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BESSELIAN G-FRAMES AND NEAR G-RIESZ BASES

M. R. Abdollahpour, A. Najati

In this paper we introduce and study near g-Riesz basis, Besselian g-frames
and unconditional g-frames. We show that a near g-Riesz basis is a Besselian
g-frame and we conclude that under some conditions the kernel of associated
synthesis operator for a near g-Riesz basis is finite dimensional. Finally, we
show that a g-frame is a g-Riesz basis for a Hilbert space H if and only if
there is an equivalent inner product on H, with respect to which it becomes
an g-orthonormal basis for H.

1. INTRODUCTION

The concept of frame was introduced by Duffin and Schaeffer [4] in 1952.
Afterwards, several generalizations of frames in Hilbert spaces have been proposed
[1, 7, 5, 3]. G-frames, the most recent generalization of frames, introduced by W.

Sun [9].

Throughout this paper, H is a separable Hilbert space and {Hi}i∈I is a
sequence of separable Hilbert spaces, where I is a subset of N. B(H,Hi) is the
collection of all bounded linear operators from H into Hi.

Definition 1.1. A sequence {Λi ∈ B(H,Hi) : i ∈ I} is called a g-frame for H with

respect to {Hi}i∈I if there exist two positive constants A and B such that

(1.1) A‖f‖2 ≤
∑

i∈I

‖Λif‖2 ≤ B‖f‖2,

for all f ∈ H. We call A and B the lower and upper g−frame bounds, respectively.

We call {Λi}i∈I a tight g-frame if A = B and Parseval g-frame if A = B = 1. The
sequence {Λi ∈ B(H,Hi) : i ∈ I} is called the g-Bessel sequence if the right hand

inequality in (1.1) holds for all f ∈ H.
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Let us define the set

(

∑

i∈I

⊕Hi

)

l2

=

{

{fi} : fi ∈ Hi,
∑

i∈I

‖fi‖2 < ∞
}

with the inner product given by 〈{fi}, {gi}〉 =
∑

i∈I

〈fi, gi〉. It is clear that
(∑

i∈I

⊕

Hi

)

l2

is a Hilbert space with respect to the pointwise operations. If {Λi ∈ B(H,Hi) :

i ∈ I} is a g-Bessel sequence for H, then the operator

T :

(

∑

i∈I

⊕Hi

)

l2

→ H

defined by

(1.2) T ({fi}) =
∑

i∈I

Λ∗
i (fi)

is well defined, bounded and its adjoint is T ∗f = {Λif}i∈I . A sequence {Λi ∈
B(H,Hi) : i ∈ I} is a g-frame if and only if the operator T is defined as (1.2) is
bounded and onto (see [8]). We call the operators T and T ∗, synthesis and analysis
operators, respectively.

Proposition 1.2. [9] Let {Λi ∈ B(H,Hi) : i ∈ I} be a g-Bessel sequence for H.
The operator

S : H → H, Sf =
∑

i∈I

Λ∗
iΛif

is a positive and bounded operator.

A simple computation shows that 〈Sf, f〉 =
∑

i∈I

‖Λif‖2 for all f ∈ H. This

implies that S is an invertible operator if and only if {Λi ∈ B(H,Hi) : i ∈ I} is a
g-frame for H. If {Λi ∈ B(H,Hi) : i ∈ I} is a g-frame for H, then every f ∈ H has
an expansion

f =
∑

i∈I

S−1Λ∗
iΛif =

∑

i∈I

Λ∗
iΛiS

−1f.

The operator S is called the g-frame operator of {Λi}i∈I . If {Λi ∈ B(H,Hi) : i ∈ I}
is a g-Bessel sequence, then S = TT ∗.

