Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 5 (2011), 259–270.

doi:10.2298/AADM110510013A

BESSELIAN G-FRAMES AND NEAR G-RIESZ BASES

M. R. Abdollahpour, A. Najati

In this paper we introduce and study near g-Riesz basis, Besselian g-frames and unconditional g-frames. We show that a near g-Riesz basis is a Besselian g-frame and we conclude that under some conditions the kernel of associated synthesis operator for a near g-Riesz basis is finite dimensional. Finally, we show that a g-frame is a g-Riesz basis for a Hilbert space \mathcal{H} if and only if there is an equivalent inner product on \mathcal{H} , with respect to which it becomes an g-orthonormal basis for \mathcal{H} .

1. INTRODUCTION

The concept of frame was introduced by DUFFIN and SCHAEFFER [4] in 1952. Afterwards, several generalizations of frames in Hilbert spaces have been proposed [1, 7, 5, 3]. *G*-frames, the most recent generalization of frames, introduced by W. SUN [9].

Throughout this paper, \mathcal{H} is a separable Hilbert space and $\{\mathcal{H}_i\}_{i\in I}$ is a sequence of separable Hilbert spaces, where I is a subset of \mathbb{N} . $\mathcal{B}(\mathcal{H}, \mathcal{H}_i)$ is the collection of all bounded linear operators from \mathcal{H} into \mathcal{H}_i .

Definition 1.1. A sequence $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called a g-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$ if there exist two positive constants A and B such that

(1.1)
$$A\|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B\|f\|^2,$$

for all $f \in \mathcal{H}$. We call A and B the lower and upper g-frame bounds, respectively. We call $\{\Lambda_i\}_{i\in I}$ a tight g-frame if A = B and Parseval g-frame if A = B = 1. The sequence $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called the g-Bessel sequence if the right hand inequality in (1.1) holds for all $f \in \mathcal{H}$.

²⁰¹⁰ Mathematics Subject Classification. 41A58, 42C15.

Keywords and Phrases. g-Bessel sequence, g-frame, Besselian g-frame, near g-Riesz basis.

Let us define the set

$$\left(\sum_{i\in I}\oplus\mathcal{H}_i\right)_{l_2} = \left\{\{f_i\}: f_i\in\mathcal{H}_i, \sum_{i\in I}\|f_i\|^2 < \infty\right\}$$

with the inner product given by $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is clear that $\left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$ is a Hilbert space with respect to the pointwise operations. If $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence for \mathcal{H} , then the operator

$$T: \left(\sum_{i\in I} \oplus \mathcal{H}_i\right)_{l_2} \to \mathcal{H}$$

defined by

(1.2)
$$T(\lbrace f_i \rbrace) = \sum_{i \in I} \Lambda_i^*(f_i)$$

is well defined, bounded and its adjoint is $T^*f = {\Lambda_i f}_{i \in I}$. A sequence ${\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I}$ is a g-frame if and only if the operator T is defined as (1.2) is bounded and onto (see [8]). We call the operators T and T^* , synthesis and analysis operators, respectively.

Proposition 1.2. [9] Let $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ be a g-Bessel sequence for \mathcal{H} . The operator

$$S: \mathcal{H} \to \mathcal{H}, \quad Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f$$

is a positive and bounded operator.

A simple computation shows that $\langle Sf, f \rangle = \sum_{i \in I} \|\Lambda_i f\|^2$ for all $f \in \mathcal{H}$. This implies that S is an invertible operator if and only if $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} . If $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-frame for \mathcal{H} , then every $f \in \mathcal{H}$ has an expansion

$$f = \sum_{i \in I} S^{-1} \Lambda_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f.$$

The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in I}$. If $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is a g-Bessel sequence, then $S = TT^*$.

Definition 1.3. [9] A sequence $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is called

(1) *g*-complete, if $\{f : \Lambda_i f = 0, i \in I\} = 0;$

(2) a g-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$, if $\{\Lambda_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i) : i \in I\}$ is g-complete and there exist two positive constants A and B such that for any finite subset $F \subseteq I$ and $g_i \in \mathcal{H}_i$

$$A\sum_{i\in F} \|g_i\|^2 \le \left\|\sum_{i\in F} \Lambda_i^* g_i\right\|^2 \le B\sum_{i\in F} \|g_i\|^2;$$

(3) a g-orthonormal basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$, if $\sum_{i\in I} \|\Lambda_i f\|^2 = \|f\|^2$ for all $f \in \mathcal{H}$ and $\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle$, $g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j$, $i, j \in I$.

