Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs

RELAXATIONS OF HALL'S CONDITION: OPTIMAL BATCH CODES WITH MULTIPLE QUERIES

Csilla Bujtás, Zsolt Tuza

Abstract

Combinatorial batch codes model the storage of a database on a given number of servers such that any k or fewer items can be retrieved by reading at most t items from each server. A combinatorial batch code with parameters n, k, m, t can be represented by a system \mathcal{F} of n (not necessarily distinct) sets over an m-element underlying set X, such that for any k or fewer members of \mathcal{F} there exists a system of representatives in which each element of X occurs with multiplicity at most t. The main purpose is to determine the minimum $N(n, k, m, t)$ of total data storage $\sum_{F \in \mathcal{F}}|F|$ over all combinatorial batch codes \mathcal{F} with given parameters. Previous papers concentrated on the case $t=1$. Here we obtain the first nontrivial results on combinatorial batch codes with $t>1$. We determine $N(n, k, m, t)$ for all cases with $k \leq 3 t$, and also for all cases where $n \geq$ $t\binom{m}{\lceil k / t\rceil-2}$. Our results can be considered equivalently as minimum total size $\sum_{F \in \mathcal{F}}|F|$ over all set systems \mathcal{F} of given order m and size n, which satisfy a relaxed version of Hall's Condition; that is, $\left|\bigcup \mathcal{F}^{\prime}\right| \geq\left|\mathcal{F}^{\prime}\right| / t$ holds for every subsystem $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of size at most k.

1. INTRODUCTION

Combinatorial batch codes and dual systems. Batch codes were introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [10]. They represent the distributed storage of an n-element database on a set of m servers when any k or fewer data items can be recovered by submitting a limited number t of queries to each server. This model can be used for amortizing the computational cost in

[^0]private information retrieval. Combinatorial batch code, studied in detail first by Paterson, Stinson and Wei [13], is the version of a batch code in which each server stores a subset of the database and decoding simply means reading items from servers. The latter model admits a purely combinatorial definition as a set system satisfying a requirement on systems of representatives. Therefore, it is in close connection with Hall-type conditions.

A set system \mathcal{F} over an underlying set X is the collection of some nonempty subsets of X. Objects $x \in X$ are called elements whilst objects $F \in \mathcal{F}$ are referred to as members. Moreover, the order and the size of a system \mathcal{F} are the number $|X|$ of elements and the number $|\mathcal{F}|$ of members, respectively. The total size of a system \mathcal{F} is defined as $\sum_{F \in \mathcal{F}}|F|$. Throughout this paper, 'set system' is meant as a 'multisystem'; that is, repetitions are allowed, distinct members of the system may correspond to the same subset of the underlying set.

A combinatorial batch code with parameters n, k, m, t can be represented with its 'dual' set system (shortly, $\mathrm{CBC}^{*}(n, k, m, t)$-system) \mathcal{F}, where the m elements of the underlying set correspond to the m servers and the members of \mathcal{F} correspond to the n items of data. A member $F_{i} \in \mathcal{F}$ then means the set of servers where the i th data item is stored. Hence, the total amount of data collectively stored by the m servers-which is the object of minimization-equals the total size of system \mathcal{F}. The formal definition of a $\operatorname{CBC}^{*}(n, k, m, t)$-system can be given as follows.

Definition 1. For positive integers k and t, a set system \mathcal{F} is a $\mathrm{CBC}^{*}(k, t)$-system if, for every subsystem $\mathcal{F}^{\prime}=\left\{F_{1}, \ldots, F_{\ell}\right\} \subseteq \mathcal{F}$ of size $1 \leq \ell \leq k$, there exist elements x_{1}, \ldots, x_{ℓ} such that $x_{i} \in F_{i}$ holds for every $1 \leq i \leq \ell$ and each element of X has multiplicity at most t in $\left\{x_{1}, \ldots, x_{\ell}\right\}$. A set system \mathcal{F} over the underlying set X is called a $\mathrm{CBC}^{*}(n, k, m, t)$-system if $|\mathcal{F}|=n,|X|=m$, and \mathcal{F} is a $C B C^{*}(k, t)$ system. Moreover, $N(n, k, m, t):=\min _{\mathcal{F}} \sum_{F \in \mathcal{F}}|F|$ denotes the minimum total size of a system taken over all $C B C^{*}(n, k, m, t)$-systems \mathcal{F}, subject to that there exists at least one such system.