Definition 1.3. [9] A sequence {Λi ∈ B(H,Hi) : i ∈ I} is called

(1) g-complete, if {f : Λif = 0, i ∈ I} = 0;
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(2) a g-Riesz basis for H with respect to {Hi}i∈I , if {Λi ∈ B(H,Hi) : i ∈ I} is

g-complete and there exist two positive constants A and B such that for any

finite subset F ⊆ I and gi ∈ Hi

A
∑

i∈F

‖gi‖2 ≤
∥

∥

∥

∥

∑

i∈F

Λ∗
i gi

∥

∥

∥

∥

2

≤ B
∑

i∈F

‖gi‖2;

(3) a g-orthonormal basis for H with respect to {Hi}i∈I , if
∑

i∈I

‖Λif‖2 = ‖f‖2 for

all f ∈ H and 〈Λ∗
i gi,Λ

∗
jgj〉 = δij〈gi, gj〉, gi ∈ Hi, gj ∈ Hj , i, j ∈ I.

2. NEAR g-RIESZ BASES

As usual, we denote by ℓ2(I) the Hilbert space of all square-summable se-

quences of scalars {ci}i∈I . If {fi}i∈I is a frame for H, then
∑

i∈I

cifi converges if

{ci}i∈I ∈ ℓ2(I). But the converse is not true in general (see [6]). A frame {fi}i∈I

for H is called

• Besselian, if whenever
∑

i∈I

cifi converges, then {ci}i∈I ∈ ℓ2(I);

• a near-Riesz basis, if there is a finite set σ for which {fi}i∈I\σ is a Riesz basis
for H.

We recall the following characterization of frames which are near-Riesz bases.

Theorem 2.1. [6] If {fi}i∈I is a frame for H, the following are equivalent:

(i) {fi}i∈I is a near-Riesz basis for H;

(ii) {fi}i∈I is Besselian;

(iii)
∑

i∈I

cifi converges if and only if {ci}i∈I ∈ l2(I).

For the rest of the paper we need the following proposition.

Proposition 2.2. [8] Let {eij}i∈Ji
be an orthonormal basis for the Hilbert space

Hi, where Ji is a subset of N and i ∈ I. If

(2.1) (Eij)k =

{

eij , i = k,
0, i 6= k,

then {Eij}i∈I,j∈Ji
is an orthonormal basis for

(∑

i∈I

⊕Hi

)

l2

.
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Theorem 2.3. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Hi}i∈I and let

T be the associated synthesis operator for Λ. If T has the property that dim(KerT ) <
∞, then there is a g-Riesz basis {Θi}i∈I for H with respect to {Wi}i∈I , where Wi

is a closed subspace of Hi, such that Θi = Λi and Wi = Hi for all i ∈ I except

finitely many i.

Proof. Let {gij}i∈Ji
be an orthonormal basis for Hi, i ∈ I. Then {Λ∗

i gij}i∈I,j∈Ji

is a frame for H [9]. Let Q be the associated synthesis operator for {Λ∗
i gij}i∈I,j∈Ji

.
We define

Ψ : KerQ → KerT, Ψ({cij}i∈I,j∈Ji
) =

∑

i∈I

∑

j∈Ji

cijEij ,

where Eij was defined by (2.1). It is clear that Ψ is well defined, linear and injective

since {Eij} is an orthonormal basis for
(∑

i∈I

⊕Hi

)

l2

.

Let f = {fi}i∈I ∈ KerT, then fi =
∑

j∈Ji

λijgij for all i ∈ I. Since
∑

i∈I,j∈Ji

|λij |2

=
∑

i∈I

‖fi‖2 < ∞, we get {λij}i∈I,j∈Ji
∈ l2 and

Ψ({λij}i∈I,j∈Ji
) =

∑

i∈I,j∈Ji

λijEij = f.

Therefore Ψ is surjective and we conclude that dim(KerQ) = dim(KerT ) < ∞.
So {Λ∗

i gij}i∈I,j∈Ji
is a near-Riesz basis for H [6]. Therefore there exists a finite

subsequence M of {Λ∗
i gij}i∈I,j∈Ji

such that {Λ∗
i gij}i∈I,j∈Ji

\ M is a Riesz basis
for H. Let us consider

Ki = {j ∈ Ji : Λ
∗
i gij /∈ M},

and define

Θi : H → Hi, Θif =
∑

j∈Ki

〈f,Λ∗
i gij〉gij

for all i ∈ I. By Theorem 3.1 in [9], {Θi}i∈I is a g-Riesz basis for H with respect
to {Wi}i∈I , where Wi = span{gij}j∈Ki

⊆ Hi. Since Ki = Ji for all i ∈ I except
finitely many, we have

Λif =
∑

j∈Ji

〈Λif, gij〉gij =
∑

j∈Ki

〈f,Λ∗
i gij〉gij = Θif

for all f ∈ H and all i ∈ I except finitely many i. This completes the proof.