2. NEAR g-RIESZ BASES

As usual, we denote by $\ell^2(I)$ the Hilbert space of all square-summable sequences of scalars $\{c_i\}_{i\in I}$. If $\{f_i\}_{i\in I}$ is a frame for \mathcal{H} , then $\sum_{i\in I} c_i f_i$ converges if $\{c_i\}_{i\in I} \in \ell^2(I)$. But the converse is not true in general (see [6]). A frame $\{f_i\}_{i\in I}$ for \mathcal{H} is called

- Besselian, if whenever $\sum_{i \in I} c_i f_i$ converges, then $\{c_i\}_{i \in I} \in \ell^2(I)$;
- a *near-Riesz basis*, if there is a finite set σ for which $\{f_i\}_{i \in I \setminus \sigma}$ is a Riesz basis for \mathcal{H} .

We recall the following characterization of frames which are near-Riesz bases.

Theorem 2.1. [6] If $\{f_i\}_{i \in I}$ is a frame for \mathcal{H} , the following are equivalent:

- (i) $\{f_i\}_{i\in I}$ is a near-Riesz basis for \mathcal{H} ;
- (ii) $\{f_i\}_{i \in I}$ is Besselian;
- (iii) $\sum_{i \in I} c_i f_i$ converges if and only if $\{c_i\}_{i \in I} \in l^2(I)$.

For the rest of the paper we need the following proposition.

Proposition 2.2. [8] Let $\{e_{ij}\}_{i \in J_i}$ be an orthonormal basis for the Hilbert space \mathcal{H}_i , where J_i is a subset of \mathbb{N} and $i \in I$. If

(2.1)
$$(E_{ij})_k = \begin{cases} e_{ij}, & i = k, \\ 0, & i \neq k, \end{cases}$$

then $\{E_{ij}\}_{i\in I, j\in J_i}$ is an orthonormal basis for $\left(\sum_{i\in I}\oplus \mathcal{H}_i\right)_{l_2}$.

Theorem 2.3. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$ and let T be the associated synthesis operator for Λ . If T has the property that dim(Ker T) $< \infty$, then there is a g-Riesz basis ${\Theta_i}_{i \in I}$ for \mathcal{H} with respect to ${W_i}_{i \in I}$, where W_i is a closed subspace of \mathcal{H}_i , such that $\Theta_i = \Lambda_i$ and $W_i = \mathcal{H}_i$ for all $i \in I$ except finitely many i.

Proof. Let $\{g_{ij}\}_{i \in J_i}$ be an orthonormal basis for \mathcal{H}_i , $i \in I$. Then $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ is a frame for \mathcal{H} [9]. Let Q be the associated synthesis operator for $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$. We define

$$\Psi: \operatorname{Ker} Q \to \operatorname{Ker} T, \quad \Psi(\{c_{ij}\}_{i \in I, j \in J_i}) = \sum_{i \in I} \sum_{j \in J_i} c_{ij} E_{ij},$$

where E_{ij} was defined by (2.1). It is clear that Ψ is well defined, linear and injective since $\{E_{ij}\}$ is an orthonormal basis for $\left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$.

Let
$$f = \{f_i\}_{i \in I} \in \text{Ker } T$$
, then $f_i = \sum_{j \in J_i} \lambda_{ij} g_{ij}$ for all $i \in I$. Since $\sum_{i \in I, j \in J_i} |\lambda_{ij}|^2$
= $\sum_{i \in I} ||f_i||^2 < \infty$, we get $\{\lambda_{ij}\}_{i \in I, j \in J_i} \in l^2$ and

$$\Psi(\{\lambda_{ij}\}_{i\in I, j\in J_i}) = \sum_{i\in I, j\in J_i} \lambda_{ij} E_{ij} = f.$$

Therefore Ψ is surjective and we conclude that dim(Ker Q) = dim(Ker T) < ∞ . So $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ is a near-Riesz basis for \mathcal{H} [6]. Therefore there exists a finite subsequence \mathcal{M} of $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ such that $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i} \setminus \mathcal{M}$ is a Riesz basis for \mathcal{H} . Let us consider

$$K_i = \{ j \in J_i : \Lambda_i^* g_{ij} \notin \mathcal{M} \},\$$

and define

$$\Theta_i: \mathcal{H} \to \mathcal{H}_i, \quad \Theta_i f = \sum_{j \in K_i} \langle f, \Lambda_i^* g_{ij} \rangle g_{ij}$$

for all $i \in I$. By Theorem 3.1 in [9], $\{\Theta_i\}_{i \in I}$ is a g-Riesz basis for \mathcal{H} with respect to $\{W_i\}_{i \in I}$, where $W_i = \overline{\operatorname{span}}\{g_{ij}\}_{j \in K_i} \subseteq \mathcal{H}_i$. Since $K_i = J_i$ for all $i \in I$ except finitely many, we have

$$\Lambda_i f = \sum_{j \in J_i} \langle \Lambda_i f, g_{ij} \rangle g_{ij} = \sum_{j \in K_i} \langle f, \Lambda_i^* g_{ij} \rangle g_{ij} = \Theta_i f$$

for all $f \in \mathcal{H}$ and all $i \in I$ except finitely many *i*. This completes the proof.

