstea and Rǎdulescu [9]-[11] introducd a unified
new appoach via the Karamata regular variation theory, to study the boundary
behavior and uniqueness of solutions for boundary blow-up elliptic problems.

Let β > 0, we define

Λ1,β =

{

k ∈ Λ, lim
t→0+

(− ln t)β
(

d

dt

(

K(t)

k(t)

)

− Ck

)

= D1k ∈ R

}

;

Λ2 =

{

k ∈ Λ, lim
t→0+

t−1

(

d

dt

(

K(t)

k(t)

)

− Ck

)

= D2k ∈ R

}

.

Recently, when g, b satisfy (g1)-(g3) and (b1)-(b2), using the Karamata reg-
ular variation theory, Zhang [31] proved that the two-term asymptotic expansion
of the unique solution u near ∂Ω only depends on the distance function d(x) and
the above chosen subclasses for k ∈ Λ under the following hypotheses:

(H1) η = 0 in (g3);

(H2) there exist σ ∈ R such that

lim
s→0+

(− ln s)βf(s) = σ,

where β is the parameter used in the definition of Λ1,β;

(H3) Ck(γ + 1) > 2.

However, Zhang [31] only considered the condition η = 0 in (g3).

Inspired by the above works, in this paper we also consider the two-term
asymptotic expansion of the unique solution u of problem (1) near ∂Ω. We consider
not only the condition η = 0 in (g3) but also the condition η > 0 in (g3). In [31],
Zhang mainly used the solution to the problem

∫ ψ(t)

0

ds
√

2G(s)
= t, G(t) =

∫ b

t

g(s)ds, b > 0, t ∈ (0, b),
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to estimate the boundary behavior of solutions to problem (1) while the key to our
estimates in this paper is the solution to the problem

(6)

∫ φ(t)

0

ds

g(s)
= t, t > 0.

Our main results are summarized as follows.

Theorem 1. Let g satisfy (g1)-(g3), b satisfy (b1)-(b2) and (H3) holds. Suppose

that k ∈ Λ1,β and η > 0 in (g3), then for the unique solution u of problem (1) and
all x in a neighborhood of ∂Ω it holds that

(7) u(x) = ξ0φ(K
2(d(x)))

(

1 +A0(− ln(d(x)))−β + o((− ln(d(x)))−β)
)

,

where φ is uniquely determined by (6) and

(8) ξ0 =

(

γ + 1

2Ck(γ + 1)− 4

)1/(1+γ)

, A0 = −
D1k

Ck(γ + 1)− 2
.

Theorem 2. Let g satisfy (g1)-(g3), b satisfy (b1)-(b2) and (H1)-(H3) hold.

(i) Suppose that k ∈ Λ1,β , then for the unique solution u of problem (1) and all

x in a neighborhood of ∂Ω it holds that

(9) u(x) = ξ0φ(K
2(d(x)))

(

1 +A1(− ln(d(x)))−β + o((− ln(d(x)))−β)
)

,

where φ is uniquely determined by (6), ξ0 is in (8) and

A1 = −
2D1k −A2

2Ck(γ + 1)− 4
with A2 = −A3

(

4σ(γ + 1)−2 + σξ
−(γ+1)

0
ln ξ0

)

,

A3 = 2−β(Ck(γ + 1))β .

(ii) Suppose that k ∈ Λ2, then (i) still holds, where

A1 =
A2

2Ck(γ + 1)− 4
.

Remark 1 (Existence, [33], Theorem 4.1). Let b ∈ Cα

ℓoc(Ω) for some α ∈ (0, 1), be
nonnegative and nontrivial on Ω. If g satisfies (g1), then problem (1) has a unique solution
u ∈ C2+α(Ω)∩C(Ω̄) if and only if the linear problem −∆w = b(x), w > 0, x ∈ Ω, w|∂Ω =
0 has a unique solution w0 ∈ C2+α(Ω) ∩ C(Ω̄).

The outline of this paper is as follows. In section 2 we give some preparation.
The proofs of Theorem 1-2 will be given in section 3.
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2. PREPARATION

Our approach relies on Karamata regular variation theory established by
Karamata in 1930 which is a basic tool in the theory of stochastic process (see [23],
[26] and [30] and the references therein.). In this section, we give a brief account
of the definition and properties of regularly varying functions involved in our paper
(see [23], [26] and [30]).