Definition 2.4. We say that a g-frame {Λi}i∈I for H with respect to {Hi}i∈I is

(1) a Besselian g-frame, if
∑

i∈I

Λ∗
i gi converges, then {gi}i∈I ∈

(∑

i∈I

⊕Hi

)

ℓ2

;



Besselian G-frames and near G-Riesz bases 263

(2) a near g-Riesz basis, if there exists a finite subset σ of I for which {Λi}i∈I\σ

is a g-Riesz basis for H with respect to {Hi}i∈I\σ.

Example 2.5. Let A = [0,+∞) with the Lebesque measure µ and A1 = [0, 5), A2 = [5, 10)
and An = [n− 3, n− 2) for all integers n ≥ 3. Let H = L2(A), Hi = L2(Ai) and Λi be the
orthogonal projection from H onto Hi. Then {Λi}i∈N is near g-Riesz basis for H = L2(A),
because {Λi}i≥3 is g-Riesz basis for H = L2(A).

Theorem 2.6. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Hi}i∈I and

let T be the associated synthesis operator for Λ. If Λ = {Λi}i∈I is a near g-Riesz
basis, then Λ is a Besselian g-frame.

Proof. Since Λ = {Λi}i∈I is a near g-Riesz basis, there exists a finite subset σ of
I such that {Λi}i∈I\σ is a g-Riesz basis for H with respect to {Hi}i∈I\σ. Suppose

that
∑

i∈I

Λ∗
i gi converges, where gi ∈ Hi for all i ∈ I. So

∑

i∈I\σ

Λ∗
i gi converges. Since

{Λi}i∈I\σ is a g-Riesz basis, there exists a bounded invertible operator U and a
g-orthonormal basis {Θi}i∈I\σ such that Λi = ΘiU for i ∈ I \ σ (see [9], Corollary
3.4). So

∑

i∈I\σ

Λ∗
i gi =

∑

i∈I\σ

U∗Θ∗
i gi = U∗





∑

i∈I\σ

Θ∗
i gi



 .

Since {Θi}i∈I\σ is a g-orthonormal basis, we have

∑

i∈I\σ

‖gi‖2 =

∥

∥

∥

∥

∑

i∈I\σ

Θ∗
i gi

∥

∥

∥

∥

2

< ∞.

Then {gi}i∈I\σ ∈
( ∑

i∈I\σ

⊕ Hi

)

l2

and this implies that {gi}i∈I ∈
(∑

i∈I

⊕ Hi

)

l2

.

Hence Λ = {Λi}i∈I is a Besselian g-frame for H with respect to {Hi}i∈I .

Corollary 2.7. Suppose that dimHi < ∞ for each i ∈ I. Let Λ = {Λi}i∈I be a

g-frame for H with respect to {Hi}i∈I and let T be the associated synthesis operator

for Λ. If Λ = {Λi}i∈I is a near g-Riesz basis, then dim(KerT ) < ∞.

Proof. It follows from Theorem 2.6 that Λ = {Λi}i∈I is a Besselian g-frame for H
with respect to {Hi}i∈I . Let {eij}j∈Ji

be an orthonormal basis forHi for each i ∈ I.

Then {Λ∗
i eij}i∈I,j∈Ji

is a frame for H. Suppose that
∑

i∈I

∑

j∈Ji

cijΛ
∗
i eij converges.