Definition 2.4. We say that a g-frame $\{\Lambda_i\}_{i\in I}$ for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$ is

(1) a Besselian g-frame, if
$$\sum_{i \in I} \Lambda_i^* g_i$$
 converges, then $\{g_i\}_{i \in I} \in \left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{\ell_2}$;

(2) a near g-Riesz basis, if there exists a finite subset σ of I for which $\{\Lambda_i\}_{i\in I\setminus\sigma}$ is a g-Riesz basis for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I\setminus\sigma}$.

EXAMPLE 2.5. Let $A = [0, +\infty)$ with the Lebesque measure μ and $A_1 = [0, 5)$, $A_2 = [5, 10)$ and $A_n = [n-3, n-2)$ for all integers $n \ge 3$. Let $\mathcal{H} = L^2(A)$, $\mathcal{H}_i = L^2(A_i)$ and Λ_i be the orthogonal projection from \mathcal{H} onto \mathcal{H}_i . Then $\{\Lambda_i\}_{i\in\mathbb{N}}$ is near g-Riesz basis for $\mathcal{H} = L^2(A)$, because $\{\Lambda_i\}_{i\ge 3}$ is g-Riesz basis for $\mathcal{H} = L^2(A)$.

Theorem 2.6. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$ and let T be the associated synthesis operator for Λ . If $\Lambda = {\Lambda_i}_{i \in I}$ is a near g-Riesz basis, then Λ is a Besselian g-frame.

Proof. Since $\Lambda = {\{\Lambda_i\}_{i \in I}}$ is a near g-Riesz basis, there exists a finite subset σ of I such that ${\{\Lambda_i\}_{i \in I \setminus \sigma}}$ is a g-Riesz basis for \mathcal{H} with respect to ${\{\mathcal{H}_i\}_{i \in I \setminus \sigma}}$. Suppose that $\sum_{i \in I} \Lambda_i^* g_i$ converges, where $g_i \in \mathcal{H}_i$ for all $i \in I$. So $\sum_{i \in I \setminus \sigma} \Lambda_i^* g_i$ converges. Since ${\{\Lambda_i\}_{i \in I \setminus \sigma}}$ is a g-Riesz basis, there exists a bounded invertible operator U and a g-orthonormal basis ${\{\Theta_i\}_{i \in I \setminus \sigma}}$ such that $\Lambda_i = \Theta_i U$ for $i \in I \setminus \sigma$ (see [9], Corollary 3.4). So

$$\sum_{i \in I \setminus \sigma} \Lambda_i^* g_i = \sum_{i \in I \setminus \sigma} U^* \Theta_i^* g_i = U^* \left(\sum_{i \in I \setminus \sigma} \Theta_i^* g_i \right).$$

Since $\{\Theta_i\}_{i \in I \setminus \sigma}$ is a g-orthonormal basis, we have

$$\sum_{i \in I \setminus \sigma} \|g_i\|^2 = \left\| \sum_{i \in I \setminus \sigma} \Theta_i^* g_i \right\|^2 < \infty.$$

Then $\{g_i\}_{i\in I\setminus\sigma} \in \left(\sum_{i\in I\setminus\sigma} \oplus \mathcal{H}_i\right)_{l_2}$ and this implies that $\{g_i\}_{i\in I} \in \left(\sum_{i\in I} \oplus \mathcal{H}_i\right)_{l_2}$. Hence $\Lambda = \{\Lambda_i\}_{i\in I}$ is a Besselian *g*-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i\in I}$.

Corollary 2.7. Suppose that dim $\mathcal{H}_i < \infty$ for each $i \in I$. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$ and let T be the associated synthesis operator for Λ . If $\Lambda = {\Lambda_i}_{i \in I}$ is a near g-Riesz basis, then dim(Ker T) $< \infty$.

Proof. It follows from Theorem 2.6 that $\Lambda = {\Lambda_i}_{i \in I}$ is a Besselian *g*-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$. Let ${e_{ij}}_{j \in J_i}$ be an orthonormal basis for \mathcal{H}_i for each $i \in I$. Then ${\Lambda_i^* e_{ij}}_{i \in I, j \in J_i}$ is a frame for \mathcal{H} . Suppose that $\sum_{i \in I} \sum_{j \in J_i} c_{ij} \Lambda_i^* e_{ij}$ converges. Since Λ is a Besselian *g*-frame, we get ${\sum_{j \in J_i} c_{ij} e_{ij}}_{i \in I} \in {\sum_{i \in I} \oplus \mathcal{H}_i}_{l_2}$. So

$$\sum_{i \in I} \sum_{j \in J_i} |c_{ij}|^2 = \sum_{i \in I} \left\| \sum_{j \in J_i} c_{ij} e_{ij} \right\|^2 < \infty.$$