Note that if both $m t<k$ and $m t<n$ hold, no $\operatorname{CBC}^{*}(n, k, m, t)$-system exists. Otherwise, the system containing the underlying set X as member with multiplicity n is a $\mathrm{CBC}^{*}(n, k, m, t)$ and hence $N(n, k, m, t)$ is well-defined. We will assume throughout that n, k, m and t denote positive integers such that $m t \geq \min \{n, k\}$. Systems which are $\mathrm{CBC}^{*}(n, k, m, t)$ and have minimum total size $N(n, k, m, t)$ will be called optimal.

Hall-type conditions. Hall's Theorem [9] and related results on algorithms serve as basic tools in several branches of combinatorics and discrete optimization. Also, nonstandard Hall-type conditions and their consequences were intensively studied (see, e.g., $[\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 2}]$). Each earlier paper on combinatorial batch codes with $t=1$ applied Hall's Condition. Here we use a relaxed version whose origin goes back to the works $[\mathbf{7}, \mathbf{8}, \mathbf{1 2}]$.

Definition 2. We say that a set system \mathcal{F} satisfies the (k, t)-Hall Condition (shortly, $(k, t)-H C)$ if $\left|\cup \mathcal{F}^{\prime}\right| \geq\left|\mathcal{F}^{\prime}\right| / t$ holds for every subsystem $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ which contains at most k members.

Results. In $[\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{1 0}, \mathbf{1 3}]$ several results on combinatorial batch codes were obtained, moreover their connections with transversal matroids [2], unbalanced expander graphs $[\mathbf{1 0}]$ and binary constant-weight codes $[\mathbf{1}]$ were also pointed out. These papers considered-nearly exclusively - the case of $t=1$, although some simple relations between combinatorial batch codes with $t>1$ and those with $t=1$ were established in [10].

In this paper we obtain the first nontrivial results for the case of general t. In Section 2 we prove the Equivalence Theorem, which is a three-sided characterization: beside the equivalence of the (k, t)-Hall Condition and the property of being a $\mathrm{CBC}^{*}(k, t)$-system, the requirement can also be expressed in a form which implies that if $\lceil k / t\rceil=\left\lceil k^{\prime} / t\right\rceil$ then a $\mathrm{CBC}^{*}(k, t)$-system is a $\mathrm{CBC}^{*}\left(k^{\prime}, t\right)$-system and vice versa. Some further basic properties and a cardinality-balancing transformation will be presented, too. In Section 3 and Section 4 we determine the minimum total size $N(n, k, m, t)$ for all parameters satisfying $n \geq t\binom{m}{\lceil k / t\rceil-2}$ and for all cases where $k \leq 3 t$, respectively. By the Equivalence Theorem, several methods developed originally for the case $t=1$ can be applied for the general setting $t \geq 1$. Our proof techniques used here are similar to those in [3] and occasionally to those in [1] and [13], too. Some results proved here have been announced without proofs in [5].

2. SOME BASIC PROPERTIES

In this section we deal with three types of properties. First, we give three equivalent conditions for a system to be a $\mathrm{CBC}^{*}(k, t)$. Then, we present some basic inequalities about the size distributions of members in a $\mathrm{CBC}^{*}(n, k, m, t)$, and finally we show that for every four-tuple of parameters there exists an optimal $\mathrm{CBC}^{*}(n, k, m, t)$ which either does not contain members larger than $\lceil k / t\rceil-1$ or does not contain members smaller than $\lceil k / t\rceil-1$.