Since Λ is a Besselian g-frame, we get
{∑

j∈Ji

cijeij

}

i∈I
∈
(∑

i∈I

⊕Hi

)

l2

. So

∑

i∈I

∑

j∈Ji

|cij |2 =
∑

i∈I

∥

∥

∥

∥

∑

j∈Ji

cijeij

∥

∥

∥

∥

2

< ∞.
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Hence {Λ∗
i eij}i∈I,j∈Ji

is Besselian. Let Q be the associated synthesis operator
for {Λ∗

i eij}i∈I,j∈Ji
, then dim(KerQ) < ∞ [6, Theorem 2.3]. Let us define Eij ∈

(∑

i∈I

⊕Hi

)

l2

by

(Eij)k =

{

eij , i = k,
0, i 6= k,

for all i, j, k ∈ I. By Proposition 2.2, {Eij}i∈I,j∈Ji
is an orthonormal basis for

(∑

i∈I

⊕Hi

)

l2

. By the definition of Q and T, it is clear that

Q({cij}i∈I,j∈Ji
) =

∑

i∈I

∑

j∈Ji

cijΛ
∗
i eij = T

(

∑

i∈I

∑

j∈Ji

cijEij

)

.

Now we consider the mapping

ϕ : KerQ → KerT , ϕ({cij}i∈I,j∈Ji
) =

∑

i∈I

∑

j∈Ji

cijEij .

It is obvious that ϕ is linear and injective. We claim that ϕ is surjective. Let

{gi}i∈I ∈ KerT. Then gi ∈ Hi and gi =
∑

j∈Ji

λijeij for each i ∈ I. Since ‖gi‖2 =

∑

j∈Ji

|λij |2, we have
∑

i∈I

∑

j∈Ji

|λij |2 =
∑

i∈I

‖gi‖2 < ∞. Therefore {λij}i∈I,j∈Ji
∈ l2 and

Q
(

{λij}i∈I,j∈Ji

)

= T

(

∑

i∈I

∑

j∈Ji

λijEij

)

= T
(

{gi}i∈I

)

= 0,

ϕ
(

{λij}i∈I,j∈Ji

)

=
∑

i∈I

∑

j∈Ji

λijEij = {gi}i∈I .

Hence dim(KerT ) = dim(KerQ) < ∞.

Definition 2.8. A g-frame {Λi}i∈I for H with respect to {Hi}i∈I is called an un-

conditional g-frame if it satisfies that, if
∑

i∈I

Λ∗
i gi converges, then

∑

i∈I

Λ∗
i gi converges

unconditionally, where gi ∈ Hi for each i ∈ I.

Proposition 2.9. Let Λ = {Λi}i∈I be a Besselian g-frame (near g-Riesz basis)
for H with respect to {Hi}i∈I with the upper bound B. Then Λ is an unconditional

g-frame.

Proof. By Theorem 2.6 every near g-Riesz basis is a Besselian g-frame. Suppose

that
∑

i∈I

Λ∗
i gi converges, where gi ∈ Hi for all i ∈ I. Since Λ = {Λi}i∈I is Besselian,
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we get {gi}i∈I ∈
(∑

i∈I

⊕ Hi

)

l2

. We show that
∑

i∈I

Λ∗
i gi converges unconditionally.

Let J be an arbitrary finite subset of I. Then

∥

∥

∥

∥

∑

i∈J

Λ∗
i gi

∥

∥

∥

∥

= sup
‖g‖=1

∣

∣

∣

∣

〈

∑

i∈J

Λ∗
i gi, g

〉

∣

∣

∣

∣

= sup
‖g‖=1

∣

∣

∣

∣

∑

i∈J

〈gi,Λig〉
∣

∣

∣

∣

≤ sup
‖g‖=1

(

∑

i∈J

‖Λig‖2
)

1
2
(

∑

i∈J

‖gi‖2
)

1
2
≤

√
B

(

∑

i∈I

‖gi‖2
)

1
2
.

Since
∑

i∈I

‖gi‖2 converges unconditionally,
∑

i∈I

Λ∗
i gi converges unconditionally.

Theorem 2.10. Let {Λi}i∈I be a Besselian g-frame for H with bounds A,B and

{Θi ∈ B(H,Hi)}i∈I be a sequence of bounded operators such that for any finite

subset J ⊆ I and for each f ∈ H,

(2.2)

∥

∥

∥

∥

∑

i∈J

(Λ∗
i fi −Θ∗

i fi)

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

+ µ

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

,

where 0 ≤ λ, µ < 1 and fi ∈ Hi for all i ∈ J. Then {Θi}i∈I is a Besselian g-frame

for H with the bounds

(2.3)

[

(1− λ)
√
A

1 + µ

]2

and

[

(1 + λ)
√
B

1− µ

]2

.

