APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS available online at http://pefmath.etf.rs

available online at http://peiniath.e

Appl. Anal. Discrete Math. 6 (2012), 72-81.

doi:10.2298/AADM111130024B

RELAXATIONS OF HALL'S CONDITION: OPTIMAL BATCH CODES WITH MULTIPLE QUERIES

Csilla Bujtás, Zsolt Tuza

Combinatorial batch codes model the storage of a database on a given number of servers such that any k or fewer items can be retrieved by reading at most t items from each server. A combinatorial batch code with parameters n, k, m, t can be represented by a system \mathcal{F} of n (not necessarily distinct) sets over an m-element underlying set X, such that for any k or fewer members of \mathcal{F} there exists a system of representatives in which each element of X occurs with multiplicity at most t. The main purpose is to determine the minimum N(n, k, m, t) of total data storage $\sum_{F \in \mathcal{F}} |F|$ over all combinatorial batch codes \mathcal{F} with given parameters.

Previous papers concentrated on the case t = 1. Here we obtain the first nontrivial results on combinatorial batch codes with t > 1. We determine N(n, k, m, t) for all cases with $k \leq 3t$, and also for all cases where $n \geq t \binom{m}{\lfloor k/t \rfloor - 2}$. Our results can be considered equivalently as minimum total size $\sum_{F \in \mathcal{F}} |F|$ over all set systems \mathcal{F} of given order m and size n, which satisfy a relaxed version of Hall's Condition; that is, $|\bigcup \mathcal{F}'| \geq |\mathcal{F}'|/t$ holds for every subsystem $\mathcal{F}' \subseteq \mathcal{F}$ of size at most k.

1. INTRODUCTION

Combinatorial batch codes and dual systems. Batch codes were introduced by ISHAI, KUSHILEVITZ, OSTROVSKY and SAHAI [10]. They represent the distributed storage of an *n*-element database on a set of *m* servers when any k or fewer data items can be recovered by submitting a limited number t of queries to each server. This model can be used for amortizing the computational cost in

²⁰¹⁰ Mathematics Subject Classification. 05D05, 05C65, 68R05.

Keywords and Phrases. Combinatorial batch code, dual system, Hall-type condition, system of representatives.

private information retrieval. Combinatorial batch code, studied in detail first by PATERSON, STINSON and WEI [13], is the version of a batch code in which each server stores a subset of the database and decoding simply means reading items from servers. The latter model admits a purely combinatorial definition as a set system satisfying a requirement on systems of representatives. Therefore, it is in close connection with Hall-type conditions.

A set system \mathcal{F} over an underlying set X is the collection of some nonempty subsets of X. Objects $x \in X$ are called *elements* whilst objects $F \in \mathcal{F}$ are referred to as *members*. Moreover, the *order* and the *size* of a system \mathcal{F} are the number |X| of elements and the number $|\mathcal{F}|$ of members, respectively. The *total size* of a system \mathcal{F} is defined as $\sum_{F \in \mathcal{F}} |F|$. Throughout this paper, 'set system' is meant as a 'multisystem'; that is, repetitions are allowed, distinct members of the system may correspond to the same subset of the underlying set.

A combinatorial batch code with parameters n, k, m, t can be represented with its 'dual' set system (shortly, CBC^{*}(n, k, m, t)-system) \mathcal{F} , where the m elements of the underlying set correspond to the m servers and the members of \mathcal{F} correspond to the n items of data. A member $F_i \in \mathcal{F}$ then means the set of servers where the *i*th data item is stored. Hence, the total amount of data collectively stored by the m servers—which is the object of minimization—equals the total size of system \mathcal{F} . The formal definition of a CBC^{*}(n, k, m, t)-system can be given as follows.

Definition 1. For positive integers k and t, a set system \mathcal{F} is a $\operatorname{CBC}^*(k, t)$ -system if, for every subsystem $\mathcal{F}' = \{F_1, \ldots, F_\ell\} \subseteq \mathcal{F}$ of size $1 \leq \ell \leq k$, there exist elements x_1, \ldots, x_ℓ such that $x_i \in F_i$ holds for every $1 \leq i \leq \ell$ and each element of X has multiplicity at most t in $\{x_1, \ldots, x_\ell\}$. A set system \mathcal{F} over the underlying set X is called a $\operatorname{CBC}^*(n, k, m, t)$ -system if $|\mathcal{F}| = n$, |X| = m, and \mathcal{F} is a $\operatorname{CBC}^*(k, t)$ system. Moreover, $N(n, k, m, t) := \min_{\mathcal{F}} \sum_{F \in \mathcal{F}} |F|$ denotes the minimum total size of a system taken over all $\operatorname{CBC}^*(n, k, m, t)$ -systems \mathcal{F} , subject to that there exists at least one such system.

