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ASYMPTOTIC ANALYSIS OF THE NÖRLUND AND

STIRLING POLYNOMIALS

Mark Daniel Ward

Dedicated to the memory of Philippe Flajolet (1948–2011)
and to the memory of Herbert S. Wilf (1931–2012).

We provide a full asymptotic analysis of the Nörlund polynomials and Stir-
ling polynomials. We give a general asymptotic expansion—to any desired
degree of accuracy—when the parameter is not an integer. We use singularity
analysis, Hankel contours, and transfer theory. This investigation was moti-
vated by a need for such a complete asymptotic description, with parameter
1/2, during this author’s recent solution of Wilf’s 3rd (previously) Unsolved
Problem.

1. BACKGROUND

Let B(z) = z/(ez − 1). The Nörlund polynomials b
〈α〉
n are defined by

(1) (B(z))α =
( z

ez − 1

)α

=

∞
∑

n=0

b〈α〉n

zn

n!
.

The Nörlund polynomials have been studied in many contexts. They were intro-
duced by Nörlund [10]. Many connections have been identified with Bernoulli and
Stirling numbers; see, e.g., [2], [3], [5], [6]. Properties of the Nörlund polynomials
have also been studied directly; see, for instance, [1] and [9].

The function B(z) = z/(ez − 1) is well known as the exponential generating
function of the Bernoulli numbers. In the notation of Nörlund polynomials, the
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Bernoulli numbers are exactly b
〈1〉
n . I.e., the Bernoulli numbers are exactly the

Nörlund polynomials b
〈α〉
n evaluated at α = 1. Thus, the Nörlund polynomials

evaluated at a general positive real number α are generalized Bernoulli numbers.

The Stirling numbers (of both the first and second kind) and their many
identities have been extensively studied and are among the main objects of study
in combinatorial analysis. Unfortunately, the notation “Stirling polynomials” has
different meanings in different contexts. Don Knuth wrote to the author recently
[8] (upon seeing an abstract of the author’s talk based on a preprint of this paper),
urging the use of Stirling polynomials σn(x) as described on page 272 of [7]:

( zez

ez − 1

)x

= x
∑

n

σn(x)z
n.

With this definition, we associate Nörlund and Stirling polynomials by the identity

b
〈α〉
n

n!
= α(−1)nσn(α).

Because of the extensive use of the Bernoulli numbers in the Euler-MacLaurin
formula and in many other asymptotic expansions, it is natural to investigate the
asymptotic properties of the Nörlund and Stirling polynomials, when α is fixed,
and as n→∞.

2. MOTIVATION

Apparently, a complete asymptotic description of the Nörlund and Stirling
polynomials has not yet appeared in the literature. The asymptotic properties of

the coefficients
b
〈1/2〉
n

n!
of
√

B(z) played a

key role in [11] (a solution of Wilf’s 3rd
previously Unsolved Problem [12]). Here,

we provide a general analysis of
b
〈α〉
n

n!
and

σn(α) for any positive α ∈ R, as n → ∞.
The case of integer-valued α is not com-
plicated, but the analysis with non-integer
α’s is quite intricate. The general form of
b
〈α〉
n

n!
, for any α, is given in Table 1. We use

the notation

αj = (α)(α − 1)(α− 2) · · · (α− j + 1)

for the jth falling power of α. We utilize

n
b
〈α〉
n

n!
0 1

1 −
α

2

2
α

12
+

α2

8

3 −
α2

24
−

α3

48

4 −
α

720
+

α2

288
+

α3

96
+

α4

384

5
α2

1440
−

α3

576
−

α4

576
−

α5

3840

Table 1. The coefficients of (B(z))α.

analytic combinatorics, in the style of Flajolet and Sedgewick [4]; see espe-
cially p. 381–384, which discusses the asymptotic properties of [zn](1 − z)α. Our
analysis requires an understanding of [zn]zα(1− z)α. When α is an integer, this is
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a trivial modification; however, when α is not an integer, the coefficients ek (from
[4]) must be modified and will depend on α too. We refer to these more general
constants here as ek(α, j).

