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ON JENSEN’S AND RELATED COMBINATORIAL
IDENTITIES

Victor J. W. Guo

Motivated by the recent work of CHU [Electron. J. Combin. 17 (2010),
#N24], we give simple proofs of JENSEN’s identity
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and CHU’s and MOHANTY-HANDA’s generalizations of JENSEN’s identity.
We also give a simple proof of an equivalent form of GRAHAM-KNUTH-
PATASHNIK’s identity
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which was rediscovered, respectively, by SUN in 2003 and MUNARINI in 2005.
Finally we give a multinomial coefficient generalization of this identity.

1. INTRODUCTION

ABEL’s identity (see, for example, [8, §3.1])
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and ROTHE’s identity [23] (or HAGEN-ROTHE’s identity, see, for example, [9, §5.4])
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are famous in literature and play an important role in enumerative combinatorics.
Recently, CHU [6] gave elementary proofs of ABEL’s identity and ROTHE’s identity
by using the binomial theorem and the CHU-VANDERMONDE convolution formula,
respectively.

Motivated by CHU’s work, we study JENSEN’s identity [17], which is closely
related to Rothe’s identity, and can be stated as follows:

M kzio(x—;kz)(il—k]:):kz;(x:;y;k)zk

JENSEN’s identity (1) has attracted much attention by different authors. GouLD
[11] obtained the following Abel-type analogue:

n
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CARLITZ [1] gave two interesting theorems related to (1) and (2) by mathematical
induction. With the help of generating functions, GOULD [12] derived the following
variation of JENSEN’s identity (1):

k=0 k=0

E. G.-RoDEJA F. [10] deduced GOULD’s identity (2) from (1) by establishing an
identity which includes both. COHEN and SUN [7] also gave an expression which
unifies (1) and (2). CHU [4] generalized JENSEN’s identity (1) to a multi-sum form:
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Moreover, the identities (1) and (3) were respectively generalized by MOHANTY
and HANDA [19] and CHU [5] to the case of multinomial coefficients (to be stated
in Section 4).

The primary purpose of this paper is to give simple proofs of JENSEN’s iden-
tity, CHU’s identity (3), MOHANTY-HANDA’s identity, and CHU’s generalization of
MOHANTY-HANDA’s identity. We use the CHU-VANDERMONDE convolution for-
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and the well-known identity

- 0, if0<r<n-1
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Equation (4) may be easily deduced from the Stirling numbers of the second kind
[27, p. 34, (24a)]. The first case of (4) was already utilized by the author [13] to
give a simple proof of DIXON’s identity and by CHU [6] in his proofs of ABEL’s and
ROTHE’s identities.

It is interesting that our proof of CHU’s identity (3) also leads to a very short
proof of GRAHAM-KNUTH-PATASHNIK’s identity, which was rediscovered several
times in the past few years. The secondary purpose of this paper is to give a
multinomial coefficient generalization of GRAHAM-KNUTH-PATASHNIK’s identity.

2. PROOF OF JENSEN’S IDENTITY
By the CHU-VANDERMONDE convolution formula, we have
" (x4 k2\ [y —kz "4k = (z4+y+1\ [~z —kz—1
5 = .
o (0 -2 )BT

Interchanging the summation order in (5) and noticing that
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we have
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where the second equality holds because ( k) is a polynomial in k of

i
degree i with leading coefficient (z — 1)?/i! and we can apply (4) to simplify. We
now substitute ¢ - —x — 1,y =+ —y+n—1land 2 — —z+ 1 in (6) and observe
that

(7) (;) (1)k<x+Zl>-

Then we obtain
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as desired.
Combining (1) and (6), we get the following identity:

g(i—’;)zug(f;)(z_m

which is equivalent to the following identity in GRAHAM et al. [9, p. 218]:

3 <m ;T>xkymk -y <kr>(x)k(:c+y)mk.
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3. PROOFS OF CHU’S AND GRAHAM-KNUTH-PATASHNIK’S
IDENTITIES