Proof. It follows from (2.2) that {Θi}i∈I is a g-frame for H with the required
bounds (see [8]). Assume that J ⊆ I with |J | < +∞ and fi ∈ Hi for all i ∈ J. We
have

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥ ≤
∥

∥

∥

∥

∑

i∈J

(Λ∗
i fi −Θ∗

i fi)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

≤ (1 + µ)

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

+ λ

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

.

Hence
∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

≤ 1 + µ

1− λ

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

.

This implies that
∑

i∈I

Λ∗
i fi converges if

∑

i∈I

Θ∗
i fi converges. Therefore {Θi}i∈I is

Besselian.

Definition 2.11. A g-frame {Λi}i∈I for H is called a g-Riesz frame if every sub-

family {Λi}i∈J of {Λi}i∈I is a g-frame for span{Λ∗
i (Hi)}i∈J with uniform g-frame

bounds A,B.
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Theorem 2.12. Let Λ = {Λi}i∈I be a g-frame for H such that

(2.4) 〈Λ∗
i gi,Λ

∗
jgj〉 = δij〈gi, gj〉, gi ∈ Hi, gj ∈ Hj , i, j ∈ I.

Then there exist I1 ⊆ I and a g-Riesz basis {Θi}i∈I1 for H with respect to {Ki}i∈I1 ,
where Ki is a closed subspace of Hi for all i ∈ I1.

Proof. Let A,B be the g-frame bounds for {Λi}i∈I and let E ⊆ I. Since {Λi}i∈I

is a g-frame for H, we get
∑

i∈E

Λ∗
iΛif converges for all f ∈ H. We show that

f =
∑

i∈E

Λ∗
iΛif for all f ∈ span{Λ∗

i (Hi)}i∈E . Let f ∈ span{Λ∗
i (Hi)}i∈E , then

f =
∑

i∈E

Λ∗
i gi where gi ∈ Hi and the set { i ∈ E : Λ∗

i gi 6= 0 } is finite. We show that

gi = Λif for i ∈ E. Let h ∈ Hi, then

〈Λif, h〉 =
〈

∑

k∈E

ΛiΛ
∗
kgk, h

〉

=
∑

k∈E

〈Λ∗
kgk,Λ

∗
i h〉 = 〈Λ∗

i gi,Λ
∗
i h〉 = 〈gi, h〉.

So gi = Λif for i ∈ E and f =
∑

i∈E

Λ∗
iΛif.

For the case f ∈ span{Λ∗
i (Hi)}i∈E , there exists a sequence {fn} in span{Λ∗

i

(Hi)}i∈E such that fn → f as n → ∞. We have

∥

∥

∥

∥

∑

i∈E

Λ∗
iΛifn −

∑

i∈E

Λ∗
iΛif

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∑

i∈E

Λ∗
iΛi(fn − f)

∥

∥

∥

∥

2

=
∑

i∈E

‖Λi(fn − f)‖2 ≤ B‖fn − f‖2 → 0.

Hence f =
∑

i∈E

Λ∗
iΛif. Therefore it follows from (2.4) that

‖f‖2 =
∥

∥

∥

∥

∑

i∈E

Λ∗
iΛif

∥

∥

∥

∥

2

=
∑

i∈E

‖Λif‖2 ≤
∑

i∈I

‖Λif‖2 ≤ B‖f‖2

for all f ∈ span{Λ∗
i (Hi)}i∈E . This means that Λ = {Λi}i∈I is a g-Riesz frame for