Note that if both mt < k and mt < n hold, no $\text{CBC}^*(n, k, m, t)$ -system exists. Otherwise, the system containing the underlying set X as member with multiplicity n is a $\text{CBC}^*(n, k, m, t)$ and hence N(n, k, m, t) is well-defined. We will assume throughout that n, k, m and t denote positive integers such that $mt \ge \min\{n, k\}$. Systems which are $\text{CBC}^*(n, k, m, t)$ and have minimum total size N(n, k, m, t) will be called *optimal*.

Hall-type conditions. Hall's Theorem [9] and related results on algorithms serve as basic tools in several branches of combinatorics and discrete optimization. Also, nonstandard Hall-type conditions and their consequences were intensively studied (see, e.g., [6, 7, 8, 11, 12]). Each earlier paper on combinatorial batch codes with t = 1 applied Hall's Condition. Here we use a relaxed version whose origin goes back to the works [7, 8, 12].

Definition 2. We say that a set system \mathcal{F} satisfies the (k,t)-Hall Condition (shortly, (k,t)-HC) if $|\bigcup \mathcal{F}'| \geq |\mathcal{F}'|/t$ holds for every subsystem $\mathcal{F}' \subseteq \mathcal{F}$ which contains at most k members.

Results. In [1, 2, 3, 4, 10, 13] several results on combinatorial batch codes were obtained, moreover their connections with transversal matroids [2], unbalanced expander graphs [10] and binary constant-weight codes [1] were also pointed out. These papers considered—nearly exclusively—the case of t = 1, although some simple relations between combinatorial batch codes with t > 1 and those with t = 1 were established in [10].

In this paper we obtain the first nontrivial results for the case of general t. In Section 2 we prove the Equivalence Theorem, which is a three-sided characterization: beside the equivalence of the (k, t)-Hall Condition and the property of being a $\operatorname{CBC}^*(k, t)$ -system, the requirement can also be expressed in a form which implies that if $\lfloor k/t \rfloor = \lfloor k'/t \rfloor$ then a $\operatorname{CBC}^*(k, t)$ -system is a $\operatorname{CBC}^*(k', t)$ -system and vice versa. Some further basic properties and a cardinality-balancing transformation will be presented, too. In Section 3 and Section 4 we determine the minimum total size N(n, k, m, t) for all parameters satisfying $n \ge t \binom{m}{\lfloor k/t \rfloor - 2}$ and for all cases where $k \le 3t$, respectively. By the Equivalence Theorem, several methods developed originally for the case t = 1 can be applied for the general setting $t \ge 1$. Our proof techniques used here are similar to those in [3] and occasionally to those in [1] and [13], too. Some results proved here have been announced without proofs in [5].

2. SOME BASIC PROPERTIES

In this section we deal with three types of properties. First, we give three equivalent conditions for a system to be a $\text{CBC}^*(k, t)$. Then, we present some basic inequalities about the size distributions of members in a $\text{CBC}^*(n, k, m, t)$, and finally we show that for every four-tuple of parameters there exists an optimal $\text{CBC}^*(n, k, m, t)$ which either does not contain members larger than $\lceil k/t \rceil - 1$ or does not contain members smaller than $\lceil k/t \rceil - 1$.

In the following theorem, the equivalence of (i) and (ii) is a consequence of more general results on systems of representatives [8, 12, 7], hence we prove only the equivalence of (ii) and (iii).

Theorem 3. (Equivalence Theorem) For all positive integers k and t, and for every set system \mathcal{F} , the following statements are equivalent:

- (i) \mathcal{F} is a $CBC^*(k, t)$ -system.
- (ii) \mathcal{F} satisfies the (k, t)-Hall Condition.
- (iii) For every l < [k/t] and for every l-element subset X' of the underlying set, at most lt members of F are subsets of X'.

