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SEPARATION OF THE MAXIMA IN SAMPLES OF

GEOMETRIC RANDOM VARIABLES
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We consider samples of n geometric random variables ω1 ω2 · · ·ωn where

P{ωj = i} = pqi−1, for 1 ≤ j ≤ n, with p + q = 1. For each fixed integer

d > 0, we study the probability that the distance between the consecutive

maxima in these samples is at least d. We derive a probability generating

function for such samples and from it we obtain an exact formula for the

probability as a double sum. Using Rice’s method we obtain asymptotic esti-

mates for these probabilities. As a consequence of these results, we determine

the average minimum separation of the maxima, in a sample of n geometric

random variables with at least two maxima.

1. INTRODUCTION

We consider samples of n geometric random variables (ω1 ω2 · · ·ωn) where
P{ωj = i} = pqi−1, for 1 ≤ j ≤ n, with p + q = 1. The combinatorics of n
geometrically distributed independent random variables X1, . . . , Xn has attracted
recent interest, especially because of applications to computer science such as skip
lists [3, 11] and probabilistic counting [7, 10].

• Skip lists are an alternative to tries and digital search trees. For each data, a
geometric random variable defines the number of pointers that it contributes
to the data structure. These pointers are then connected in a specific way
that makes access to the data manageable. The analysis leads to parameters
that are related to left-to-right maxima.
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• Probabilistic counting uses hashing and the position of the first digit 1 when
reading the binary representation of the hashed value from right to left. This

is a geometric random variable with parameter p = q =
1

2
. Thus one has an

urn model, with urns labelled 1, 2, . . . , and the relevant parameter here is the
number of non-empty urns (starting with the first urn).

In addition, questions relating to the maximum value of sequences of geo-
metric random variables have attracted quite a lot of attention. In particular, the
expectation and distribution of the maximum value, and the probability of a single
maximum have been dealt with in various papers, such as [1], [2], [4], [5], [6] and
[12]. Thereafter, [9] studied the number of maxima, as well as the probability of
having exactly m maxima in a random geometric sample, for a fixed m ≥ 1.

In this paper, we study samples of geometric variables whose maxima are
separated by at least d ≥ 1 values. We obtain the probability generating function
and hence asymptotic estimates that a sample has this property. For any d, samples
of geometric variables with exactly one maximum are trivially assumed to satisfy
the separation condition.

Theorem 1. The probability generating function Wd(z) of geometric samples with

a distance between the maxima at least d is given by

Wd(z) =
∑

k≥1

pqk−1z

(1 − z(1− qk−1))(1 − z(1− qk−1)− pqk−1zd+1(1− qk−1)d)
.

Proof. Consider a geometric word whose maxima have the value k. We represent
this word as follows

k -1 ∗ k k -1 ∗ k k -1 ∗ · · · k -1 ∗ k k -1 ∗

Here k -1 represents a one letter word consisting of letters from the alphabet
{1, 2, . . . , k − 1}, so the generating function for such a word is z(1 − qk−1), and

k -1 ∗ represents a possibly empty sequence of letters taken from the alphabet
{1, 2, . . . , k−1}. The generating function for such a sequence is therefore determined

as
1

1− z(1− qk−1)
.

A distance of at least d between the maxima is represented by a sequence

k -1 d k -1 ∗ between each pair of consecutive maxima, with generating function
for this sequence

zd(1− qk−1)d + zd+1(1− qk−1)d+1 + · · · =
zd(1 − qk−1)d

1− z(1− qk−1)
.

If there are s maxima, k -1 d k -1 ∗ will occur s − 1 times. Thus, finally
the generating function including the s maximum values k, together with the first
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sequence k -1 ∗ which precedes the first maximum and the last sequence k -1 ∗

that follows the last maximum, is given by

(pqk−1z)s
(

zd(1− qk−1)d

1− z(1− qk−1)

)s−1 (
1

1− z(1− qk−1)

)2

.

We denote this generating function for a word with s maxima equal to k and with
a minimum distance d between the maxima by fd(z). Summing up over all s, the
number of maxima, we have

Fd(z) :=
∑

s≥1

fd(z) =
∑

s≥1

(pqk−1z)s[zd(1− qk−1)d]s−1

[1− z(1− qk−1)]s+1

=
pqk−1z

[1− z(1− qk−1)]2
1

1−
pqk−1zd+1(1− qk−1)d

1− z(1− qk−1)

=
pqk−1z

[1− z(1− qk−1)][1− z(1− qk−1)− pqk−1zd+1(1− qk−1)d]
.