H with respect to {Hi}i∈I with the uniform g-frame bounds 1 and B. Assume that
{gij}j∈Ji

is an orthonormal basis for Hi for each i ∈ I. Then {gij}j∈Ji
is a Riesz

frame for Hi with bounds equal to 1. We show that {Λ∗
i gij}i∈I,j∈Ji

is a Riesz frame
for H. Let I0 ⊆ I, J0

i ⊆ Ji and f ∈ span{Λ∗
i gij}i∈I0,J

0

i
. Then Λif ∈ span{gij}j∈J0

i

for all i ∈ I0. So

(2.5)
∑

i∈I0

‖Λif‖2 =
∑

i∈I0

∑

j∈J0

i

|〈Λif, gij〉|2 =
∑

i∈I0

∑

j∈J0

i

|〈f,Λ∗
i gij〉|2.
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Since {Λi}i∈I is g-Riesz frame, we have

(2.6) ‖f‖2 ≤
∑

i∈I0

‖Λif‖2 ≤ B‖f‖2.

Hence (2.6) and (2.5) imply

‖f‖2 ≤
∑

i∈I0

∑

j∈J0

i

|〈f,Λ∗
i gij〉|2 ≤ B‖f‖2.

Therefore {Λ∗
i gij}i∈I,j∈Ji

is a Riesz frame for H. By Theorem 6.3.3 in [2], it follows
that {Λ∗

i gij}i∈I,Ji
contains a Riesz basis. Let I1 ⊆ I and J1

i ⊆ Ji such that
{Λ∗

i gij}i∈I1,j∈J1

i
is a Riesz basis for H. Consider Ki = span{gij}j∈J1

i
for i ∈ I1 and

define
Θi : H → Ki, Θif =

∑

j∈J1

i

〈f,Λ∗
i gij〉, i ∈ I1.

By Theorem 3.1 of [9], we obtain that {Θi}i∈I1 is a g-Riesz basis for H with respect
to {Ki}i∈I1 .

Theorem 2.13. Let {Λi}i∈I be a g-Riesz basis for H with bounds A,B and {Θi ∈
B(H,Hi)}i∈I be a sequence of bounded operators. Assume that there exist λ, γ, µ ≥
0 such that max

{

λ+
γ√
A
, µ
}

< 1. Suppose that for any finite subset J ⊆ I and for

each f ∈ H,

(2.7)

∥

∥

∥

∥

∑

i∈J

(Λ∗
i fi −Θ∗

i fi)

∥

∥

∥

∥

≤ λ

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

+ µ

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

+ γ

(

∑

i∈J

‖fi‖2
)

1
2
,

where fi ∈ Hi for all i ∈ J. Then {Θi}i∈I is a g-Riesz basis for H with the bounds

(2.8)

[

(1− λ)
√
A− γ

1 + µ

]2

and

[

(1 + λ)
√
B + γ

1− µ

]2

.

Especially, if {Λi}i∈I is a near g-Riesz basis for H, then {Θi}i∈I is a near g-Riesz
basis for H.

Proof. It follows from (2.7) that {Θi}i∈I is a g-frame for H and therefore {Θi}i∈I

is g-complete (see [8]). Assume that J ⊆ I with |J | < +∞ and fi ∈ Hi for all
i ∈ J. We have

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

i∈J

(Λ∗
i fi −Θ∗

i fi)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

≤ (1 + λ)

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

+ µ

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

+ γ

(

∑

i∈J

‖fi‖2
)

1
2
.
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Then
∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

≤ 1 + λ

1− µ

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

+
γ

1− µ

(

∑

i∈J

‖fi‖2
)

1
2
.

Since
∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

2

≤ B
∑

i∈J

‖fi‖2, we get

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

2

≤
[

(1 + λ)
√
B + γ

1− µ

]2
∑

i∈J

‖fi‖2.

Similarly, we have

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

i∈J

(Λ∗
i fi −Θ∗

i fi)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

≤ (1 + µ)

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

+ λ

∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

+ γ

(

∑

i∈J

‖fi‖2
)

1
2
.

Hence
∥

∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

∥

≤ 1 + µ

1− λ

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

+
γ

1− λ

(

∑

i∈J

‖fi‖2
)

1
2
.