3. MAIN RESULTS

One feature of the following singularity analysis is the contrast between the
structure of (B(z))α when α is an integer versus a non-integer. In the first case
(Remark 1), where α is an integer, countably many poles provide a full asymp-
totic description. In the second case (Theorem 2 and Corollary 3), where α is a
non-integer, the asymptotics rely on contributions from two algebraic singularities.

The case where α is an integer is very straightforward, so we simply refer to
this as a “Remark.”

Remark 1. Let (B(z))α =
(

z

ez − 1

)α

=

∞
∑

n=0

b
〈α〉
n

n!
zn, where α is any positive integer.

Then for n > α,

(2)
b
〈α〉
n

n!
=

∑

0≤j≤α−1

j≡n mod 2

(

n− j − 1

n− α

)

b
〈α〉
j

j!

2 ζ(n− j)

(2π)n−j
(−1)α+(n+j)/2

.

Also, let
(

zez

ez − 1

)α

= α
∑

n

σn(α)z
n, where α is again a positive integer. Then for n > α,

since
b
〈α〉
n

n!
= α(−1)nσn(α), we have

(3) σn(α) =
∑

0≤j≤α−1

j≡n mod 2

(

n− j − 1

n− α

)

σj(α)
2 ζ(n− j)

(2π)n−j
(−1)α−(n+j)/2

.

Note. Although
b
〈α〉
0

0!
,
b
〈α〉
1

1!
, . . . ,

b
〈α〉
α−1

(α− 1)!
are found on the right hand side of (2),

and σ0(α), σ1(α), . . . , σα−1(α) are found on the right hand side of (3), these terms
can just be treated as constants, since they do not depend on n.

The case where α is a non-integer is more intricate:

Theorem 2. Let (B(z))α =
(

z

ez − 1

)α

=
∞
∑

n=0

b
〈α〉
n

n!
zn, where α is any positive

non-integer. Then for each positive integer T, the asymptotic expansion of
b
〈α〉
n

n!
is

b
〈α〉
n

n!
=

nα

Γ(α)(2π)n

T−1
∑

j=0

b
〈α〉
j

j!

c
〈α〉
n,j (2π)

j(α− 1)j

nj+1

(

1 +

T−j−1
∑

k=1

ek(α, j)

nk

)

(4)

+O

(

1

(2π)nnT+1−α

)

,
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where

c
〈α〉
n,j :=

{

2(−1)(n−j)/2 cos(π(j − α)) for j ≡ n mod 2,

2(−1)(n−j−1)/2 sin(π(j − α)) for j 6≡ n mod 2,

and

ek(α, j) =

2k
∑

ℓ=k

(−1)ℓλ
〈α〉
k,ℓ (α− j − 1)ℓ, and λ

〈α〉
k,ℓ = [vktℓ]et(1 + vt)α−1/v−1.

Corollary 3. Let
(

zez

ez − 1

)α

= α
∑

n

σn(α)z
n, where α is again a positive non-integer.

Then for n > α, since
b
〈α〉
n

n!
= α(−1)nσn(α), it follows from Theorem 2 that, for

each positive integer T, the asymptotic expansion of σn(α) is

σn(α) =
nα

Γ(α)(2π)n

T−1
∑

j=0

(−1)n+jσn(α)
c
〈α〉
n,j (2π)

j(α− 1)j

nj+1

(

1 +

T−j−1
∑

k=1

ek(α, j)

nk

)

(5)

+O

(

1

(2π)nnT+1−α

)

,

where, as in Theorem 2,

c
〈α〉
n,j :=

{

2(−1)(n−j)/2 cos(π(j − α)) for j ≡ n mod 2,

2(−1)(n−j−1)/2 sin(π(j − α)) for j 6≡ n mod 2,

and

ek(α, j) =

2k
∑

ℓ=k

(−1)ℓλ
〈α〉
k,ℓ (α− j − 1)ℓ, and λ

〈α〉
k,ℓ = [vktℓ]et(1 + vt)α−1/v−1.