75

Proof. (ii) \Leftrightarrow (iii) We prove the equivalence of the negations of (ii) and (iii). If (ii) does not hold, there exists a subsystem $\mathcal{F}' \subseteq \mathcal{F}$ of size $i \leq k$, for which the union $X' = \bigcup \mathcal{F}$ has at most $\lceil i/t \rceil - 1$ elements. That is, X' contains at least $i > t (\lceil i/t \rceil - 1) \geq t |X'|$ members of \mathcal{F} , and also $|X'| \leq \lceil k/t \rceil - 1$ is valid. This means that (iii) does not hold either. From the other direction, if a subset $X' \subseteq X$ of cardinality $\ell \leq \lceil k/t \rceil - 1$ contains more than ℓt members from \mathcal{F} , then the union of any $\ell t + 1 \leq k$ of these members can contain at most $|X'| = \ell < \ell + 1 = \lceil (\ell t + 1)/t \rceil$ elements, which contradicts (ii).

Part (iii) of Theorem 3 expresses the (k, t)-Hall Condition referring only to $\lceil k/t \rceil$ and t as parameters. Hence, if an integer t > 1 is fixed, not the exact value of k but only $\lceil k/t \rceil$ is that really matters the meaning of (k, t)-HC. Particularly, it would suffice to determine the optimal total size N(n, k, m, t) only for cases where k is divisible by t.

Corollary 4. Assume that $\lceil k/t \rceil = \lceil k'/t \rceil$. Then, a system \mathcal{F} is a $CBC^*(k, t)$ -system if and only if it is a $CBC^*(k', t)$ -system; moreover, \mathcal{F} satisfies the (k, t)-Hall Condition if and only if it satisfies the (k', t)-Hall Condition. Particularly, if $\lceil k/t \rceil = \lceil k'/t \rceil$ then N(n, k, m, t) = N(n, k', m, t) is valid for all n and m.

From now on, also requirement (iii) from the Equivalence Theorem will be referred to as (k, t)-HC. Applying Theorem 3, the next necessary condition for systems satisfying (k, t)-HC is easy to verify. The analogous result for the special case of t = 1 first appeared in a proof of [13], and later it was stated in [1] and [3] as well.

Theorem 5. Let \mathcal{F} be a $CBC^*(n, k, m, t)$ and let ℓ_i denote the number of *i*-element members of \mathcal{F} , for every $1 \leq i \leq \lfloor k/t \rfloor$. Then,

$$\sum_{i=1}^{\lfloor k/t \rfloor - 1} \ell_i \binom{m-i}{\lceil k/t \rceil - 1 - i} \le t \left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1}.$$

Proof. We are going to estimate the number z of pairs (F, A) with $F \in \mathcal{F}$, $F \subseteq A \subseteq X$ and $|A| = \lceil k/t \rceil - 1$. Every *i*-element member F from \mathcal{F} is contained in exactly $\binom{m-i}{\lceil k/t \rceil - 1 - i}$ such subsets A. Consequently, $z = \sum_{i=1}^{\lceil k/t \rceil - 1} \ell_i \binom{m-i}{\lceil k/t \rceil - 1 - i}$. On the other hand, since \mathcal{F} satisfies (k, t)-HC, every $(\lceil k/t \rceil - 1)$ -element $A \subseteq X$ contains at most $t(\lceil k/t \rceil - 1)$ members from \mathcal{F} . Therefore, $z \leq t(\lceil k/t \rceil - 1)\binom{m}{\lceil k/t \rceil - 1}$ and the inequality stated in the theorem follows.

Corollary 6. Every $CBC^*(n, k, m, t)$ contains at most $t(\lceil k/t \rceil - 1) \binom{m}{\lceil k/t \rceil - 1}$ members of size not exceeding $\lceil k/t \rceil - 1$.

Due to the Equivalence Theorem, we can take some observations on extensions of a $\operatorname{CBC}^*(k, t)$ -system \mathcal{F} with a new member $F \subseteq X$. First, since the fulfilment of (k, t)-HC depends only on members of size at most $\lceil k/t \rceil - 1$, the following statement clearly holds.

Observation 7. If \mathcal{F} is a $CBC^*(k,t)$ -system and $|F| \ge \lceil k/t \rceil$, then $\mathcal{F} \cup \{F\}$ is a $CBC^*(k,t)$ -system, as well. Therefore, an optimal $CBC^*(n,k,m,t)$ -system does not contain members of size greater than $\lceil k/t \rceil$.