Definition 1. A positive measurable function g defined on (0, a), for some a > 0,
is called regularly varying at zero with index ρ, written as g ∈ RV Zρ, if for

each ξ > 0 and some ρ ∈ R,

(10) lim
t→0+

g(ξt)

g(t)
= ξρ.

In particular, when ρ = 0, g is called slowly varying at zero.

Clearly, if g ∈ RV Zρ, then L(t) : = g(t)/tρ is slowly varying at zero.

Some basic examples of slowly varying functions at zero are

(i) every measurable function on (0, a) which has a positive limit at zero;

(ii) (− ln t)p and
(

ln(− ln t)
)p
, p ∈ R;

(iii) e(− ln t)p , 0 < p < 1.

Proposition 1 (Uniform convergence theorem). If g ∈ RV Zρ, then (10) holds

uniformly for ξ ∈ [c1, c2] with 0 < c1 < c2 < a.

Proposition 2 (Representation theorem). A function L is slowly varying at zero

if and only if it can be written in the form

(11) L(t) = y(t) exp

(
∫ a1

t

f(ν)

ν
dν

)

, t ∈ (0, a1),

for some a1 ∈ (0, a), where the functions f and y are measurable and for t → 0+,
f(t) → 0 and y(t) → c0, with c0 > 0.

We say that

(12) L̂(t) = c0 exp

(
∫ a1

t

f(ν)

ν
dν

)

, t ∈ (0, a1),

is normalized slowly varying at zero and

(13) g(t) = c0t
ρL̂(t), t ∈ (0, a1),

is normalized regularly varying at zero with index ρ (and written g ∈ NRV Zρ).
A function g ∈ RV Zρ belongs to NRV Zρ if and only if

(14) g ∈ C1(0, a1) for some a1 > 0 and lim
t→0+

tg′(t)

g(t)
= ρ.
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Proposition 3. If functions L,L1 are slowly varying at zero, then

(i) Lρ (for every ρ ∈ R), c1L+ c2L1 (c1 ≥ 0, c2 ≥ 0 with c1 + c2 > 0), L ◦ L1 (if
L1(t) → 0 as t → 0+), are also slowly varying at zero.

(ii) For every ρ > 0 and t → 0+,

tρL(t) → 0, t−ρL(t) → ∞.

(iii) For ρ ∈ R and t → 0+, ln(L(t))/ln t → 0 and ln(tρL(t))/ln t → ρ.

Proposition 4. If g1 ∈ RV Zρ1 , g2 ∈ RV Zρ2 with lim
t→0+

g2(t) = 0, then g1 ◦ g2 ∈

RV Zρ1ρ2 .

Proposition 5 (Asymptotic behavior). If a function L is slowly varying at zero,

then for a > 0 and t → 0+,

(i)

∫ t

0

sρL(s)ds ∼= (ρ+ 1)−1 t1+ρ L(t), for ρ > −1;

(ii)

∫ a

t

sρL(s)ds ∼= (−ρ− 1)−1 t1+ρ L(t), for ρ < −1.

Our results in this section are summarized as follows.

Lemma 1. Let k ∈ Λ. Then

(i) lim
t→0+

K(t)

k(t)
= 0, lim

t→0+

tk(t)

K(t)
= C−1

k , i.e., K ∈ NRV ZC−1

k

;

(ii) lim
t→0+

tk′(t)

k(t)
=

1− Ck

Ck
, i.e., k ∈ NRV Z(1−Ck)/Ck

; lim
t→0+

K(t)k′(t)

k2(t)
= 1− Ck;

(iii) lim
t→0+

(− ln t)β
(

K(t)k′(t)

k2(t)
− (1 − Ck)

)

= −D1k, if k ∈ Λ1,β;

(iv) lim
t→0+

t−1

(

K(t)k′(t)

k2(t)
− (1− Ck)

)

= −D2k, if k ∈ Λ2.

Proof. The proof is similar to the proof of Lemma 2.1 in [31], so we omit it.