4. PROOF OF REMARK 1

The remark can be seen as a partial fraction decomposition. We cast the proof
using singularity analysis, so the reader can contrast the singularity analysis used
to prove the remark with the singularity analysis used in the proof of Theorem 2.

We use singularity analysis in the style of [4]. Since α is an integer in Re-

mark 1, then (B(z))α =
(

z

ez − 1

)α

has a removable singularity at z = 0 and has a

pole of order α at each point ζk := 2πik, for nonzero integers k. There are no other
singularities for the function (B(z))α.

The series representation of (B(z))α =
(

z

ez − 1

)α

from (1) is valid in an open

disc of radius 2π around the origin. Thus, for each nonzero integer k, an analogous
series representation is available in an open disc of radius 2π around ζk:

( z − ζk
ez−ζk − 1

)α

=

∞
∑

n=0

b
〈α〉
n

n!
(z − ζk)

n.
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Simplifying this expression using ez−ζk = ez (since k is an integer), and multiplying

throughout by
zα

(z − ζk)α
, yields

( z

ez − 1

)α

= zα
∞
∑

n=0

b
〈α〉
n

n!
(z − ζk)

n−α.

Now we collect the contributions from each pole of order α, i.e., from ζk = 2πik for
nonzero integers k. For n > α,

[zn](B(z))α =
∑

k∈Z\{0}

ζ−n
k [zn]zα

α−1
∑

j=0

b
〈α〉
j

j!
ζjk(z − 1)j−α(6)

=
∑

k≥1

α−1
∑

j=0

(

1

ζn−j
k

+
1

ζn−j
−k

)

b
〈α〉
j

j!
[zn]zα(z − 1)j−α.

Since α is an integer, then

[zn]zα(z − 1)j−α = (−1)j−α[zn−α](1− z)j−α = (−1)j−α

(

n− j − 1

n− α

)

.

Also, since j, k, n are all integers,

1

ζn−j
k

+
1

ζn−j
−k

=
2(−1)(n−j)/2

(2πk)n−j
, if j ≡ n mod 2,

and
1

ζ
n−j
k

+
1

ζ
n−j
−k

= 0 otherwise. Thus, (6) simplifies to

[zn](B(z))α =
∑

k≥1

∑

0≤j≤α−1

j≡n mod 2

2(−1)(n−j)/2(−1)j−α

(2πk)n−j

b
〈α〉
j

j!

(

n− j − 1

n− α

)

.

After one final simplification using ζ(n − j) =
∑

k≥1

1

kn−j
, the proof of Remark 1 is

complete.

5. PROOF OF THEOREM 2

In the proof of Remark 1, since α was a positive integer, then (B(z))α had a
pole of order α at ζk := 2πik for every nonzero integer k. In contrast, in Theorem 2,
α is a positive non-integer. Thus (B(z))α has an algebraic singularity at 2πik for
every nonzero integer k, as depicted in Figure 1a. The singularity at 0 is removable
since z/(ez − 1) has a removable singularity at 0. Thus, in the analysis below,
we want to ensure that the branch cuts are selected in such a way that (B(z))α

is analytic in a doubly-indented disc, centered at the origin, with radius strictly
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ℜ(z)

ℑ(z)

−4π −2π 2π 4π

−6π

−4π

−2π

2π

4π

6π

ℜ(z)

ℑ(z)

−4π −2π 2π 4π

−6π

−4π

−2π

2π

4π

6π

Figure 1. (a.) One possible choice of branch cuts corresponding to the algebraic singular-
ities of (B(z))α at z = 2πik for nonzero integers k. (b.) A double-punctured disc, with
radius strictly larger than 2π, and punctures at z = ±2πi.

larger than 2π; the indentations should be at ±2πi. Such a doubly-punctured disc
is also depicted in Figure 1b.