Second, since a member F of size $\lceil k/t \rceil - 1$ is not contained in a $(\lceil k/t \rceil - 1)$ -element subset of X other than itself, the following statement is valid.

Proposition 8. Let \mathcal{F} be a $CBC^*(k, t)$ -system and $|F| = \lceil k/t \rceil - 1$. Then, $\mathcal{F} \cup \{F\}$ is a $CBC^*(k, t)$ -system if and only if F contains fewer than $t(\lceil k/t \rceil - 1)$ members from \mathcal{F} . Moreover, if ℓ_i denotes the number of members of size i in \mathcal{F} (for each $1 \leq i \leq \lceil k/t \rceil - 1$), then \mathcal{F} can be extended with L appropriately chosen new members each of cardinality $\lceil k/t \rceil - 1$, such that the system remains a $CBC^*(k, t)$, if and only if

$$L \le t \left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1} - \sum_{i=1}^{\lceil k/t \rceil - 1} \ell_i \binom{m-i}{\lceil k/t \rceil - 1 - i}.$$

Next, we present a transformation which is applicable for two members of a $\operatorname{CBC}^*(n,k,m,t)$ if one of them contains the other. Then, some (any) elements from the larger member can be transferred to the smaller one and the system remains a $\operatorname{CBC}^*(n,k,m,t)$ with the same total size. This transformation was introduced in [3] (Proposition 1) for the case t = 1. In fact the proof remains the same for the general case $t \geq 1$, hence it is omitted here.

Proposition 9. [3] Let \mathcal{F} be a $CBC^*(n, k, m, t)$ with two members $F_1 \subset F_2$ for which $|F_1| + 2 \leq |F_2|$ and let A be a nonempty set such that $A \subset F_2 \setminus F_1$. Then, replacing F_1 and F_2 with $F'_1 = F_1 \cup A$ and $F'_2 = F_2 \setminus A$, the obtained system \mathcal{F}' is a $CBC^*(n, k, m, t)$ as well, and the two systems \mathcal{F} and \mathcal{F}' have the same total size.

We say that a CBC^{*} is of type [a, b] if the size of each $F \in \mathcal{F}$ satisfies $a \leq |F| \leq b$. Due to Observation 7, every optimal CBC^{*}(n, k, m, t)-system is of type $[1, \lceil k/t \rceil]$. By Proposition 9 we can prove a stronger result for $\lceil k/t \rceil \geq 3$.

Proposition 10. If $\lceil k/t \rceil \geq 3$, then for every optimal $CBC^*(n, k, m, t)$ -system \mathcal{F} , there exists an \mathcal{F}' which is an optimal $CBC^*(n, k, m, t)$ as well, and has type either $[1, \lceil k/t \rceil - 1]$ or $[\lceil k/t \rceil - 1, \lceil k/t \rceil]$.

Proof. Suppose that an optimal CBC* (n, k, m, t)-system \mathcal{F} contains a member F_1 of size $\ell \leq \lceil k/t \rceil - 2$ and also a member F_2 of size $\lceil k/t \rceil$. Observation 7 implies that F_2 can be replaced with any $\lceil k/t \rceil$ -element subset F'_2 of the underlying set. Let us choose this new member such that $F'_2 \supset F_1$. Now, applying the transformation described in Proposition 9, an optimal CBC* (n, k, m, t)-system \mathcal{F}' is obtained which contains fewer members of size $\lceil k/t \rceil$ than \mathcal{F} did. Repeated application of this procedure yields an optimal CBC* (n, k, m, t) of type either $[1, \lceil k/t \rceil - 1]$ or $[\lceil k/t \rceil - 1, \lceil k/t \rceil]$.

In the simple cases listed in the following observation it is enough to take n singletons to obtain a $CBC^*(n, k, m, t)$.

Observation 11. If at least one of $n \leq tm$ and $k \leq t$ is valid, then N(n, k, m, t) = n.

The next proposition is the generalization of Theorem 4 of [13].

Proposition 12. For every four positive integers n, k, m and t, if $m = \lceil k/t \rceil$ and $n \ge tm$, then N(n, k, m, t) = mn - tm(m - 1).