Lemma 2. If g satisfies (g1)-(g3), then

(i)

∫ a

0

ds

g(s)
< ∞, for some a > 0;

(ii) lim
t→0+

g′(t)

∫ t

0

ds

g(s)
= −

γ

γ + 1
and lim

t→0+

g(t)
t
∫

0

ds

g(s)

t
=

1

γ + 1
.
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Proof. (i) (g2) implies that g ∈ NRV Z−γ with γ > 1, so g(s) = c0s
−γL̂(s), s ∈

(0, a1), where L̂ is normalized slowly varying at zero and c0 > 0. (i) is obvious due
to Propositions 5(i) and 3(ii).
(ii) Also

g′(t)

∫ t

0

ds

g(s)
∼

tg′(t)

g(t)

1

γ + 1
= −

γ

γ + 1

and
g(t)

t

∫ t

0

ds

g(s)
∼

t−γ

L(t)

tγ+1L(t)

t(γ + 1)
=

1

γ + 1
.

Lemma 3. Let g satisfy (g1)-(g3). If η = 0 in (g3), suppose that (H2) holds. Then

lim
t→0+

(− ln t)β
( tg′(t)

g(t)
+ γ

)

= −σIη>0,(i)

lim
t→0+

(− ln t)β











t
∫

0

ds

g(s)

t

g(t)

−
1

γ + 1











= −
σ

(γ + 1)2
Iη>0,(ii)

lim
t→0+

(− ln t)β
(

g′(t)

∫ t

0

ds

g(s)
+

γ

γ + 1

)

= −
σ

(γ + 1)2
Iη>0,(iii)

lim
t→0+

(− ln t)β
(

g(ξ0t)

ξ0g(t)
− ξ

−(γ+1)

0

)

= −σξ
−(γ+1)

0
ln ξ0Iη>0,(iv)

Proof. When f ∈ NRV Zη with η > 0, by Proposition 3 (ii), lim
t→0+

(− ln t)βf(t) = 0,

and when η = 0, by hypothesis (H2), lim
t→0+

(− ln t)βf(t) = σ.

(i) By
tg′(t)

g(t)
+ γ = −f(t), we see that (i) holds.

(ii) By (g2) and a simple calculation, we obtain

(15) s

(

1

g(s)

)′

=
γ

g(s)
+

f(s)

g(s)
, s ∈ (0, a1].

Since g ∈ NRV Z−γ with γ > 1, by Proposition 3 (ii), we have lim
t→0+

t

g(t)
= 0.

Integrating (15) from 0 to t and integrating by parts, we get

t

g(t)
= (γ + 1)

∫ t

0

ds

g(s)
+

∫ t

0

f(s)

g(s)
ds, t ∈ (0, a1],

i.e.,
t
∫

0

ds

g(s)

t

g(t)

−
1

γ + 1
= −

f(t)

γ + 1

t
∫

0

f(s)

g(s)
ds

t
f(t)

g(t)

, t ∈ (0, a1].
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Since g ∈ NRV Z−γ , f ∈ NRV Zη, we obtain by Proposition 5 that

lim
t→0+

t
∫

0

f(s)

g(s)
ds

t
f(t)

g(t)

=
1

γ + η + 1
.

Thus,

lim
t→0+

(− ln t)β











t
∫

0

ds

g(s)

t

g(t)

−
1

γ + 1











= −
1

γ + 1
lim
t→0+

(− ln t)βf(t) lim
t→0+

t
∫

0

f(s)

g(s)
ds

t
f(t)

g(t)

= σ2.

(iii) By a simple calculation, we have

lim
t→0+

(− ln t)β
(

g′(t)

∫ t

0

ds

g(s)
+

γ

γ + 1

)

= lim
t→0+

(− ln t)β











tg′(t)

g(t)

t
∫

0

ds

g(s)

t

g(t)

+
γ

γ + 1











= lim
t→0+

(− ln t)β











( tg′(t)

g(t)
+ γ
)









t
∫

0

ds

g(s)

t

g(t)

−
1

γ + 1









+
1

γ + 1

( tg′(t)

g(t)
+ γ
)

− γ









t
∫

0

ds

g(s)

t

g(t)

−
1

γ + 1



















.

Hence, by (i)-(ii), we get

lim
t→0+

(− ln t)β
(

g′(t)

∫ t

0

ds

g(s)
+

γ

γ + 1

)

= σ3.