Recall, this result was for a specific value k of the maxima. So, finally we need to
sum over all values of k to obtain the desired generating function

Wd(z) : =
∑

k≥1

Fd(z)

=
∑

k≥1

pqk−1z

(1 − z(1− qk−1))(1 − z(1− qk−1)− pqk−1zd+1(1− qk−1)d)
. �

We continue in Sections 2 and 3 to find exact and asymptotic estimates for the
coefficients of Wd(z). As a consequence of these results, we determine in Section 4
the average minimum separation of the maxima, in a sample of n geometric random
variables with at least two maxima.

2. EXACT FORMULAS FOR THE PROBABILITY

In this section, we find an exact formula for the probability that geometric
samples have a distance between the maxima at least d, denoted by wd(n) :=
[zn]Wd(z).

Theorem 2. The probability that a geometric sample of length n has a distance

between the maxima at least d, is given by

wd(n) =

⌊(n−1)/(d+1)⌋
∑

j=0

(

n− dj

j + 1

)

pj+1

n−1−j
∑

s=0

(−1)s
(

n− 1− j

s

)

1

1− qj+1+s
.
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Proof. For simplicity let α = 1 − qk−1 and β = pqk−1 then we rewrite Wd(z) as
follows

Wd(z) =
∑

k≥1

βz

(1− zα)(1− zα+ zd+1αdβ)

=
∑

k≥1

βz

(1− zα)2
(

1−
zd+1αdβ

1− zα

)

=
∑

k≥1

∑

j≥0

βz · z(d+1)jαdjβj

(1− zα)j+2

=
∑

k≥1

∑

j≥0

∑

i≥0

βj+1αdj+iz(d+1)j+1+i

(

j + 1 + i

i

)

=
∑

k≥1

∑

j≥0

∑

i≥0

(pqk−1)j+1(1− qk−1)dj+iz(d+1)j+1+i

(

j + 1 + i

i

)

.

This last expression allows us to extract the coefficient of zn, where i = n − 1 −
(d+ 1)j as follows

wd(n) = [zn]Wd(z) =

⌊(n−1)/(d+1)⌋
∑

j=0

∑

k≥1

(pqk−1)j+1(1 − qk−1)n−1−j

(

n− dj

j + 1

)

=

⌊(n−1)/(d+1)⌋
∑

j=0

∑

k≥1

n−1−j
∑

s=0

(

n− dj

j + 1

)

pj+1(qk−1)j+1(−1)s
(

n− 1− j

s

)

(qk−1)s

=

⌊(n−1)/(d+1)⌋
∑

j=0

∑

k≥1

n−1−j
∑

s=0

(−1)s
(

n− dj

j + 1

)

pj+1

(

n− 1− j

s

)

(qj+1+s)k−1

=

⌊(n−1)/(d+1)⌋
∑

j=0

n−1−j
∑

s=0

(−1)s
(

n− dj

j + 1

)(

n− 1− j

s

)

pj+1

1− qj+1+s

=

⌊(n−1)/(d+1)⌋
∑

j=0

(

n− dj

j + 1

)

pj+1

n−1−j
∑

s=0

(−1)s
(

n− 1− j

s

)

1

1− qj+1+s
. �

3. ASYMPTOTICS FOR wd(n)

The series
n−1−j∑

s=0

(−1)s
(

n− 1− j
s

)

1

1− qj+1+s
is an alternating sum containing

a binomial coefficient. It is a perfect candidate for “Rice’s method” in [8], for which
we use the lemma below.

Lemma 3. Let C be a curve surrounding the points 0, 1, . . . , n in the complex plane

and let f(z) be analytic inside C. Then

n
∑

k=0

(−1)k
(

n

k

)

f(k) = −
1

2πi

∫

C

[n; z]f(z)dz,
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where

[n; z] =
(−1)n−1n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(−z)

Γ(n+ 1− z)
.

We apply this lemma with f(k) =
1

1− qa+k
to obtain the following formula:

Lemma 4. For n > 0, 0 < q < 1 and a > 0, the identity

n
∑

k=0

(−1)k
(

n

k

)

1

1− qa+k
=

1

log(1/q)

∑

k∈Z

n!Γ(a+ 2kπi/ log(1/q))

Γ(n+ 1 + a+ 2kπi/ log(1/q))

holds.