In the following theorem, the equivalence of (i) and (ii) is a consequence of more general results on systems of representatives $[\mathbf{8}, \mathbf{1 2}, \mathbf{7}]$, hence we prove only the equivalence of (ii) and (iii).

Theorem 3. (Equivalence Theorem) For all positive integers k and t, and for every set system \mathcal{F}, the following statements are equivalent:
(i) \mathcal{F} is a $C B C^{*}(k, t)$-system.
(ii) \mathcal{F} satisfies the (k, t)-Hall Condition.
(iii) For every $\ell<\lceil k / t\rceil$ and for every ℓ-element subset X^{\prime} of the underlying set, at most ℓt members of \mathcal{F} are subsets of X^{\prime}.

Proof. (ii) \Leftrightarrow (iii) We prove the equivalence of the negations of (ii) and (iii). If (ii) does not hold, there exists a subsystem $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of size $i \leq k$, for which the union $X^{\prime}=\bigcup \mathcal{F}$ has at most $\lceil i / t\rceil-1$ elements. That is, X^{\prime} contains at least $i>t(\lceil i / t\rceil-1) \geq t\left|X^{\prime}\right|$ members of \mathcal{F}, and also $\left|X^{\prime}\right| \leq\lceil k / t\rceil-1$ is valid. This means that (iii) does not hold either. From the other direction, if a subset $X^{\prime} \subseteq X$ of cardinality $\ell \leq\lceil k / t\rceil-1$ contains more than ℓt members from \mathcal{F}, then the union of any $\ell t+1 \leq k$ of these members can contain at most $\left|X^{\prime}\right|=\ell<\ell+1=\lceil(\ell t+1) / t\rceil$ elements, which contradicts (ii).

Part (iii) of Theorem 3 expresses the (k, t)-Hall Condition referring only to $\lceil k / t\rceil$ and t as parameters. Hence, if an integer $t>1$ is fixed, not the exact value of k but only $\lceil k / t\rceil$ is that really matters the meaning of (k, t)-HC. Particularly, it would suffice to determine the optimal total size $N(n, k, m, t)$ only for cases where k is divisible by t.
Corollary 4. Assume that $\lceil k / t\rceil=\left\lceil k^{\prime} / t\right\rceil$. Then, a system \mathcal{F} is a $C B C^{*}(k, t)-$ system if and only if it is a $C B C^{*}\left(k^{\prime}, t\right)$-system; moreover, \mathcal{F} satisfies the (k, t) Hall Condition if and only if it satisfies the $\left(k^{\prime}, t\right)$-Hall Condition. Particularly, if $\lceil k / t\rceil=\left\lceil k^{\prime} / t\right\rceil$ then $N(n, k, m, t)=N\left(n, k^{\prime}, m, t\right)$ is valid for all n and m.

From now on, also requirement (iii) from the Equivalence Theorem will be referred to as (k, t)-HC. Applying Theorem 3, the next necessary condition for systems satisfying $(k, t)-\mathrm{HC}$ is easy to verify. The analogous result for the special case of $t=1$ first appeared in a proof of $[\mathbf{1 3}]$, and later it was stated in $[\mathbf{1}]$ and $[\mathbf{3}]$ as well.

Theorem 5. Let \mathcal{F} be a $C B C^{*}(n, k, m, t)$ and let ℓ_{i} denote the number of i-element members of \mathcal{F}, for every $1 \leq i \leq\lceil k / t\rceil$. Then,

$$
\sum_{i=1}^{\lceil k / t\rceil-1} \ell_{i}\binom{m-i}{\lceil k / t\rceil-1-i} \leq t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1} .
$$