(iv) When ξ0 = 1, the result is obvious. Now suppose that ξ0 6= 1. By (g2), we
obtain

g(ξ0t)

ξ0g(t)
− ξ

−(γ+1)

0
= ξ

−(γ+1)

0

(

exp
(

∫ t

ξ0t

f(ν)

ν
dν
)

− 1

)

.

Note that

lim
t→0+

f(ts)

s
= 0 and lim

t→0+

f(ts)

f(t)s
= sη−1

uniformly with respect to s ∈ [1, ξ0] or s ∈ [ξ0, 1].
So,

lim
t→0+

∫ t

ξ0t

f(ν)

ν
dν = lim

t→0+

∫

1

ξ0

f(ts)

s
ds = 0
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and

lim
t→0+

∫ 1

ξ0

f(ts)

f(t)s
ds =

∫ 1

ξ0

sη−1ds = χ,

where

χ =







− ln ξ0, if η = 0;

1

η
(1− ξ

η
0
), if η > 0.

Since er − 1 ∼ r as r → 0, it follows that

g(ξ0t)

ξ0g(t)
− ξ

−(γ+1)

0
∼ ξ

−(γ+1)

0

∫ t

ξ0t

f(ν)

ν
dν as t → 0.

Hence,

lim
t→0+

(− ln t)β
(

g(ξ0t)

ξ0g(t)
− ξ

−(γ+1)

0

)

= ξ
−(γ+1)

0
lim
t→0+

(− ln t)βf(t) lim
t→0+

∫ 1

ξ0

f(ts)

f(t)s
ds = σ4.

Lemma 4. Suppose that g satisfies (g1)-(g3) and let φ be the solution to the problem

∫ φ(t)

0

ds

g(s)
= t, ∀ t > 0.

Then

(i) φ′(t) = g(φ(t)), φ(t) > 0, t > 0, φ(0) := lim
t→0+

φ(t) = 0, and φ′′(t) =

g(φ(t))g′(φ(t)), t > 0;

(ii) φ ∈ NRV Z 1

γ+1

;

(iii) φ′ = g ◦ φ ∈ NRV Z
−

γ
γ+1

;

(iv) lim
t→0+

ln t

ln(φ(K2(t)))
=

Ck(γ + 1)

2
, if k ∈ Λ,

(v) lim
t→0+

(− ln t)β
t

φ(K2(t))
= 0, if k ∈ Λ and Ck(γ + 1) > 2.

Proof. By the definition of φ and a direct calculation, we can prove (i).
Let u = φ(t), by Lemma 2, we have that

lim
t→0+

tφ′′(t)

φ′(t)
= lim

t→0+
tg′(φ(t)) = lim

u→0+
g′(u)

∫ u

0

ds

g(s)
= −

γ

γ + 1
,

and

lim
t→0+

tφ′(t)

φ(t)
= lim
t→0+

tg(φ(t))

φ(t)
= lim

u→0+

g(u)

u

∫ u

0

ds

g(s)
=

1

γ + 1
,
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i.e., φ′ = g ◦ φ ∈ NRV Z
−

γ
γ+1

and φ ∈ NRV Z 1

γ+1

and (iii) follows.

Since K ∈ NRV ZC−1

k

and φ ∈ NRV Z 1

γ+1

, we see by Proposition 3 (iii) that (iv)

holds.

By (iv) and Proposition 4, we have that φ ◦ K2 ∈ NRV Z 2

Ck(γ+1)

and

t

φ(K2(t))
∈ NRV ZCk(γ+1)−2

Ck(γ+1)

. Since Ck(γ+1) > 2, (v) follows by Proposition 3 (ii).

Lemma 5. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (H3) holds.
If k ∈ Λ1,β, η > 0 in (g3) and φ is the solution to the problem

∫ φ(t)

0

ds

g(s)
= t, ∀ t > 0,

then

lim
t→0+

(− ln t)β
(

K2(t)φ′′(K2(t))

φ′(K2(t))
+

γ

γ + 1

)

= 0;(i)

lim
t→0+

(− ln t)β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

= 0.(ii)

Proof. (i) By the definition of φ, Lemma 3 (iii) and Lemma 4 (iv), we arrive at

lim
t→0+

(− ln t)β
(

K2(t)φ′′(K2(t))

φ′(K2(t))
+

γ

γ + 1

)

= lim
t→0+

(− ln t)β

(

g′(φ(K2(t)))

∫ φ(K2
(t))

0

ds

g(s)
+

γ

γ + 1

)

= lim
t→0+

(− ln(φ(K2(t))))β

(

g′(φ(K2(t)))

∫ φ(K2
(t))

0

ds

g(s)
+

γ

γ + 1

)

× lim
t→0+

(

ln t

lnφ(K2(t))

)β

= 0.