Proof. Under the given conditions consider a $\operatorname{CBC}^*(n, k, m, t)$ -system \mathcal{F} . By (k, t)-HC, for every element x of the underlying set X, the (m-1)-element set $X \setminus \{x\}$ covers entirely at most t(m-1) members of \mathcal{F} . Thus, x has to be involved in at least n - t(m-1) members of \mathcal{F} . Therefore, counting the total size of the system by summing up the degrees of elements, $N(n, k, m, t) \geq m(n - t(m-1))$ must hold. On the other hand, let \mathcal{F}^* be the system over the underlying set $X = \{x_1, \ldots, x_m\}$, in which X is a member with multiplicity n - tm and each singleton $\{x_i\}$ occurs with multiplicity t. Clearly, \mathcal{F}^* is a $\operatorname{CBC}^*(n, k, m, t)$ -system and its total size is exactly tm + (n - tm)m = mn - tm(m-1). This verifies the statement.

3. OPTIMUM VALUES FOR $n \ge t \binom{m}{\lceil k/t \rceil - 2}$

Theorem 13. If $m \ge \left\lceil \frac{k}{t} \right\rceil$ and $n > t\left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1}$, then $N(n, k, m, t) = n \left\lceil \frac{k}{t} \right\rceil - t\left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1}.$

Proof. Consider parameters n, k, m and t satisfying the conditions given in the theorem. Due to Corollary 6, the number of members of \mathcal{F} which are of size smaller than $\lceil k/t \rceil$ is at most $t (\lceil k/t \rceil - 1) \binom{m}{\lceil k/t \rceil - 1}$. Thus, under the present conditions, system \mathcal{F} cannot be of type $[1, \lceil k/t \rceil - 1]$. Then, Proposition 10 implies that there exists an optimal CBC*(n, k, m, t)-system \mathcal{F} of type $[\lceil k/t \rceil - 1, \lceil k/t \rceil]$. The total size of \mathcal{F} is precisely $n \lceil k/t \rceil - n'$ where n' denotes the number of $(\lceil k/t \rceil - 1)$ -element members. Applying Corollary 6 again, we obtain

$$N(n,k,m,t) = n\left\lceil \frac{k}{t} \right\rceil - n' \ge n\left\lceil \frac{k}{t} \right\rceil - t\left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1}.$$

On the other hand, take each $(\lceil k/t \rceil - 1)$ -element subset of an *m*-element underlying set X with multiplicity $t(\lceil k/t \rceil - 1)$ and further $n-t(\lceil k/t \rceil - 1) \binom{m}{\lceil k/t \rceil - 1}$ subsets

of X, each of cardinality $\lceil k/t \rceil$. This construction is clearly a $CBC^*(n, k, m, t)$ system and proves that $N(n, k, m, t) \leq n \lceil k/t \rceil - t (\lceil k/t \rceil - 1) \binom{m}{\lceil k/t \rceil - 1}$. This
verifies the theorem.

To obtain a formula for the second highest range of n, we will apply the following technical lemma proved in [3].

Lemma 14. [3] For any three integers i, p, m, if $1 \le i \le p \le m - 1$, then

$$\left\lfloor \left(\binom{m-i}{p-i} - 1 \right) / (m-p) \right\rfloor \ge p-i.$$

Theorem 15. If $m \ge \left\lceil \frac{k}{t} \right\rceil \ge 3$ and $t \binom{m}{\lceil k/t \rceil - 2} \le n \le t \left(\left\lceil \frac{k}{t} \right\rceil - 1 \right) \binom{m}{\lceil k/t \rceil - 1}$, then

$$N(n,k,m,t) = n\left(\left\lceil \frac{k}{t} \right\rceil - 1\right) - \left\lfloor \frac{t\left(\left\lceil \frac{k}{t} \right\rceil - 1\right)\binom{m}{\lfloor k/t \rfloor - 1} - n}{m - \left\lceil \frac{k}{t} \right\rceil + 1} \right\rfloor$$

Proof. If $m = \lceil k/t \rceil$, the statement yields N(n, k, m, t) = mn - tm(m-1) which corresponds to Proposition 12. Hence, we assume that $m > \lceil k/t \rceil$. Let us introduce the notation

$$K := \left\lceil \frac{k}{t} \right\rceil, \qquad y := \left\lfloor \frac{t(K-1)\binom{m}{K-1} - n}{m-K+1} \right\rfloor.$$