Proof. We are going to estimate the number z of pairs (F, A) with $F \in \mathcal{F}, F \subseteq A \subseteq$ X and $|A|=\lceil k / t\rceil-1$. Every i-element member F from \mathcal{F} is contained in exactly $\binom{m-i}{\lceil k / t\rceil-1-i}$ such subsets A. Consequently, $z=\sum_{i=1}^{\lceil k / t\rceil-1} \ell_{i}\binom{m-i}{\lceil k / t\rceil-1-i}$. On the other hand, since \mathcal{F} satisfies (k, t)-HC, every $(\lceil k / t\rceil-1)$-element $A \subseteq X$ contains at most $t(\lceil k / t\rceil-1)$ members from \mathcal{F}. Therefore, $z \leq t(\lceil k / t\rceil-1)\binom{m}{\lceil k / t\rceil-1}$ and the inequality stated in the theorem follows.

Corollary 6. Every $C B C^{*}(n, k, m, t)$ contains at most $t(\lceil k / t\rceil-1)\binom{m}{\lceil k / t\rceil-1}$ members of size not exceeding $\lceil k / t\rceil-1$.

Due to the Equivalence Theorem, we can take some observations on extensions of a $\mathrm{CBC}^{*}(k, t)$-system \mathcal{F} with a new member $F \subseteq X$. First, since the fulfil-
ment of (k, t)-HC depends only on members of size at most $\lceil k / t\rceil-1$, the following statement clearly holds.
Observation 7. If \mathcal{F} is a $C B C^{*}(k, t)$-system and $|F| \geq\lceil k / t\rceil$, then $\mathcal{F} \cup\{F\}$ is a $C B C^{*}(k, t)$-system, as well. Therefore, an optimal $C B C^{*}(n, k, m, t)$-system does not contain members of size greater than $\lceil k / t\rceil$.

Second, since a member F of size $\lceil k / t\rceil-1$ is not contained in a $(\lceil k / t\rceil-1)$ element subset of X other than itself, the following statement is valid.
Proposition 8. Let \mathcal{F} be a $C B C^{*}(k, t)$-system and $|F|=\lceil k / t\rceil-1$. Then, $\mathcal{F} \cup\{F\}$ is a $C B C^{*}(k, t)$-system if and only if F contains fewer than $t(\lceil k / t\rceil-1)$ members from \mathcal{F}. Moreover, if ℓ_{i} denotes the number of members of size i in \mathcal{F} (for each $1 \leq i \leq\lceil k / t\rceil-1)$, then \mathcal{F} can be extended with L appropriately chosen new members each of cardinality $\lceil k / t\rceil-1$, such that the system remains a $C B C^{*}(k, t)$, if and only if

$$
L \leq t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1}-\sum_{i=1}^{\lceil k / t\rceil-1} \ell_{i}\binom{m-i}{\lceil k / t\rceil-1-i}
$$

Next, we present a transformation which is applicable for two members of a $\mathrm{CBC}^{*}(n, k, m, t)$ if one of them contains the other. Then, some (any) elements from the larger member can be transferred to the smaller one and the system remains a $\mathrm{CBC}^{*}(n, k, m, t)$ with the same total size. This transformation was introduced in [3] (Proposition 1) for the case $t=1$. In fact the proof remains the same for the general case $t \geq 1$, hence it is omitted here.
Proposition 9. [3] Let \mathcal{F} be a $C B C^{*}(n, k, m, t)$ with two members $F_{1} \subset F_{2}$ for which $\left|F_{1}\right|+2 \leq\left|F_{2}\right|$ and let A be a nonempty set such that $A \subset F_{2} \backslash F_{1}$. Then, replacing F_{1} and F_{2} with $F_{1}^{\prime}=F_{1} \cup A$ and $F_{2}^{\prime}=F_{2} \backslash A$, the obtained system \mathcal{F}^{\prime} is a $C B C^{*}(n, k, m, t)$ as well, and the two systems \mathcal{F} and \mathcal{F}^{\prime} have the same total size.