(ii) By Lemma 3 (iv) and Lemma 4 (iv), we infer that

lim
t→0+

(− ln t)β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

= lim
t→0+

(− ln(φ(K2(t))))β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

lim
t→0+

(

ln t

lnφ(K2(t))

)β

= 0.

Lemma 6. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (H1)-(H3)
hold. If φ is the solution to the problem

∫ φ(t)

0

ds

g(s)
= t, ∀ t > 0,
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then

lim
t→0+

(− ln t)β
(

K2(t)φ′′(K2(t))

φ′(K2(t))
+

γ

γ + 1

)

= −
A3σ

(γ + 1)2
;(i)

lim
t→0+

(− ln t)β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

= −A3σξ
−(γ+1)

0
ln ξ0,(ii)

where A3 = 2−β(Ck(1 + γ))β .

Proof. (i) By the definition of φ, Lemma 3 (iii) and Lemma 4 (iv), we find that

lim
t→0+

(− ln t)β
(

K2(t)φ′′(K2(t))

φ′(K2(t))
+

γ

γ + 1

)

= lim
t→0+

(− ln t)β

(

g′(φ(K2(t)))

∫ φ(K2
(t))

0

ds

g(s)
+

γ

γ + 1

)

= lim
t→0+

(− lnφ(K2(t)))β

(

g′(φ(K2(t)))

∫ φ(K2
(t))

0

ds

g(s)
+

γ

γ + 1

)

lim
t→0+

(

ln t

lnφ(K2(t))

)β

= −
A3σ

(γ + 1)2
.

(ii) By Lemma 3 (iv) and Lemma 4 (iv), we obtain

lim
t→0+

(− ln t)β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

= lim
t→0+

(− lnφ(K2(t)))β
(

g(ξ0φ(K
2(t)))

ξ0g(φ(K2(t)))
− ξ

−(γ+1)

0

)

lim
t→0+

(

ln t

lnφ(K2(t))

)β

= −A3σξ
−(γ+1)

0
ln ξ0

3. PROOFS OF THEOREMS

In this section, we prove Theorems 1-2.

First we need the following result.

Lemma 7 (the comparison principle, [19], Theorems 10.1 and 10.2). Let Ψ(x, s, ξ)
satisfy the following two conditions

(D1) Ψ is non-increasing in s for each (x, ξ) ∈ Ω× R
N ;

(D2) Ψ is continuously differentiable with respect to the ξ variables in Ω×(0,∞)×
R
N .

If u, v ∈ C(Ω̄) ∩ C2(Ω) satisfies ∆u + Ψ(x, u,∇u) ≥ ∆v + Ψ(x, v,∇v) in Ω and

u ≤ v on ∂Ω, then u ≤ v in Ω.
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3.1. Proof of Theorem 1

Fix ε > 0. For any δ > 0, we define Ωδ = {x ∈ Ω : 0 < d(x) < δ}. Since Ω is
C2-smooth, choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1) and

(16) |∇d(x)| = 1, ∆d(x) = −(N − 1)H(x̄) + o(1), ∀ x ∈ Ωδ1 .

where, for x ∈ Ωδ1 , x̄ denotes the unique point of the boundary such that d(x) =
|x− x̄| and H(x̄) denotes the mean curvature of the boundary at that point.

Let

w± = ξ0φ(K
2(d(x)))

(

1 + (A0 ± ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±(d(x)) = ξ0φ(K
2(d(x)))

(

1 + λ±(A0 ± ε)(− ln(d(x)))−β
)

such that for x ∈ Ωδ1

g(w±(x)) = g(ξ0φ(K
2(d(x))))+ξ0(A0±ε)φ(K2(d(x)))g′(Φ±(d(x)))(− ln(d(x)))−β .