Hence $\{\Lambda_i^* e_{ij}\}_{i \in I, j \in J_i}$ is Besselian. Let Q be the associated synthesis operator for $\{\Lambda_i^* e_{ij}\}_{i \in I, j \in J_i}$, then dim(Ker Q) $< \infty$ [6, Theorem 2.3]. Let us define $E_{ij} \in \left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$ by

$$(E_{ij})_k = \begin{cases} e_{ij}, & i = k, \\ 0, & i \neq k, \end{cases}$$

for all $i, j, k \in I$. By Proposition 2.2, $\{E_{ij}\}_{i \in I, j \in J_i}$ is an orthonormal basis for $\left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$. By the definition of Q and T, it is clear that

$$Q(\lbrace c_{ij}\rbrace_{i\in I, j\in J_i}) = \sum_{i\in I}\sum_{j\in J_i} c_{ij}\Lambda_i^* e_{ij} = T\left(\sum_{i\in I}\sum_{j\in J_i} c_{ij}E_{ij}\right).$$

Now we consider the mapping

$$\varphi : \operatorname{Ker} Q \to \operatorname{Ker} T, \quad \varphi(\{c_{ij}\}_{i \in I, j \in J_i}) = \sum_{i \in I} \sum_{j \in J_i} c_{ij} E_{ij}.$$

It is obvious that φ is linear and injective. We claim that φ is surjective. Let $\{g_i\}_{i\in I} \in \operatorname{Ker} T$. Then $g_i \in \mathcal{H}_i$ and $g_i = \sum_{j\in J_i} \lambda_{ij} e_{ij}$ for each $i \in I$. Since $||g_i||^2 = \sum_{j\in J_i} |\lambda_{ij}|^2$, we have $\sum_{i\in I} \sum_{j\in J_i} |\lambda_{ij}|^2 = \sum_{i\in I} ||g_i||^2 < \infty$. Therefore $\{\lambda_{ij}\}_{i\in I, j\in J_i} \in l^2$ and $Q(\{\lambda_{ij}\}_{i\in I, j\in J_i}) = T\left(\sum_{i\in I} \sum_{j\in J_i} \lambda_{ij} E_{ij}\right) = T(\{g_i\}_{i\in I}) = 0,$ $\varphi(\{\lambda_{ij}\}_{i\in I, j\in J_i}) = \sum_{i\in I} \sum_{j\in J_i} \lambda_{ij} E_{ij} = \{g_i\}_{i\in I}.$

Hence $\dim(\operatorname{Ker} T) = \dim(\operatorname{Ker} Q) < \infty$.

Definition 2.8. A g-frame $\{\Lambda_i\}_{i \in I}$ for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$ is called an unconditional g-frame if it satisfies that, if $\sum_{i \in I} \Lambda_i^* g_i$ converges, then $\sum_{i \in I} \Lambda_i^* g_i$ converges unconditionally, where $g_i \in \mathcal{H}_i$ for each $i \in I$.

Proposition 2.9. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a Besselian g-frame (near g-Riesz basis) for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$ with the upper bound B. Then Λ is an unconditional g-frame.

Proof. By Theorem 2.6 every near g-Riesz basis is a Besselian g-frame. Suppose that $\sum_{i \in I} \Lambda_i^* g_i$ converges, where $g_i \in \mathcal{H}_i$ for all $i \in I$. Since $\Lambda = {\Lambda_i}_{i \in I}$ is Besselian,

we get $\{g_i\}_{i \in I} \in \left(\sum_{i \in I} \oplus \mathcal{H}_i\right)_{l_2}$. We show that $\sum_{i \in I} \Lambda_i^* g_i$ converges unconditionally. Let J be an arbitrary finite subset of I. Then

$$\begin{split} \left\| \sum_{i \in J} \Lambda_i^* g_i \right\| &= \sup_{\|g\|=1} \left| \left\langle \sum_{i \in J} \Lambda_i^* g_i, g \right\rangle \right| = \sup_{\|g\|=1} \left| \sum_{i \in J} \left\langle g_i, \Lambda_i g \right\rangle \right| \\ &\leq \sup_{\|g\|=1} \left(\sum_{i \in J} \|\Lambda_i g\|^2 \right)^{\frac{1}{2}} \left(\sum_{i \in J} \|g_i\|^2 \right)^{\frac{1}{2}} \leq \sqrt{B} \left(\sum_{i \in I} \|g_i\|^2 \right)^{\frac{1}{2}}. \end{split}$$

Since $\sum_{i \in I} \|g_i\|^2$ converges unconditionally, $\sum_{i \in I} \Lambda_i^* g_i$ converges unconditionally.