We say that a CBC^{*} is of type $[a, b]$ if the size of each $F \in \mathcal{F}$ satisfies $a \leq|F| \leq b$. Due to Observation 7, every optimal CBC* (n, k, m, t)-system is of type $[1,\lceil k / t\rceil]$. By Proposition 9 we can prove a stronger result for $\lceil k / t\rceil \geq 3$.
Proposition 10. If $\lceil k / t\rceil \geq 3$, then for every optimal $C B C^{*}(n, k, m, t)$-system \mathcal{F}, there exists an \mathcal{F}^{\prime} which is an optimal $C B C^{*}(n, k, m, t)$ as well, and has type either $[1,\lceil k / t\rceil-1]$ or $[\lceil k / t\rceil-1,\lceil k / t\rceil]$.
Proof. Suppose that an optimal $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F} contains a member F_{1} of size $\ell \leq\lceil k / t\rceil-2$ and also a member F_{2} of size $\lceil k / t\rceil$. Observation 7 implies that F_{2} can be replaced with any $\lceil k / t\rceil$-element subset F_{2}^{\prime} of the underlying set. Let us choose this new member such that $F_{2}^{\prime} \supset F_{1}$. Now, applying the transformation described in Proposition 9, an optimal $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F}^{\prime} is obtained which contains fewer members of size $\lceil k / t\rceil$ than \mathcal{F} did. Repeated application of this procedure yields an optimal $\mathrm{CBC}^{*}(n, k, m, t)$ of type either $[1,\lceil k / t\rceil-1]$ or $[\lceil k / t\rceil-$ $1,\lceil k / t\rceil]$.

In the simple cases listed in the following observation it is enough to take n singletons to obtain a $\mathrm{CBC}^{*}(n, k, m, t)$.

Observation 11. If at least one of $n \leq t m$ and $k \leq t$ is valid, then $N(n, k, m, t)=$ n.

The next proposition is the generalization of Theorem 4 of [13].
Proposition 12. For every four positive integers n, k, m and t, if $m=\lceil k / t\rceil$ and $n \geq t m$, then $N(n, k, m, t)=m n-t m(m-1)$.

Proof. Under the given conditions consider a $\operatorname{CBC}^{*}(n, k, m, t)$-system \mathcal{F}. $\operatorname{By}(k, t)$ HC, for every element x of the underlying set X, the $(m-1)$-element set $X \backslash\{x\}$ covers entirely at most $t(m-1)$ members of \mathcal{F}. Thus, x has to be involved in at least $n-t(m-1)$ members of \mathcal{F}. Therefore, counting the total size of the system by summing up the degrees of elements, $N(n, k, m, t) \geq m(n-t(m-1))$ must hold. On the other hand, let \mathcal{F}^{*} be the system over the underlying set $X=\left\{x_{1}, \ldots, x_{m}\right\}$, in which X is a member with multiplicity $n-t m$ and each singleton $\left\{x_{i}\right\}$ occurs with multiplicity t. Clearly, \mathcal{F}^{*} is a $\mathrm{CBC}^{*}(n, k, m, t)$-system and its total size is exactly $t m+(n-t m) m=m n-t m(m-1)$. This verifies the statement.

3. OPTIMUM VALUES FOR $n \geq t\binom{m}{\lceil k / t\rceil-2}$

Theorem 13. If $m \geq\left\lceil\frac{k}{t}\right\rceil$ and $n>t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1}$, then

$$
N(n, k, m, t)=n\left\lceil\frac{k}{t}\right\rceil-t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1} .
$$

Proof. Consider parameters n, k, m and t satisfying the conditions given in the theorem. Due to Corollary 6 , the number of members of \mathcal{F} which are of size smaller than $\lceil k / t\rceil$ is at most $t(\lceil k / t\rceil-1)\binom{m}{\lceil k / t\rceil-1}$. Thus, under the present conditions, system \mathcal{F} cannot be of type $[1,\lceil k / t\rceil-1]$. Then, Proposition 10 implies that there exists an optimal $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F} of type $[\lceil k / t\rceil-1,\lceil k / t\rceil]$. The total size of \mathcal{F} is precisely $n\lceil k / t\rceil-n^{\prime}$ where n^{\prime} denotes the number of $(\lceil k / t\rceil-1)$-element members. Applying Corollary 6 again, we obtain

$$
N(n, k, m, t)=n\left\lceil\frac{k}{t}\right\rceil-n^{\prime} \geq n\left\lceil\frac{k}{t}\right\rceil-t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1}
$$