Since g ∈ NRV Z−γ , by Proposition 1 we obtain

lim
d(x)→0

g(ξ0φ(K
2(d(x))))

g(Φ±(d(x)))
= lim
d(x)→0

g′(ξ0φ(K
2(d(x))))

g′(Φ±(d(x)))
= 1.

Define r = d(x) and

I1(r) = (− ln r)β
(

4
K2(r)φ′′(K2(r))

φ′(K2(r))
+ 2

K(r)k′(r)

k2(r)
+

g(ξ0φ(K
2(r)))

ξ0g(φ(K2(r)))
+ 2

)

;

I2±(r) = (A0 ± ε)

(

4
K2(r)φ′′(K2(r))

φ′(K2(r))
+ 2

K(r)k′(r)

k2(r)
+

g′(Φ±(r))

g′(ξ0φ(K2(r)))

×
φ(K2(r))g′(ξ0φ(K

2(r)))

φ′(K2(r))
+ 2

)

;

I3±(x) = β(A0 ± ε)
φ(K2(r))

φ′(K2(r))k2(r)

(

(β + 1)(− ln r)−2r−2 + (− ln r)−1r−1∆d(x)

−(− ln r)−1r−2
)

+ (B0 ± ε)(− ln r)βr
g(ξ0φ(K

2(r)))

ξ0g(φ(K2(r)))
;

I4±(x) = 2
K(r)

k(r)

(

(A0 ± ε)
(

∆d(x) + 2β(− ln r)−1r−1
)

+∆d(x)(− ln r)β
)

+(A0 ± ε)(B0 ± ε)r
g′(Φ±(r))

g′(ξ0φ(K2(r)))

φ(K2(r))g′(ξ0φ(K
2(r)))

φ′(K2(r))
.

By (10), (14), Lemmas 1, 4 and 5, combining with the choices of ξ0, A0 in Theorem
1, we obtain the following lemma.
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Lemma 8. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (H3) holds.
If k ∈ Λ1,β and η > 0 in (g3), then

(i) lim
r→0

I1(r) = −2D1k;

(ii) lim
r→0

I2±(r) = (A0 ± ε)(4− 2Ck(γ + 1));

(iii) lim
d(x)→0

I3±(x) = 0;

(iv) lim
d(x)→0

I4±(x) = 0;

(v) lim
d(x)→0

(I1(r) + I2±(r) + I3±(x) + I4±(x)) = ±ε(4− 2Ck(γ + 1)).

Proof of Theorem 1. Let v ∈ C2+α(Ω) ∩ C1(Ω̄) be the unique solution of the
problem

(17) −∆v = 1, v > 0, x ∈ Ω, v|∂Ω = 0.

By the Hopf maximum principle [19], we see that

(18) ∇v(x) 6= 0, ∀x ∈ ∂Ω and c5d(x) ≤ v(x) ≤ c6d(x), ∀x ∈ Ω,

where c5, c6 are positive constants.

By (b1), (b2), Lemma 1 and K ∈ C[0, δ0) with K(0) = 0, we see that there
exist δ1ε, δ2ε ∈

(

0,min{1, δ1}
)

(which is corresponding to ε) sufficiently small such
that

(I) 0 ≤ K2(r) ≤ δ1ε, r ∈ (0, δ2ε);

(II) k2(d(x))(1 + (B0 − ε)d(x)) ≤ b(x) ≤ k2(d(x))(1 + (B0 + ε)d(x)), x ∈ Ωδ1ε ;

(III) I1(r) + I2+(r) + I3+(x) + I4+(x) ≤ 0, ∀ (x, r) ∈ Ωδ1ε × (0, δ2ε);

(IV) I1(r) + I2−(r) + I3−(x) + I4−(x) ≥ 0, ∀ (x, r) ∈ Ωδ1ε × (0, δ2ε).

Now we define

ūε = ξ0φ(K
2(d(x)))

(

1 + (A0 + ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1ε .

Then for x ∈ Ωδ1ε

g(ūε(x)) = g(ξ0φ(K
2(d(x)))) + ξ0(A0 + ε)φ(K2(d(x)))g′(Φ+(d(x)))(− ln(d(x)))−β ,

where λ+ ∈ (0, 1) and

Φ+(d(x)) = ξ0φ(K
2(d(x)))

(

1 + λ+(A0 + ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1ε .