Theorem 2.10. Let $\{\Lambda_i\}_{i \in I}$ be a Besselian g-frame for \mathcal{H} with bounds A, B and $\{\Theta_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i)\}_{i \in I}$ be a sequence of bounded operators such that for any finite subset $J \subseteq I$ and for each $f \in \mathcal{H}$,

(2.2)
$$\left\|\sum_{i\in J} (\Lambda_i^* f_i - \Theta_i^* f_i)\right\| \le \lambda \left\|\sum_{i\in J} \Lambda_i^* f_i\right\| + \mu \left\|\sum_{i\in J} \Theta_i^* f_i\right\|,$$

where $0 \leq \lambda, \mu < 1$ and $f_i \in \mathcal{H}_i$ for all $i \in J$. Then $\{\Theta_i\}_{i \in I}$ is a Besselian g-frame for \mathcal{H} with the bounds

(2.3)
$$\left[\frac{(1-\lambda)\sqrt{A}}{1+\mu}\right]^2 \quad and \quad \left[\frac{(1+\lambda)\sqrt{B}}{1-\mu}\right]^2.$$

Proof. It follows from (2.2) that $\{\Theta_i\}_{i \in I}$ is a *g*-frame for \mathcal{H} with the required bounds (see [8]). Assume that $J \subseteq I$ with $|J| < +\infty$ and $f_i \in \mathcal{H}_i$ for all $i \in J$. We have

$$\begin{split} \sum_{i \in J} \Lambda_i^* f_i \bigg\| &\leq \bigg\| \sum_{i \in J} (\Lambda_i^* f_i - \Theta_i^* f_i) \bigg\| + \bigg\| \sum_{i \in J} \Theta_i^* f_i \bigg\| \\ &\leq (1 + \mu) \bigg\| \sum_{i \in J} \Theta_i^* f_i \bigg\| + \lambda \bigg\| \sum_{i \in J} \Lambda_i^* f_i \bigg\|. \end{split}$$

Hence

$$\left\|\sum_{i\in J}\Lambda_i^*f_i\right\| \le \frac{1+\mu}{1-\lambda} \left\|\sum_{i\in J}\Theta_i^*f_i\right\|.$$

This implies that $\sum_{i \in I} \Lambda_i^* f_i$ converges if $\sum_{i \in I} \Theta_i^* f_i$ converges. Therefore $\{\Theta_i\}_{i \in I}$ is Besselian.

Definition 2.11. A g-frame $\{\Lambda_i\}_{i \in I}$ for \mathcal{H} is called a g-Riesz frame if every subfamily $\{\Lambda_i\}_{i \in J}$ of $\{\Lambda_i\}_{i \in I}$ is a g-frame for $\overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in J}$ with uniform g-frame bounds A, B. **Theorem 2.12.** Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} such that

(2.4)
$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \quad g_i \in \mathcal{H}_i, g_j \in \mathcal{H}_j, \quad i, j \in I.$$

Then there exist $I_1 \subseteq I$ and a g-Riesz basis $\{\Theta_i\}_{i \in I_1}$ for \mathcal{H} with respect to $\{K_i\}_{i \in I_1}$, where K_i is a closed subspace of \mathcal{H}_i for all $i \in I_1$.

Proof. Let A, B be the g-frame bounds for $\{\Lambda_i\}_{i \in I}$ and let $E \subseteq I$. Since $\{\Lambda_i\}_{i \in I}$ is a g-frame for \mathcal{H} , we get $\sum_{i \in E} \Lambda_i^* \Lambda_i f$ converges for all $f \in \mathcal{H}$. We show that $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$ for all $f \in \overline{\text{span}} \{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$. Let $f \in \text{span} \{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$, then $f = \sum_{i \in E} \Lambda_i^* g_i$ where $g_i \in \mathcal{H}_i$ and the set $\{i \in E : \Lambda_i^* g_i \neq 0\}$ is finite. We show that $g_i = \Lambda_i f$ for $i \in E$. Let $h \in \mathcal{H}_i$, then

$$\langle \Lambda_i f, h \rangle = \left\langle \sum_{k \in E} \Lambda_i \Lambda_k^* g_k, h \right\rangle = \sum_{k \in E} \langle \Lambda_k^* g_k, \Lambda_i^* h \rangle = \langle \Lambda_i^* g_i, \Lambda_i^* h \rangle = \langle g_i, h \rangle.$$

So $g_i = \Lambda_i f$ for $i \in E$ and $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$.

For the case $f \in \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$, there exists a sequence $\{f_n\}$ in $\operatorname{span}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$ such that $f_n \to f$ as $n \to \infty$. We have

$$\left\|\sum_{i\in E}\Lambda_i^*\Lambda_i f_n - \sum_{i\in E}\Lambda_i^*\Lambda_i f\right\|^2 = \left\|\sum_{i\in E}\Lambda_i^*\Lambda_i (f_n - f)\right\|^2$$
$$= \sum_{i\in E}\|\Lambda_i (f_n - f)\|^2 \le B\|f_n - f\|^2 \to 0.$$