On the other hand, take each $(\lceil k / t\rceil-1)$-element subset of an m-element underlying set X with multiplicity $t(\lceil k / t\rceil-1)$ and further $n-t(\lceil k / t\rceil-1)\binom{m}{\lceil k / t\rceil-1}$ subsets
of X, each of cardinality $\lceil k / t\rceil$. This construction is clearly a $\mathrm{CBC}^{*}(n, k, m, t)-$ system and proves that $N(n, k, m, t) \leq n\lceil k / t\rceil-t(\lceil k / t\rceil-1)\binom{m}{\lceil k / t\rceil-1}$. This verifies the theorem.

To obtain a formula for the second highest range of n, we will apply the following technical lemma proved in [3].

Lemma 14. [3] For any three integers i, p, m, if $1 \leq i \leq p \leq m-1$, then

$$
\left\lfloor\left(\binom{m-i}{p-i}-1\right) /(m-p)\right\rfloor \geq p-i
$$

Theorem 15. If $m \geq\left\lceil\frac{k}{t}\right\rceil \geq 3$ and $t\binom{m}{\lceil k / t\rceil-2} \leq n \leq t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1}$, then

$$
N(n, k, m, t)=n\left(\left\lceil\frac{k}{t}\right\rceil-1\right)-\left\lfloor\frac{t\left(\left\lceil\frac{k}{t}\right\rceil-1\right)\binom{m}{\lceil k / t\rceil-1}-n}{m-\left\lceil\frac{k}{t}\right\rceil+1}\right\rfloor
$$

Proof. If $m=\lceil k / t\rceil$, the statement yields $N(n, k, m, t)=m n-t m(m-1)$ which corresponds to Proposition 12. Hence, we assume that $m>\lceil k / t\rceil$. Let us introduce the notation

$$
K:=\left\lceil\frac{k}{t}\right\rceil, \quad y:=\left\lfloor\frac{t(K-1)\binom{m}{K-1}-n}{m-K+1}\right\rfloor .
$$

We construct a $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F}^{*} on an m-element underlying set X as follows. First, choose y sets, each of cardinality $K-2$, such that every ($K-2$)element subset of X has multiplicity at most t. This can be done, since by the given condition, $t\binom{m}{K-2} \leq n$ holds and hence,

$$
y \leq \frac{t(K-1)\binom{m}{K-1}-n}{m-K+1} \leq \frac{t(m-K+2)\binom{m}{K-2}-t\binom{m}{K-2}}{m-K+1}=t\binom{m}{K-2}
$$

Since every ($K-2$)-element subset of X contains at most t members, and every ($K-1$)-element subset contains at most $t(K-1)$ members, the obtained system is a $\operatorname{CBC}^{*}(k, t)$. Moreover, in view of Proposition 8 , the following inequality proves that the system can be extended with $n-y$ members, each of cardinality $K-1$,
such that a $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F}^{*} is obtained.

$$
\begin{aligned}
& t(K-1)\binom{m}{K-1}-\left\lfloor\frac{t(K-1)\binom{m}{K-1}-n}{m-K+1}\right\rfloor(m-K+2) \\
\geq & t(K-1)\binom{m}{K-1}-\left(t(K-1)\binom{m}{K-1}-n\right)-y=n-y .
\end{aligned}
$$

The total size of \mathcal{F}^{*} is $n(K-1)-y$, hence this is an upper bound on $N(n, k, m, t)$.
Turning to the lower bound, by Proposition 10 there exists an optimal $\mathrm{CBC}^{*}(n, k, m, t)$ of type either $[1, K-1]$ or $[K-1, K]$. But if a $\mathrm{CBC}^{*}(n, k, m, t)$ belongs to the latter type and contains a member of size K as well, then its total size is greater than $n(K-1)-y$ and consequently it cannot be optimal. Thus, there exists an optimal $\mathrm{CBC}^{*}(n, k, m, t)$-system \mathcal{F} of type $[1, K-1]$.