By Lemma 8 and a direct calculation, we see that for x ∈ Ωδ1ε

∆ūε(x) + k2(d(x))(1 + (B0 + ε)d(x))g(ūε(x))
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= 4ξ0φ
′′(K2(d(x)))K2(d(x))k2(d(x))

(

1 + (A0 + ε)(− ln(d(x)))−β
)

+ 2ξ0φ
′(K2(d(x)))k2(d(x))

(

1 + (A0 + ε)(− ln(d(x)))−β
)

+ 2ξ0φ
′(K2(d(x)))K(d(x))k′(d(x))

(

1 + (A0 + ε)(− ln(d(x)))−β
)

+ 2ξ0φ
′(K2(d(x)))K(d(x))k(d(x))∆d(x)

(

1 + (A0 + ε)(− ln(d(x)))−β
)

+ 4ξ0β(A0 + ε)φ′(K2(d(x)))K(d(x))k(d(x))(− ln(d(x)))−β−1(d(x))−1

+ ξ0β(A0 + ε)φ(K2(d(x)))
(

(β + 1)(− ln(d(x)))−β−2(d(x))−2

+(− ln(d(x)))−β−1(d(x))−1∆d(x) − (− ln(d(x)))−β−1(d(x))−2
)

+ k2(d(x))
(

1 + (B0 + ε)d(x)
)

(

g(ξ0φ(K
2(d(x))))

+ ξ0(A0 + ε)φ(K2(d(x)))g′(Φ+(d(x)))(− ln(d(x)))−β
)

= ξ0φ
′(K2(d(x)))k2(d(x))(− ln(d(x)))−β

(

I1(r) + I2+(r) + I3+(x) + I4+(x)
)

≤ 0,

where r = d(x), i.e., ūε is a supersolution of equation (1) in Ωδ1ε .

In a similar way, we show that

uε = ξ0φ(K
2(d(x)))

(

1 + (A0 − ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1ε ,

is a subsolution of equation (1) in Ωδ1ε .

Let u ∈ C(Ω̄) ∩ C2+α(Ω) be the unique solution to problem (1). We assert
that there exists M large enough such that

(19) u(x) ≤ Mv(x) + ūε(x), uε(x) ≤ u(x) +Mv(x), x ∈ Ωδ1ε ,

where v is the solution of problem (17).

In fact, we can choose M large enough such that

u(x) ≤ ūε(x) +Mv(x) and uε(x) ≤ u(x) +Mv(x) on {x ∈ Ω : d(x) = δ1ε}.

We see by (g1) that ūε(x) + Mv(x) and u(x) + Mv(x) are also supersolutions of
equation (1) in Ωδ1ε . Since u = ūε +Mv = u +Mv = uε = 0 on ∂Ω, (19) follows
by (g1) and Lemma 7. Hence, for x ∈ Ωδ1ε

A0 − ε−
Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
≤ (− ln(d(x)))β

(

u(x)

ξ0φ(K2(d(x)))
− 1

)

and

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

≤ A0 + ε+
Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
.

Consequently, by (18) and Lemma 4 (v),

A0 − ε ≤ lim inf
d(x)→0

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

;
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lim sup
d(x)→0

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

≤ A0 + ε.

Thus, letting ε → 0, we obtain (7).

3.2. Proof of Theorem 2

As before, fix ε > 0. For any δ > 0, we define Ωδ = {x ∈ Ω : 0 < d(x) < δ}.
Since Ω is C2-smooth, choose δ1 ∈ (0, δ0) such that d ∈ C2(Ωδ1) and (16) holds.

Let

w± = ξ0φ(K
2(d(x)))

(

1 + (A1 ± ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1 .

By the Lagrange mean value theorem, we obtain that there exist λ± ∈ (0, 1) and

Φ±(d(x)) = ξ0φ(K
2(d(x)))

(

1 + λ±(A1 ± ε)(− ln(d(x)))−β
)

such that for x ∈ Ωδ1

g(w±(x)) = g(ξ0φ(K
2(d(x))))+ξ0(A1±ε)φ(K2(d(x)))g′(Φ±(d(x)))(− ln(d(x)))−β .