Hence $f = \sum_{i \in E} \Lambda_i^* \Lambda_i f$. Therefore it follows from (2.4) that

$$\|f\|^{2} = \left\|\sum_{i \in E} \Lambda_{i}^{*} \Lambda_{i} f\right\|^{2} = \sum_{i \in E} \|\Lambda_{i} f\|^{2} \le \sum_{i \in I} \|\Lambda_{i} f\|^{2} \le B \|f\|^{2}$$

for all $f \in \overline{\operatorname{span}}\{\Lambda_i^*(\mathcal{H}_i)\}_{i \in E}$. This means that $\Lambda = \{\Lambda_i\}_{i \in I}$ is a g-Riesz frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in I}$ with the uniform g-frame bounds 1 and B. Assume that $\{g_{ij}\}_{j \in J_i}$ is an orthonormal basis for \mathcal{H}_i for each $i \in I$. Then $\{g_{ij}\}_{j \in J_i}$ is a Riesz frame for \mathcal{H}_i with bounds equal to 1. We show that $\{\Lambda_i^*g_{ij}\}_{i \in I, j \in J_i}$ is a Riesz frame for \mathcal{H} . Let $I_0 \subseteq I$, $J_i^0 \subseteq J_i$ and $f \in \operatorname{span}\{\Lambda_i^*g_{ij}\}_{i \in I_0, J_i^0}$. Then $\Lambda_i f \in \operatorname{span}\{g_{ij}\}_{j \in J_i^0}$ for all $i \in I_0$. So

(2.5)
$$\sum_{i \in I_0} \|\Lambda_i f\|^2 = \sum_{i \in I_0} \sum_{j \in J_i^0} |\langle \Lambda_i f, g_{ij} \rangle|^2 = \sum_{i \in I_0} \sum_{j \in J_i^0} |\langle f, \Lambda_i^* g_{ij} \rangle|^2.$$

Since $\{\Lambda_i\}_{i\in I}$ is g-Riesz frame, we have

(2.6)
$$||f||^2 \le \sum_{i \in I_0} ||\Lambda_i f||^2 \le B ||f||^2.$$

Hence (2.6) and (2.5) imply

$$\|f\|^2 \leq \sum_{i \in I_0} \sum_{j \in J_i^0} |\langle f, \Lambda_i^* g_{ij} \rangle|^2 \leq B \|f\|^2.$$

Therefore $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ is a Riesz frame for \mathcal{H} . By Theorem 6.3.3 in [2], it follows that $\{\Lambda_i^* g_{ij}\}_{i \in I, J_i}$ contains a Riesz basis. Let $I_1 \subseteq I$ and $J_i^1 \subseteq J_i$ such that $\{\Lambda_i^* g_{ij}\}_{i \in I_1, j \in J_i^1}$ is a Riesz basis for \mathcal{H} . Consider $K_i = \overline{\operatorname{span}}\{g_{ij}\}_{j \in J_i^1}$ for $i \in I_1$ and define

$$\Theta_i : \mathcal{H} \to K_i, \quad \Theta_i f = \sum_{j \in J_i^1} \langle f, \Lambda_i^* g_{ij} \rangle, \qquad i \in I_1$$

By Theorem 3.1 of [9], we obtain that $\{\Theta_i\}_{i \in I_1}$ is a *g*-Riesz basis for \mathcal{H} with respect to $\{K_i\}_{i \in I_1}$.

Theorem 2.13. Let $\{\Lambda_i\}_{i\in I}$ be a g-Riesz basis for \mathcal{H} with bounds A, B and $\{\Theta_i \in \mathcal{B}(\mathcal{H}, \mathcal{H}_i)\}_{i\in I}$ be a sequence of bounded operators. Assume that there exist $\lambda, \gamma, \mu \geq 0$ such that $\max\left\{\lambda + \frac{\gamma}{\sqrt{A}}, \mu\right\} < 1$. Suppose that for any finite subset $J \subseteq I$ and for each $f \in \mathcal{H}$,

(2.7)
$$\left\|\sum_{i\in J} (\Lambda_i^* f_i - \Theta_i^* f_i)\right\| \le \lambda \left\|\sum_{i\in J} \Lambda_i^* f_i\right\| + \mu \left\|\sum_{i\in J} \Theta_i^* f_i\right\| + \gamma \left(\sum_{i\in J} \|f_i\|^2\right)^{\frac{1}{2}},$$

where $f_i \in \mathcal{H}_i$ for all $i \in J$. Then $\{\Theta_i\}_{i \in I}$ is a g-Riesz basis for \mathcal{H} with the bounds

(2.8)
$$\left[\frac{(1-\lambda)\sqrt{A}-\gamma}{1+\mu}\right]^2 \quad and \quad \left[\frac{(1+\lambda)\sqrt{B}+\gamma}{1-\mu}\right]^2.$$

Especially, if $\{\Lambda_i\}_{i\in I}$ is a near g-Riesz basis for \mathcal{H} , then $\{\Theta_i\}_{i\in I}$ is a near g-Riesz basis for \mathcal{H} .