Since we do not want the branch cuts of (B(z))α to intersect the doubly-
punctured disc, we must instead use a scheme in which the branch cuts are directed

away from the origin, such as the branch cuts depicted in Figure 2a or Figure 2b.
Indeed, in Figure 2b, (B(z))α can be extended beyond the doubly-punctured disc.
The region where (B(z))α is analytic actually extends to the entire complex plane—
except for the thick black lines [2πi, i∞) and (−i∞,−2πi]—as shown in Figure 2c.

The singularity analysis theory of [4] is very useful for proving Theorem 2.
We paraphrase Theorem VI.5 from [4], which allows us to determine the asymptotic

behavior of
b
〈α〉
n

n!
, based on the properties of (B(z))α near the closest singularities

to the origin, at z = ±2πi. We have the following four conditions:

1. The function (B(z))α is analytic in |z| < 2π;

2. The function (B(z))α has exactly two non-removable singularities on the circle
|z| = 2π, namely, at the points ζ1 = 2πi and ζ−1 = −2πi;

3. There is a ∆-domain ∆0 such that (B(z))
α is analytic in the indented disc

D = (ζ1 ·∆0) ∩ (ζ−1 ·∆0),

with ζ ·∆0 the image of ∆0 by the mapping z 7→ ζz;
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ℜ(z)

ℑ(z)

−4π −2π 2π 4π

−6π

−4π

−2π

2π

4π

6π

ℜ(z)

ℑ(z)

−4π −2π 2π 4π

−6π

−4π

−2π

2π

4π

6π

ℜ(z)

ℑ(z)

−4π −2π 2π 4π

−4π

−2π

2π

4π

Figure 2. (a.) Branch cuts corresponding to the algebraic singularities of (B(z))α at
z = 2πik for nonzero integers k. These branch cuts are more suitable than those in
Figure 1a, because they do not intersect with the doubly-punctured disc from Figure 1b.
(b.) Another choice of branch cuts (in which all of the branch cuts in the upper half plane
are overlapping, and all of the branch cuts in the lower half plane are overlapping), which
is even more suitable. (c.) When all branch cuts in the upper half plane are overlapping,
and all of the branch cuts in the lower half plane are overlapping, then (B(z))α is analytic
on the entire complex plane except not on the thick black lines, namely [2πi, i∞) and
(−i∞,−2πi].
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4. If we define

σ
〈α〉
1 (z) = zα

T−1
∑

j=0

b
〈α〉
j

j!
ζj1(1− z)j−αeiπ(j−α),

σ
〈α〉
−1 (z) = zα

T−1
∑

j=0

b
〈α〉
j

j!
ζj−1(1− z)j−αe−iπ(j−α),

τ 〈α〉(z) = (1− z)T−α,

then

(B(z))α = σ
〈α〉
j (z/ζj) +O(τ 〈α〉(z/ζj)) as z → ζj in D, for j = −1 or 1.

Thus, by Theorem VI.5 of [4], it follows that

[zn](B(z))α = ζ−n
1 [zn]σ

〈α〉
1 (z) + ζ−n

−1 [z
n]σ

〈α〉
−1 (z) +O

(

1

(2π)nnT+1−α

)

.

Equivalently,

[zn](B(z))α =
T−1
∑

j=0

(

eiπ(j−α)

ζn−j
1

+
e−iπ(j−α)

ζn−j
−1

)

b
〈α〉
j

j!
[zn]zα(1− z)j−α(7)

+O

(

1

(2π)nnT+1−α

)

.

To keep our notation compact, we define c
〈α〉
n,j so that

c
〈α〉
n,j :=

{

2(−1)(n−j)/2 cos(π(j − α)) for j ≡ n mod 2,

2(−1)(n−j−1)/2 sin(π(j − α)) for j 6≡ n mod 2,

and thus

eiπ(j−α)

ζn−j
1

+
e−iπ(j−α)

ζn−j
−1

=
c
〈α〉
n,j

(2π)n−j
.