Proof. The technique for obtaining identities of this type can be found in [8,
Theorem 2]. First, rewrite the sum as a contour integral:

n
∑

k=0

(−1)k
(

n

k

)

1

1− qa+k
=

1

2πi

∫

C

(−1)nn!

z(z − 1) · · · (z − n)
·

1

1− qa+z
dz,

where C is the rectangle formed by the four lines Re z = −
a

2
, Re z = r > n,

Im z = r, Im z = −r. On the latter three, the integrand is O(r−2), so that their
contribution vanishes if we let r → ∞. Hence we have

n
∑

k=0

(−1)k
(

n

k

)

1

1− qa+k
= −

1

2πi

∫ −a/2+i∞

−a/2−i∞

(−1)nn!

z(z − 1) · · · (z − n)
·

1

1− qa+z
dz.

Now we consider the integral along another rectangle C′ that is formed by the lines

Re z = −
a

2
, Re z = −r, Im z = r, Im z = −r, where r =

(2ℓ+ 1)πi

log(1/q)
(ℓ ∈ Z) is chosen

so as to avoid the poles of
1

1− qa+z
, which are given by uk = −

(

a +
2kπi

log(1/q)

)

,

k ∈ Z. Then the same argument shows that the contribution of three sides of the
rectangle vanishes as r → ∞, which implies that

n
∑

k=0

(−1)k
(

n

k

)

1

1− qa+k
= −

1

2πi

∫ −a/2+i∞

−a/2−i∞

(−1)nn!

z(z − 1) · · · (z − n)
·

1

1− qa+z
dz

= −
∑

k∈Z

Res
z=uk

(−1)nn!

z(z − 1) · · · (z − n)
·

1

1− qa+z

=
1

log 1/q

∑

k∈Z

n!Γ(−uk)

Γ(n+ 1− uk)
. �

In the following, we use the abbreviation Q = 1/q and χk =
2kπi

logQ
. We apply

the previous lemma with n− j−1 > 0 in the place of n and a = j+1 > 0 to obtain
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the double sum

wd(n) =
1

logQ

⌊(n−1)/(d+1)⌋
∑

j=0

(

n− dj

j + 1

)

(n− j − 1)!pj+1
∑

k∈Z

Γ(j + 1 + χk)

Γ(n+ 1 + χk)
.

The inner sum is uniformly convergent, so we may interchange the order of sum-
mation:

wd(n) =
1

logQ

∑

k∈Z

⌊(n−1)/(d+1)⌋
∑

j=0

(

n− dj

j + 1

)

(n− j − 1)!pj+1 ·
Γ(j + 1 + χk)

Γ(n+ 1 + χk)
.

Assume first that d = o(n), and note that
(

n− dj

j + 1

)

(n− j − 1)! =
n!

(j + 1)!
·
(n− dj)(n− dj − 1) · · · (n− (d+ 1)j)

n(n− 1) · · · (n− j)

=
n!

(j + 1)!

j
∏

r=0

(

1−
dj

n− r

)

.

We would like to replace the last product by its asymptotic expansion. To
this end, we estimate the sum over all j ≥

n

3d
: first of all, we have the inequality

n!

j!

∣

∣

∣

∣

Γ(j + 1+ χk)

Γ(n+ 1 + χk)

∣

∣

∣

∣

=
n
∏

r=j+1

1

|1 + χk/r|
≤

1

|1 + χk/(j + 1)||1 + χk/(j + 2)|

≤







1 k = 0,
(j + 1)(j + 2)

|χk|2
otherwise

if j < n−1, which is the case for all nonzero summands in our sum. Therefore,

n!

j!

∑

k∈Z

Γ(j + 1 + χk)

Γ(n+ 1 + χk)
≪ 1 +

∑

k≥1

j2

k2
≪ j2.

Hence the contribution of all terms with j ≥
n

3d
is

(3.1)
1

logQ

∑

k∈Z

⌊(n−1)/(d+1)⌋
∑

j=⌈n/3d⌉

(

n− dj

j + 1

)

(n− j − 1)!pj+1 ·
Γ(j + 1 + χk)

Γ(n+ 1 + χk)

≪
∑

j≥n/3d

jpj+1 ≪
n

d
pn/(3d).

For j <
n

3d
, we can use the following expansion:

j
∏

r=0

(

1−
dj

n− r

)

= exp

(

j
∑

r=0

log

(

1−
dj

n− r

)

)

= exp

(

−

j
∑

r=0

dj

n− r
+O

(

d2j3

n2

)

)
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= exp

(

−
dj(j + 1)

n
+O

(

d2j3

n2

))

= 1−
dj(j + 1)

n
+O

(

d2j4

n2

)

.