Proof. It follows from (2.7) that $\{\Theta_i\}_{i \in I}$ is a *g*-frame for \mathcal{H} and therefore $\{\Theta_i\}_{i \in I}$ is *g*-complete (see [8]). Assume that $J \subseteq I$ with $|J| < +\infty$ and $f_i \in \mathcal{H}_i$ for all $i \in J$. We have

$$\left\|\sum_{i\in J}\Theta_{i}^{*}f_{i}\right\| \leq \left\|\sum_{i\in J}(\Lambda_{i}^{*}f_{i}-\Theta_{i}^{*}f_{i})\right\| + \left\|\sum_{i\in J}\Lambda_{i}^{*}f_{i}\right\|$$
$$\leq (1+\lambda)\left\|\sum_{i\in J}\Lambda_{i}^{*}f_{i}\right\| + \mu\left\|\sum_{i\in J}\Theta_{i}^{*}f_{i}\right\| + \gamma\left(\sum_{i\in J}\|f_{i}\|^{2}\right)^{\frac{1}{2}}.$$

1

Then

$$\left\|\sum_{i\in J} \Theta_i^* f_i\right\| \leq \frac{1+\lambda}{1-\mu} \left\|\sum_{i\in J} \Lambda_i^* f_i\right\| + \frac{\gamma}{1-\mu} \left(\sum_{i\in J} \|f_i\|^2\right)^{\frac{1}{2}}.$$

Since $\left\|\sum_{i\in J} \Lambda_i^* f_i\right\|^2 \leq B \sum_{i\in J} \|f_i\|^2$, we get

$$\left\|\sum_{i\in J}\Theta_i^*f_i\right\|^2 \le \left[\frac{(1+\lambda)\sqrt{B}+\gamma}{1-\mu}\right]^2 \sum_{i\in J}\|f_i\|^2.$$

Similarly, we have

$$\left\|\sum_{i\in J}\Lambda_i^*f_i\right\| \le \left\|\sum_{i\in J}(\Lambda_i^*f_i - \Theta_i^*f_i)\right\| + \left\|\sum_{i\in J}\Theta_i^*f_i\right\|$$
$$\le (1+\mu)\left\|\sum_{i\in J}\Theta_i^*f_i\right\| + \lambda\left\|\sum_{i\in J}\Lambda_i^*f_i\right\| + \gamma\left(\sum_{i\in J}\|f_i\|^2\right)^{\frac{1}{2}}.$$

Hence

$$\left|\sum_{i\in J}\Lambda_i^*f_i\right| \le \frac{1+\mu}{1-\lambda} \left\|\sum_{i\in J}\Theta_i^*f_i\right\| + \frac{\gamma}{1-\lambda} \left(\sum_{i\in J}\|f_i\|^2\right)^{\frac{1}{2}}.$$

Since $\left\|\sum_{i\in J} \Lambda_i^* f_i\right\|^2 \ge A \sum_{i\in J} \|f_i\|^2$, we get

$$\left\|\sum_{i\in J}\Theta_i^*f_i\right\|^2 \ge \left[\frac{(1-\lambda)\sqrt{A}-\gamma}{1+\mu}\right]^2 \sum_{i\in J}\|f_i\|^2.$$

This completes the proof.

Let V be a normed space with norm $\|.\|$. If $\|.\|_1$ is another norm on V, $\|.\|$ and $\|.\|_1$ are said to be equivalent if there are positive constants m and M such that $m\|f\| \leq \|f\|_1 \leq M\|f\|$ for all $f \in V$. Two inner products on a vector space are said to be equivalent if they generate equivalent norms. A sequence $\{f_n\}$ in a Hilbert space \mathcal{H} is a Riesz basis if and only if there exists an equivalent inner product on \mathcal{H} , with respect to which the sequence $\{f_n\}$ becomes an orthonormal basis for \mathcal{H} [10]. In the next theorem we show that every g-Riesz basis for \mathcal{H} can be considered as a g-orthonormal basis for \mathcal{H} with respect to equivalent inner product on \mathcal{H} .

Theorem 2.14. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a g-frame for \mathcal{H} with respect to ${\mathcal{H}_i}_{i \in I}$. Then Λ is a g-Riesz basis for \mathcal{H} if and only if there is an equivalent inner product on \mathcal{H} , with respect to which $\Lambda = {\Lambda_i}_{i \in I}$ becomes an g-orthonormal basis for \mathcal{H} .

Proof. Let $\langle ., . \rangle$ be the usual inner product of \mathcal{H} . Assume that $\Lambda = {\Lambda_i}_{i \in I}$ is a g-Riesz basis for \mathcal{H} and ${g_{ij}}_{j \in J_i}$ is an orthonormal basis for \mathcal{H}_i for each $i \in I$.