We construct a CBC^{*}(n, k, m, t)-system \mathcal{F}^* on an *m*-element underlying set X as follows. First, choose y sets, each of cardinality K-2, such that every (K-2)-element subset of X has multiplicity at most t. This can be done, since by the given condition, $t\binom{m}{K-2} \leq n$ holds and hence,

$$y \leq \frac{t(K-1)\binom{m}{K-1} - n}{m-K+1} \leq \frac{t(m-K+2)\binom{m}{K-2} - t\binom{m}{K-2}}{m-K+1} = t\binom{m}{K-2}.$$

Since every (K-2)-element subset of X contains at most t members, and every (K-1)-element subset contains at most t(K-1) members, the obtained system is a CBC^{*}(k,t). Moreover, in view of Proposition 8, the following inequality proves that the system can be extended with n-y members, each of cardinality K-1,

79

such that a CBC^{*}(n, k, m, t)-system \mathcal{F}^* is obtained.

$$t(K-1)\binom{m}{K-1} - \left[\frac{t(K-1)\binom{m}{K-1} - n}{m-K+1}\right](m-K+2)$$

$$\geq t(K-1)\binom{m}{K-1} - \left(t(K-1)\binom{m}{K-1} - n\right) - y = n-y$$

The total size of \mathcal{F}^* is n(K-1) - y, hence this is an upper bound on N(n, k, m, t).

Turning to the lower bound, by Proposition 10 there exists an optimal $\operatorname{CBC}^*(n,k,m,t)$ of type either [1,K-1] or [K-1,K]. But if a $\operatorname{CBC}^*(n,k,m,t)$ belongs to the latter type and contains a member of size K as well, then its total size is greater than n(K-1) - y and consequently it cannot be optimal. Thus, there exists an optimal $\operatorname{CBC}^*(n,k,m,t)$ -system \mathcal{F} of type [1,K-1].

For every $1 \leq i \leq K - 1$, denote by ℓ_i the number of members of size i in \mathcal{F} . The total size of \mathcal{F} is

(1)
$$S(\mathcal{F}) = \sum_{i=1}^{K-1} i\ell_i = (K-1)n - \sum_{i=1}^{K-2} (K-1-i)\ell_i.$$

On the other hand, Theorem 5 yields

$$\ell_{K-1} + \sum_{i=1}^{K-2} \ell_i \binom{m-i}{K-1-i} \le t(K-1)\binom{m}{K-1}.$$

Substituting $\ell_{K-1} = n - (\ell_1 + \dots + \ell_{K-2})$, this implies

(2)
$$\sum_{i=1}^{K-2} \ell_i \left[\frac{\binom{m-i}{K-1-i} - 1}{m-K+1} \right] \le \left[\frac{t(K-1)\binom{m}{K-1} - n}{m-K+1} \right] = y.$$

Now, we verify that $S(\mathcal{F}) \ge (K-1)n - y$ holds. With p = K - 1, Lemma 14 states that for every $1 \le i \le K - 2$

$$K-1-i \le \left\lfloor \frac{\binom{m-i}{K-1-i} - 1}{m-K+1} \right\rfloor$$

is valid. Together with (1) and (2) this implies

$$\mathcal{S}(\mathcal{F}) = (K-1)n - \sum_{i=1}^{K-2} (K-1-i) \,\ell_i \ge (K-1)n - \sum_{i=1}^{K-2} \ell_i \left\lfloor \frac{\binom{m-i}{K-1-i} - 1}{m-K+1} \right\rfloor$$
$$\ge (K-1)n - y.$$

Therefore, $N(n, k, m, t) = S(\mathcal{F}) \ge (K-1)n - y$ follows, which completes the proof of the theorem.

The results analogous to Theorems 13 and 15 with t = 1 were obtained in [13] and [3], respectively.

4. OPTIMUM VALUES FOR $k \leq 3t$

In this section we determine exact formulae for the minimum total size N(n, k, m, t) of combinatorial batch codes for all cases when $k \leq 3t$ holds. Due to Observation 11, if $\lceil k/t \rceil = 1$ then N(n, k, m, t) = n. Applying results from the previous section, formulae for the remaining cases $t < k \leq 2t$ and $2t < k \leq 3t$ can be obtained.