Now we can simplify (7) to

(8) [zn](B(z))α =
T−1
∑

j=0

c
〈α〉
n,j

(2π)n−j

b
〈α〉
j

j!
[zn]zα(1 − z)j−α +O

(

1

(2π)nnT+1−α

)

.

Explicit expressions for [zn](1−z)j−α are well-known (e.g., p. 381–384 of [4]). Here,
however, an extra zα is present which fundamentally alters the result, since α is not
an integer. The argument is sufficiently intricate that we include the derivation.
We follow the technique, and some of the notation, from Theorem VI.1 in [4].
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To compute [zn]zα(1− z)j−α, we use Cauchy’s coefficient formula:

(9) [zn]zα(1− z)j−α =
1

2πi

∫

C0

zα(1− z)j−α dz

zn+1
,

where C0 is a circle of radius smaller than 1 (so that the circle does not include the
singularity at z = 1 in the function zα−n−1(1−z)j−α), e.g., we could use a circle of
radius 1/2, centered at the origin, and oriented in the counterclockwise direction.

Next, we continuously deform C0 into CR; such a deformation avoids z = 1,
so the deformation takes place in the region where the integrand zα−n−1(1− z)j−α

of (9) is analytic. The region CR is depicted in Figure 3.

ℜ(z)

ℑ(z)

1

Figure 3. A contour CR, with coun-

terclockwise orientation, and the

outer curve of radius R.

The contribution from the outer circle can be
negated as we take R→∞. The remainder of
the contribution can be specified by using the
integration path

H(n) = H−(n) ∪H◦(n) ∪H+(n),

(the notation follows [4]), where

H−(n) = {z = w − i/n, w ≥ 1},

H+(n) = {z = w + i/n, w ≥ 1},

H◦(n) = {z = 1− eiθ/n, θ ∈ [−π/2, π/2]}.

Finally, we let z = 1 + t/n, so that using the
transformation

z = 1 + t/n, and dz = dt/n,

the integral
1

2πi

∫

C

zα(1− z)j−α 1

zn+1
dz simplifies to

[zn]zα(1− z)j−α =
1

2πi

∫

H

(−t/n)j−α(1 + t/n)α−n−1 dt/n.

We substitute v = 1/n and get

[zn]zα(1− z)j−α =
nα−1−j

2πi

∫

H

(−t)j−αe−t
∑

k

2k
∑

ℓ=k

λ
〈α〉
k,ℓ

tℓ

nk
dt,

where
λ
〈α〉
k,ℓ = [vktℓ]et(1 + vt)α−1/v−1.

At this point, our notation and argument diverges from [4] since our λk,l’s and our

ek’s are more general. The analogous terms in [4] are the special cases λ
〈0〉
k,ℓ and

ek(α, 0). We obtain

[zn]zα(1− z)j−α = nα−j−1
∑

k

2k
∑

ℓ=k

λ
〈α〉
k,ℓ (−1)

ℓ 1

2πi

∫

H

(−t)ℓ−α+je−t 1

nk
dt(10)
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= nα−j−1
∑

k

2k
∑

ℓ=k

λ
〈α〉
k,ℓ (−1)

ℓ 1

Γ(α− ℓ− j)

1

nk

=
nα−j−1

Γ(α− j)

∑

k

ek(α, j)
1

nk

where ek(α, j) =
2k
∑

ℓ=k

(−1)ℓλ
〈α〉
k,ℓ (α− j − 1)ℓ.

We only expanded equation (8) to accuracy O((2π)−nn−T−1+α), and there-
fore we also only need to use (10) to accuracy O(n−T−1+α). Thus, we use this
truncated form of (10):

[zn]zα(1− z)j−α =
nα−j−1

Γ(α− j)

(

1 +

T−j−1
∑

k=1

ek(α, j)

nk

)

+O

(

1

nT+1−α

)

.

After a substitution into (8), Theorem 2 follows.
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