Since
∥

∥

∥

∑

i∈J

Λ∗
i fi

∥

∥

∥

2

≥ A
∑

i∈J

‖fi‖2, we get

∥

∥

∥

∥

∑

i∈J

Θ∗
i fi

∥

∥

∥

∥

2

≥
[

(1− λ)
√
A− γ

1 + µ

]2
∑

i∈J

‖fi‖2.

This completes the proof. �

Let V be a normed space with norm ‖.‖. If ‖.‖1 is another norm on V, ‖.‖ and
‖.‖1 are said to be equivalent if there are positive constants m and M such that
m‖f‖ ≤ ‖f‖1 ≤ M‖f‖ for all f ∈ V. Two inner products on a vector space are said
to be equivalent if they generate equivalent norms. A sequence {fn} in a Hilbert
space H is a Riesz basis if and only if there exists an equivalent inner product on
H, with respect to which the sequence {fn} becomes an orthonormal basis for H
[10]. In the next theorem we show that every g-Riesz basis for H can be considered
as a g-orthonormal basis for H with respect to equivalent inner product on H.

Theorem 2.14. Let Λ = {Λi}i∈I be a g-frame for H with respect to {Hi}i∈I . Then
Λ is a g-Riesz basis for H if and only if there is an equivalent inner product on H,
with respect to which Λ = {Λi}i∈I becomes an g-orthonormal basis for H.

Proof. Let 〈. , .〉 be the usual inner product of H. Assume that Λ = {Λi}i∈I is a
g-Riesz basis for H and {gij}j∈Ji

is an orthonormal basis for Hi for each i ∈ I.
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Then by [9] Theorem 3.1, {Λ∗
i gij}i∈I,j∈Ji

is a Riesz basis for H. By Theorem 9
in [10, page 32] there exists an equivalent inner product 〈. , .〉1 on H such that
{Λ∗

i gij}i∈I,j∈Ji
is an orthonormal basis for H with respect to 〈. , .〉1. We show that

{Λi}i∈I is a g-orthonormal basis with respect to 〈. , .〉1. Let ‖.‖1 be the induced
norm by 〈. , .〉1 and f ∈ H. Then

∑

i∈I

‖Λif‖2 =
∑

i∈I

∑

j∈Ji

|〈gij ,Λif〉|2 =
∑

i∈I

∑

j∈Ji

|〈Λ∗
i gij , f〉1|2 = ‖f‖21.

If g ∈ Hi, h ∈ Hj and i 6= j, we have

〈Λ∗
i g,Λ

∗
jh〉1 =

〈

∑

k∈Ji

〈g, gik〉Λ∗
i gik,

∑

l∈Jj

〈h, gjl〉Λ∗
jgjl

〉

1

= 0.

If g, h ∈ Hi, then

〈Λ∗
i g,Λ

∗
ih〉1 =

〈

∑

k∈Ji

〈g, gik〉Λ∗
i gik,

∑

l∈Ji

〈h, gil〉Λ∗
i gil

〉

1

=
∑

k∈Ji

〈g, gik〉〈gik, h〉 = 〈g, h〉.

Conversely, let 〈. , .〉1 be an equivalent inner product on H such that {Λi}i∈I is a
g-orthonormal basis for H w.r. to 〈. , .〉1. Since 〈. , .〉 and 〈. , .〉1 are equivalent, there
are positive numbers m,M so that

m‖f‖ ≤ ‖f‖1 ≤ M‖f‖, f ∈ H.

If gi ∈ Hi and J is a finite subset of I then

1

M2

∑

i∈J

‖gi‖2 =
1

M2

∥

∥

∥

∥

∑

i∈J

Λ∗
i gi

∥

∥

∥

∥

2

1

≤
∥

∥

∥

∥

∑

i∈J

Λ∗
i gi

∥

∥

∥

∥

2

≤ 1

m2

∥

∥

∥

∥

∑

i∈J

Λ∗
i gi

∥

∥

∥

∥

2

1

=
1

m2

∑

i∈J

‖gi‖2.

Since for all f ∈ H, we have
∑

i∈I

‖Λif‖2 = ‖f‖21 so {f |Λif = 0, i ∈ I} = {0}.

Therefore, {Λi}i∈I is a g-Riesz basis with respect to the original inner product on
H.
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