This gives us

1

logQ

∑

k∈Z

∑

j<n/3d

(

n− dj

j + 1

)

(n− j − 1)!pj+1 ·
Γ(j + 1 + χk)

Γ(n+ 1 + χk)

=
1

logQ

∑

k∈Z

n!

Γ(n+ 1 + χk)

∑

j<n/3d

pj+1

(j + 1)!
Γ(j + 1 + χk)

(

1−
dj(j + 1)

n
+O

(

d2j4

n2

))

.

We extend the range of the inner summation to the entire interval [0,∞) at
the expense of another exponentially small error term (as before in (3.1)) and use
the identities

∑

j≥0

pj+1

(j + 1)!
Γ(j + 1 + χk) =

{

logQ k = 0,

(q−χk − 1)Γ(χk) = 0 otherwise

and

∑

j≥1

pj+1

(j − 1)!
Γ(j + 1 + χk) = p2q−2−χkΓ(2 + χk) = p2q−2Γ(2 + χk).

Putting everything together, this yields

wd(n) = 1−
dp2

nq2 logQ

∑

k∈Z

n!Γ(2 + χk)

Γ(n+ 1 + χk)
+O

(

d2

n2

)

.

It remains to deal with the sum over k: one has

∑

k∈Z

n!Γ(2 + χk)

Γ(n+ 1 + χk)
=
∑

k∈Z

Γ(2 + χk)e
−χk logn +O

(

1

n

)

by means of Stirling’s approximation, cf. [9]. Hence we obtain the following theo-
rem.

Theorem 5. If d = o(n), then the probability wd(n) has the asymptotic expansion

wd(n) = 1−
dp2

nq2 logQ
ψ(logQ n) + O

(

d2

n2

)

,

where ψ is the 1-periodic function given by the Fourier series

ψ(x) =
∑

k∈Z

Γ(2− 2kπi/ logQ)e2kπix.
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If, on the other hand, d ∼ αn for some α > 0, then the sum over j becomes
a finite sum, which simplifies matters:

Theorem 6. If d ∼ αn, then

wd(n) ∼
1

logQ

∑

j<1/α

(1 − jα)j+1 pj+1

(j + 1)!
ψj(logQ n),

where ψj is the 1-periodic function

ψj(x) =
∑

k∈Z

Γ(j + 1− 2kπi/ logQ)e2kπix.

Remark. In the case d = o(n), the fluctuations (i.e. all terms with k 6= 0) arising from

ψ(logQ n)/n→ 0 as n→ ∞. Whereas, if d ∼ αn, for any 0 < α ≤ 1, the amplitude of the

corresponding fluctuating functions of Theorem 6 remains fixed as n → ∞. These two

cases are illustrated in Figure 1 in the case p = 1/2.

2 4 6 8 10

-0.00006

-0.00004

-0.00002

0.00002

0.00004

0.00006

2 4 6 8 10

-0.00001

-5.´10-6

5.´10-6

0.00001

Figure 1. The fluctuating functions of Theorems 5 and 6 for d = 1 and d = n/3,

respectively.

4. THE AVERAGE MINIMUM SEPARATION OF THE MAXIMA

Our asymptotic estimates for wd(n) allow us to compute the mean value of
the minimum separation of the maxima in samples of n geometric random variables.

This is given by m(n) :=
n−2∑

d=1

wd(n). Now

n−2
∑

d=1

wd(n) =
1

logQ

n−2
∑

d=1

⌊(n−1)/(d+1)⌋
∑

j=0

(

n− dj

j + 1

)

(n− j − 1)!pj+1
∑

k∈Z

Γ(j + 1 + χk)

Γ(n+ 1 + χk)

=
1

logQ

⌊(n−1)/2⌋
∑

j=1

⌊(n−j−1)/j⌋
∑

d=1

(

n− dj

j + 1

)

(n− j − 1)!pj+1
∑

k∈Z

Γ(j + 1 + χk)

Γ(n+ 1 + χk)

+
pn

logQ

∑

k∈Z

n!Γ(1 + χk)

Γ(n+ 1 + χk)
+O(1).
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We start with the sum over d: first of all, rewrite the sum as

⌊(n−j−1)/j⌋
∑

d=1

(

n− dj

j + 1

)

(n− j − 1)! =
n!

(j + 1)!

⌊(n−j−1)/j⌋
∑

d=1

j
∏

r=0

(

1−
dj

n− r

)

.