For every $1 \leq i \leq K-1$, denote by ℓ_{i} the number of members of size i in \mathcal{F}. The total size of \mathcal{F} is

$$
\begin{equation*}
\mathcal{S}(\mathcal{F})=\sum_{i=1}^{K-1} i \ell_{i}=(K-1) n-\sum_{i=1}^{K-2}(K-1-i) \ell_{i} \tag{1}
\end{equation*}
$$

On the other hand, Theorem 5 yields

$$
\ell_{K-1}+\sum_{i=1}^{K-2} \ell_{i}\binom{m-i}{K-1-i} \leq t(K-1)\binom{m}{K-1}
$$

Substituting $\ell_{K-1}=n-\left(\ell_{1}+\cdots+\ell_{K-2}\right)$, this implies

$$
\begin{equation*}
\left.\sum_{i=1}^{K-2} \ell_{i}\left\lfloor\frac{\binom{m-i}{K-1-i}-1}{m-K+1}\right\rfloor \leq \frac{t(K-1)\binom{m}{K-1}-n}{m-K+1}\right\rfloor=y \tag{2}
\end{equation*}
$$

Now, we verify that $\mathcal{S}(\mathcal{F}) \geq(K-1) n-y$ holds. With $p=K-1$, Lemma 14 states that for every $1 \leq i \leq K-2$

$$
K-1-i \leq\left\lfloor\frac{\binom{m-i}{K-1-i}-1}{m-K+1}\right\rfloor
$$

is valid. Together with (1) and (2) this implies

$$
\begin{aligned}
\mathcal{S}(\mathcal{F}) & =(K-1) n-\sum_{i=1}^{K-2}(K-1-i) \ell_{i} \geq(K-1) n-\sum_{i=1}^{K-2} \ell_{i}\left\lfloor\frac{\binom{m-i}{K-1-i}-1}{m-K+1}\right\rfloor \\
& \geq(K-1) n-y .
\end{aligned}
$$

Therefore, $N(n, k, m, t)=\mathcal{S}(\mathcal{F}) \geq(K-1) n-y$ follows, which completes the proof of the theorem.

The results analogous to Theorems 13 and 15 with $t=1$ were obtained in [13] and [3], respectively.

4. OPTIMUM VALUES FOR $k \leq 3 t$

In this section we determine exact formulae for the minimum total size $N(n, k, m, t)$ of combinatorial batch codes for all cases when $k \leq 3 t$ holds. Due to Observation 11, if $\lceil k / t\rceil=1$ then $N(n, k, m, t)=n$. Applying results from the previous section, formulae for the remaining cases $t<k \leq 2 t$ and $2 t<k \leq 3 t$ can be obtained.

Theorem 16. If $\left\lceil\frac{k}{t}\right\rceil=2$ and $m \geq 2$, then

$$
\begin{array}{lll}
N(n, k, m, t)=n & \text { if } & n \leq t m \\
N(n, k, m, t)=2 n-t m & \text { if } & n>t m .
\end{array}
$$

Proof Observation 11 and Theorem 13 together cover all possibilities for $\lceil k / t\rceil=2$ and yield the formulae in the statement.