Theorem 16. If $\left\lceil \frac{k}{t} \right\rceil = 2$ and $m \ge 2$, then

$$\begin{array}{ll} N(n,k,m,t) = n & \quad \mbox{if} \quad n \leq tm; \\ N(n,k,m,t) = 2n - tm & \quad \mbox{if} \quad n > tm. \end{array}$$

Proof Observation 11 and Theorem 13 together cover all possibilities for $\lceil k/t \rceil = 2$ and yield the formulae in the statement.

Theorem 17. If $\left\lceil \frac{k}{t} \right\rceil = 3$ and $m \ge 3$, then

$$\begin{split} N(n,k,m,t) &= n & \text{if} \quad n \leq tm; \\ N(n,k,m,t) &= 2n - mt + \left\lceil \frac{n - mt}{m - 2} \right\rceil & \text{if} \quad tm < n \leq 2t \binom{m}{2}; \\ N(n,k,m,t) &= 3n - 2t \binom{m}{2} & \text{if} \quad 2t \binom{m}{2} < n. \end{split}$$

Proof. Observation 11 yields the first formula whilst Theorem 13 yields the third one, by a simple substitution. Moreover, the condition $tm < n \leq tm(m-1)$ corresponds to that in Theorem 15. After substituting $\lceil k/t \rceil = 3$, the following computation yields the second formula:

$$N(n,k,m,t) = 2n - \left\lfloor \frac{2t\binom{m}{2} - n}{m-2} \right\rfloor$$
$$= 2n - mt - \left\lfloor \frac{tm-n}{m-2} \right\rfloor = 2n - mt + \left\lceil \frac{n-mt}{m-2} \right\rceil.$$

which concludes the proof.

For the particular case of t = 1 the theorems above yield a direct consequence of Theorem 8 from [13] and Theorem 1 from [3].

Acknowledgements. We thank the referees for their comments and for calling our attention to references [8, 12]. Research was supported in part by the Hungarian Scientific Research Fund, OTKA grant 81493.

REFERENCES

- 1. S. BHATTACHARYA, S. RUJ, B. ROY: Combinatorial batch codes: A Lower Bound and Optimal Constructions, arXiv:1102.4951v1 (2011).
- R. A. BRUALDI, K. P. KIERNAN, S. A. MEYER, M. W. SCHROEDER: Combinatorial batch codes and transversal matroids. Adv. Math. Commun., 4 (2010), 419–431. Erratum ibid. p. 597.
- Cs. BUJTÁS, Zs. TUZA: Optimal batch codes: Many items or low retrieval requirement. Adv. Math. Commun., 5 (2011), 529–541.
- CS. BUJTÁS, ZS. TUZA: Optimal combinatorial batch codes derived from dual systems. Miskolc Math. Notes, 12 (2011), 11–23.
- CS. BUJTÁS, ZS. TUZA: Combinatorial batch codes: Extremal problems under Halltype conditions. Electron. Notes Discrete Math., 38 (2011), 201–206.
- A. DRESS, M. STEEL: A Hall-type theorem for triplet set systems based on median trees. Appl. Math. Lett., 22 (2009), 1789–1792.
- J. FOLKMAN, D. R. FULKERSON: Flows in infinite graphs. J. Combin. Theory, 8 (1970), 30–44.
- L. R. FORD, JR., D. R. FULKERSON: Network flow and systems of representations. Canad. J. Math., 10 (1958), 78–84.
- 9. P. HALL: On representatives of subsets. J. Lond. Math. Soc., 10 (1935), 26-30.
- Y. ISHAI, E. KUSHILEVITZ, R. OSTROVSKY, A. SAHAI: Batch codes and their applications. Proc. 36th ACM STOC, ACM Press, New York, 2004, 262–271.
- A. V. KOSTOCHKA, D. R. WOODALL: Irreducible hypergraphs for Hall-type conditions and arc-minimal digraph-expanders. European J. Combin., 26 (2005), 1119–1138.
- L. MIRSKY: Systems of representatives with repetition. Proc. Cambridge Philos. Soc., 63 (1967), 1135–1140.
- M. B. PATERSON, D. R. STINSON, R. WEI: Combinatorial batch codes. Adv. Math. Commun., 3 (2009), 13–27.

Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary E-mail: bujtas@dcs.vein.hu tuza@dcs.vein.hu (Received August 13, 2011) (Revised November 29, 2011)

Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary E-mail: tuza@sztaki.hu