Then by [9] Theorem 3.1, $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ is a Riesz basis for \mathcal{H} . By Theorem 9 in [10, page 32] there exists an equivalent inner product $\langle ., . \rangle_1$ on \mathcal{H} such that $\{\Lambda_i^* g_{ij}\}_{i \in I, j \in J_i}$ is an orthonormal basis for \mathcal{H} with respect to $\langle ., . \rangle_1$. We show that $\{\Lambda_i\}_{i \in I}$ is a g-orthonormal basis with respect to $\langle ., . \rangle_1$. Let $\|.\|_1$ be the induced norm by $\langle ., . \rangle_1$ and $f \in \mathcal{H}$. Then

$$\sum_{i \in I} \|\Lambda_i f\|^2 = \sum_{i \in I} \sum_{j \in J_i} |\langle g_{ij}, \Lambda_i f \rangle|^2 = \sum_{i \in I} \sum_{j \in J_i} |\langle \Lambda_i^* g_{ij}, f \rangle_1|^2 = \|f\|_1^2.$$

If $g \in \mathcal{H}_i$, $h \in \mathcal{H}_j$ and $i \neq j$, we have

$$\langle \Lambda_i^* g, \Lambda_j^* h \rangle_1 = \left\langle \sum_{k \in J_i} \langle g, g_{ik} \rangle \Lambda_i^* g_{ik}, \sum_{l \in J_j} \langle h, g_{jl} \rangle \Lambda_j^* g_{jl} \right\rangle_1 = 0.$$

If $g, h \in \mathcal{H}_i$, then

$$\langle \Lambda_i^* g, \Lambda_i^* h \rangle_1 = \left\langle \sum_{k \in J_i} \langle g, g_{ik} \rangle \Lambda_i^* g_{ik}, \sum_{l \in J_i} \langle h, g_{il} \rangle \Lambda_i^* g_{il} \right\rangle_1 = \sum_{k \in J_i} \langle g, g_{ik} \rangle \langle g_{ik}, h \rangle = \langle g, h \rangle.$$

Conversely, let $\langle ., . \rangle_1$ be an equivalent inner product on \mathcal{H} such that $\{\Lambda_i\}_{i \in I}$ is a *g*-orthonormal basis for \mathcal{H} w.r. to $\langle ., . \rangle_1$. Since $\langle ., . \rangle$ and $\langle ., . \rangle_1$ are equivalent, there are positive numbers m, M so that

$$m\|f\| \le \|f\|_1 \le M\|f\|, \quad f \in \mathcal{H}.$$

If $g_i \in \mathcal{H}_i$ and J is a finite subset of I then

$$\frac{1}{M^2} \sum_{i \in J} \|g_i\|^2 = \frac{1}{M^2} \left\| \sum_{i \in J} \Lambda_i^* g_i \right\|_1^2 \le \left\| \sum_{i \in J} \Lambda_i^* g_i \right\|^2$$
$$\le \frac{1}{m^2} \left\| \sum_{i \in J} \Lambda_i^* g_i \right\|_1^2 = \frac{1}{m^2} \sum_{i \in J} \|g_i\|^2.$$

Since for all $f \in \mathcal{H}$, we have $\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|_1^2$ so $\{f|\Lambda_i f = 0, i \in I\} = \{0\}$. Therefore, $\{\Lambda_i\}_{i \in I}$ is a g-Riesz basis with respect to the original inner product on \mathcal{H} .

Acknowledgments. The authors would like to thank the referee for useful comments.

REFERENCES

- P. G. CASAZZA, G. KUTYNIOK: Frames of subspaces. Contemp. Math., 345 (2004), 87–113.
- 2. OLE CHRISTENSEN: An Introduction to Frames and Riesz Bases. Birkhauser, Boston, 2003.

- 3. OLE CHRISTENSEN, Y. C. ELDAR: Oblique dual frames and shift invariant-spaces. Appl. Comput. Harmon. Anal., **17** (2004), 48–68.
- R. J. DUFFIN, A. C. SCHAEFFER: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72 (1952), 341–366.
- M. FORNASIER: Decompositions of Hibert space: Local construction of global frames. Proc. Int. Conf. On constructive function theory, Varna (2002), B. Bojanov Ed., DARBA, Sofia, (2003), 275–281.
- J. HOLUB: Pre-frame operators, Besselian frames and near-Riesz bases. Proc. Amer. Math. Soc., 122 (1994), 779–785.
- S. LI, H. OGAWA: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl., 10 (2004), 409–431.
- A. NAJATI, M. H. FAROUGHI, A. RAHIMI: G-frames and stability of g-frames in Hilbert spaces. Methods Funct. Anal. Topology, 4 (2008), 271–286.
- 9. W. SUN: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322 (2006), 437-452.
- 10. R. YOUNG: An introduction to non-harmonic Fourier series. Academic Press, New York, 1980.

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367 Iran E-mails: mrabdollahpour@yahoo.com a.nejati@yahoo.com (Received December 18, 2010) (Revised May 3, 2011)