Theorem 17. If $\left\lceil\frac{k}{t}\right\rceil=3$ and $m \geq 3$, then

$$
\begin{array}{ll}
N(n, k, m, t)=n & \text { if } \quad n \leq t m ; \\
N(n, k, m, t)=2 n-m t+\left\lceil\frac{n-m t}{m-2}\right\rceil & \text { if } \quad t m<n \leq 2 t\binom{m}{2} ; \\
N(n, k, m, t)=3 n-2 t\binom{m}{2} & \text { if } \quad 2 t\binom{m}{2}<n .
\end{array}
$$

Proof. Observation 11 yields the first formula whilst Theorem 13 yields the third one, by a simple substitution. Moreover, the condition $\operatorname{tm}<n \leq \operatorname{tm}(m-1)$ corresponds to that in Theorem 15. After substituting $\lceil k / t\rceil=3$, the following computation yields the second formula:

$$
\begin{aligned}
N(n, k, m, t) & =2 n-\left\lfloor\frac{2 t\binom{m}{2}-n}{m-2}\right\rfloor \\
& =2 n-m t-\left\lfloor\frac{t m-n}{m-2}\right\rfloor=2 n-m t+\left\lceil\frac{n-m t}{m-2}\right\rceil .
\end{aligned}
$$

which concludes the proof.
For the particular case of $t=1$ the theorems above yield a direct consequence of Theorem 8 from [13] and Theorem 1 from [3].

Acknowledgements. We thank the referees for their comments and for calling our attention to references $[\mathbf{8}, \mathbf{1 2}]$. Research was supported in part by the Hungarian Scientific Research Fund, OTKA grant 81493.

REFERENCES

1. S. Bhattacharya, S. Ruj, B. Roy: Combinatorial batch codes: A Lower Bound and Optimal Constructions, arXiv:1102.4951v1 (2011).
2. R. A. Brualdi, K. P. Kiernan, S. A. Meyer, M. W. Schroeder: Combinatorial batch codes and transversal matroids. Adv. Math. Commun., 4 (2010), 419-431. Erratum ibid. p. 597.
3. Cs. Bujtás, Zs. Tuza: Optimal batch codes: Many items or low retrieval requirement. Adv. Math. Commun., 5 (2011), 529-541.
4. Cs. Bujtás, Zs. Tuza: Optimal combinatorial batch codes derived from dual systems. Miskolc Math. Notes, 12 (2011), 11-23.
5. Cs. Bujtás, Zs. Tuza: Combinatorial batch codes: Extremal problems under Halltype conditions. Electron. Notes Discrete Math., 38 (2011), 201-206.
6. A. Dress, M. Steel: A Hall-type theorem for triplet set systems based on median trees. Appl. Math. Lett., 22 (2009), 1789-1792.
7. J. Folkman, D. R. Fulkerson: Flows in infinite graphs. J. Combin. Theory, 8 (1970), 30-44.
8. L. R. Ford, Jr., D. R. Fulkerson: Network flow and systems of representations. Canad. J. Math., 10 (1958), 78-84.
9. P. Hall: On representatives of subsets. J. Lond. Math. Soc., 10 (1935), 26-30.
10. Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai: Batch codes and their applications. Proc. 36th ACM STOC, ACM Press, New York, 2004, 262-271.
11. A. V. Kostochka, D. R. Woodall: Irreducible hypergraphs for Hall-type conditions and arc-minimal digraph-expanders. European J. Combin., 26 (2005), 1119-1138.
12. L. Mirsky: Systems of representatives with repetition. Proc. Cambridge Philos. Soc., 63 (1967), 1135-1140.
13. M. B. Paterson, D. R. Stinson, R. Wei: Combinatorial batch codes. Adv. Math. Commun., 3 (2009), 13-27.

Department of Computer Science and
(Received August 13, 2011)
Systems Technology,
(Revised November 29, 2011)
University of Pannonia,
Veszprém, Hungary
E-mail: bujtas@dcs.vein.hu
tuza@dcs.vein.hu
Computer and Automation Institute,
Hungarian Academy of Sciences,
Budapest, Hungary
E-mail: tuza@sztaki.hu

[^0]: 2010 Mathematics Subject Classification. 05D05, 05C65, 68R05.
 Keywords and Phrases. Combinatorial batch code, dual system, Hall-type condition, system of representatives.