Since g ∈ NRV Z−γ , by Proposition 1 we obtain

lim
d(x)→0

g(ξ0φ(K
2(d(x))))

g(Φ±(d(x)))
= lim
d(x)→0

g′(ξ0φ(K
2(d(x))))

g′(Φ±(d(x)))
= 1.

Define r = d(x) and

I1(r) = (− ln r)β
(

4
K2(r)φ′′(K2(r))

φ′(K2(r))
+ 2

K(r)k′(r)

k2(r)
+

g(ξ0φ(K
2(r)))

ξ0g(φ(K2(r)))
+ 2

)

;

I2±(r) = (A1 ± ε)

(

4
K2(r)φ′′(K2(r))

φ′(K2(r))
+ 2

K(r)k′(r)

k2(r)
+

g′(Φ±(r))

g′(ξ0φ(K2(r)))

×
φ(K2(r))g′(ξ0φ(K

2(r)))

φ′(K2(r))
+ 2

)

;

I3±(x) = β(A1 ± ε)
φ(K2(r))

φ′(K2(r))k2(r)

(

(β + 1)(− ln r)−2r−2 + (− ln r)−1r−1∆d(x)

−(− ln r)−1r−2
)

+ (B0 ± ε)(− ln r)βr
g(ξ0φ(K

2(r)))

ξ0g(φ(K2(r)))
;

I4±(x) = 2
K(r)

k(r)

(

(A1 ± ε)
(

∆d(x) + 2β(− ln r)−1r−1
)

+∆d(x)(− ln r)β
)

+(A1 ± ε)(B0 ± ε)r
g′(Φ±(r))

g′(ξ0φ(K2(r)))

φ(K2(r))g′(ξ0φ(K
2(r)))

φ′(K2(r))
.

By (10), (14), Lemmas 1, 4 and 6, combining with the choices of ξ0, A1, A2, A3

in Theorem 2, we obtain the following lemma.
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Lemma 9. Suppose that g satisfies (g1)-(g3), b satisfies (b1)-(b2) and (H1)-(H3)
hold, then

(i) lim
r→0

I1(r) = −2D1k +A2, if k ∈ Λ1,β ,

(ii) lim
r→0

I1(r) = A2, if k ∈ Λ2,

(iii) lim
r→0

I2±(r) = (A1 ± ε)(4− 2Ck(γ + 1));

(iv) lim
d(x)→0

I3±(x) = 0;

(v) lim
d(x)→0

I4±(x) = 0;

(vi) lim
d(x)→0

(

I1(r) + I2±(r) + I3±(x) + I4±(x)
)

= ±ε(4− 2Ck(γ + 1)).

Proof of Theorem 2. As in the proof of Theorem 1, suppose that

ūε = ξ0φ(K
2(d(x)))

(

1 + (A1 + ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1ε .

Then, by Lemma 9 and a direct calculation, we have for x ∈ Ωδ1ε

∆ūε(x) + k2(d(x))
(

1 + (B0 + ε)d(x)
)

g(ūε(x))

= ξ0φ
′(K2(d(x)))k2(d(x))(− ln(d(x)))−β

(

I1(r) + I2+(r) + I3+(x) + I4+(x)
)

≤ 0,

where r = d(x), i.e., ūε is a supersolution of equation (1) in Ωδ1ε .

In a similar way, we can show that

uε = ξ0φ(K
2(d(x)))

(

1 + (A1 − ε)(− ln(d(x)))−β
)

, x ∈ Ωδ1ε ,

is a subsolution of equation (1) in Ωδ1ε .

As in the proof of Theorem 1, we obtain for x ∈ Ωδ1ε

A1 − ε−
Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
≤ (− ln(d(x)))β

(

u(x)

ξ0φ(K2(d(x)))
− 1

)

and

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

≤ A1 + ε+
Mv(x)(− ln(d(x)))β

ξ0φ(K2(d(x)))
.

Consequently, by (18) and Lemma 4 (v),

A1 − ε ≤ lim inf
d(x)→0

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

,

lim sup
d(x)→0

(− ln(d(x)))β
(

u(x)

ξ0φ(K2(d(x)))
− 1

)

≤ A1 + ε.
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Thus, letting ε → 0, we obtain (9).
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