We replace the product by a simpler function:

j
∏

r=0

(

1−
dj

n− r

)

=

(

1−
dj

n

)j+1 j
∏

r=0

(

1−
djr

(n− r)(n− dj)

)

=

(

1−
dj

n

)j+1
(

1 +O

(

j
∑

r=0

djr

(n− r)(n− dj)

))

=

(

1−
dj

n

)j+1

+O

(

dj3

n2

(

1−
dj

n

)j
)

.

The estimate is uniform in j. Let us also remark that the O-term is not
necessarily smaller than the first term (if j is too large, this is no longer the case),
but this is not important for the rest of the argument in view of the exponential
term pj+1. Now the Euler-Maclaurin sum formula yields

⌊(n−j−1)/j⌋
∑

d=1

(

1−
dj

n

)j+1

=

∫ n/j

0

(

1−
jt

n

)j+1

dt+O(1) =
n

j(j + 2)
+O(1)

and similarly

⌊(n−j−1)/j⌋
∑

d=1

d

(

1−
dj

n

)j

=
n

j

⌊(n−j−1)/j⌋
∑

d=1

(

1−
dj

n

)j

−

(

1−
dj

n

)j+1

=
n

j

(

n

j(j + 1)(j + 2)
+O(1)

)

.

Hence we obtain

⌊(n−j−1)/j⌋
∑

d=1

(

n− dj

j + 1

)

(n− j − 1)! =
n!

(j + 1)!

(

n

j(j + 2)
+O

(

j2

n

)

+O(1)

)

.

The remaining steps (summation over all j, replacing n!/Γ(n + 1 + χk) by
exp(−χk logn)) are analogous to the previous section. We end up with the following
theorem:

Theorem 7. The mean value m(n) of the minimum separation between maxima

satisfies

m(n) = nφ(logQ n) +O(1),
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where the 1-periodic function φ is given by the Fourier series

φ(x) =
p

logQ

∑

k∈Z



Γ(1− 2kπi/ logQ) +
∑

j≥1

pjΓ(j + 1− 2kπi/ logQ)

j(j + 1)(j + 2)j!



 e2kπix.

The constant term in the Fourier series is

p

logQ



1 +
∑

j≥1

pj

j(j + 1)(j + 2)



 =
7p− 2

4 logQ
+
q2

2p
.

The coefficients of the remaining terms can be written as hypergeometric functions.

The fluctuations arising from nφ(logQ n) and φ(logQ n) are illustrated below
for p = 1/2.

2 4 6 8 10

-0.00002

0.00002

0.00004

2 4 6 8 10

-6.´10-6

-4.´10-6

-2.´10-6

2.´10-6

4.´10-6

6.´10-6

Figure 2. The fluctuations from nφ(logQ n) and φ(logQ n).

Let p1(n) denote the probability that a sample of length n has exactly one
maximum value. It is known that

p1(n) =
p

logQ

∑

k∈Z

Γ(1 − 2kπi/ logQ)e2kπix +O

(

1

n

)

,

see [9]. This means that a large contribution to the mean m(n), of np1(n), comes
from these geometric samples of length n with exactly one maximum value. It is
more meaningful to exclude this case and to consider instead the conditional mean

value of the minimum separation of the maxima, for samples of length n with at

least two maxima. This is given by

(3.2) m2(n) :=
m(n)− np1(n)

1− p1(n)
,

where 1−p1(n) is the probability that a sample of length n has at least two maxima.
Then (3.2), together with Theorem 7 lead to the following result.

Theorem 8. The average minimum separation between maxima, for samples of n
geometric variables with at least two maxima satisfies

(3.3) m2(n) = nφ̃(logQ n) +O(1).
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The 1-periodic function φ̃ is given by

φ̃(x) =

∑

k∈Z

∑

j≥1

pjΓ(j + 1− 2kπi/ logQ)

j(j + 1)(j + 2)j!
e2kπix

p−1 logQ−
∑

k∈Z

Γ(1− 2kπi/ logQ)e2kπix
.

If p is not too close to 1, the fluctuations are quite tiny and can essentially
be ignored. In particular, in the special case p = 1/2, we have from Theorem 8

that m2(n) ≈
n

4
. By contrast, m(n) ≈ n

(

1

4
+

3

8 log 2

)

≈ 0.791011n for p = 1/2.

However, of this,
n

2 log 2
≈ 0.721348n is in fact the contribution from samples with

only one maximum.
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