Comparing the coefficients of 2™ in both sides of the equation
(14 )@t o — (14 )% oo (1 2)%

by the binomial theorem, we have
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Letting a; = —z; —kiz—1(1<i<s—1)andas =21+ -+ xzs+nz+s—1in
(8), we have
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where k1 + - -+ + kg = n. It follows that
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Interchanging the summation order in (9) and observing that
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and <$i+l€i2+ji -
Ji
(2 — 19/, by (4) we et
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kz) is a polynomial in k; of degree j; with leading coefficient

Substituting z; — —x; —1 (i =1,...,s) and z — —z+ 1 in (10) and using (7), we
immediately get CHU’s identity (3).
Comparing (3) with (10) and replacing s with s + 2, we obtain

w0 ) e

It is easy to see that the identity (11) is equivalent to each of the following known
identities:
e GRAHAM-KNUTH-PATASHNIK’s identity [9, p. 218]
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e SUN’s identity [29]
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e MUNARINI’s identity [20]

(14) kzio(_l)n—k (5 ; f Z n) (5 —]: k’) (14 2)k = kzio (n f k) (5 -]L- k’)xk.

For example, substituting n - m—n, s > n,z =+ -n—r—1land z — —y/x
in (11), we are led to (12). Replacing k by m — k and n — k respectively in both
sides of (13), we get
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which is equivalent to (11) by changing k to m +n —a — k.
Moreover, the following special case

w et (e -2 G0

was reproved by SIMONS [26], HIRSCHHORN [15], CHAPMAN [2], PRODINGER [21],
WANG and SuUN [30].

4. MOHANTY-HANDA’S IDENTITY AND CHU’S
GENERALIZATION

Let m be a fixed positive integer. For a = (a1,...,a,,) € N and b =
(b1,...,bm) € C™, set |a| = a1+ +am, al = ar! - -ap!, a+b = (a14+b1, ..., am+
bm), a-b = aiby + -+ + anbm, and b® = bf' ---b%. For any variable xz and

m

n=(ny,...,Ny) € Z"™, the multinomial coefficient (n> is defined by

(ac) _{x(:cl)~~~(:c|n|+1)/n!, ifneN™,

B 0, otherwise.

Moreover, we let 0 = (0,...,0) and 1 = (1,...,1).
Note that the CHU-VANDERMONDE convolution formula has the following
trivial generalization

S0 - ()

as mentioned by ZENG [32], while (4) can be easily generalized as

(17) zn:(fn\n\*\k\ <2)kr _ {07 %f r; < n; for some 1 < i < m.

= n!, if r =n,

n o n;
() =11 ()
In 1969, MOHANTY and HANDA [19] established the following multinomial
coeflicient generalization of JENSEN’s identity

(18) kz:% (ac -l—li{-z) (y k- z) z:: (x—i—y— |k|) ('t')zk

where
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Here and in what follows, k = (ki,...,k,). Twenty years later, MOHANTY-
HANDA’s identity was generalized by CHU [5] as follows:

(19)

Z H<xz+k z) Z“:<|k|+ks2><x1+~~+;cs_1n~z|k|>zk’

K1+ +ko=ni=1 k=0
which is also a generalization of (3). Here k; = (kj1, ..., kim), i =1,...,m

REMARK. Note that the corresponding multinomial coefficient generalization of ROTHE’s
identity was already obtained by RANEY [22] (for a special case) and MOHANTY [18]. The
reader is referred to STREHL [28] for a historical note on RANEY-MOHANTY’s identity.

We will give an elementary proof of CHU’s identity (19) similar to that of (3).
Lemma 4.1. Forn € N™ and s > 1, there holds

(20) Z H (Ik I) <|n| +n8 - 1).

ki+-+ks=ni=1

Proof. For any nonnegative integers as, ..., as such that a1 + -+ + as = |n|, by
the CHU-VANDERMONDE convolution formula (16), the following identity holds

@ Cx 1=

Moreover, for k; + --- + ks = n, we have

S

11 <1i> #0 ifand only if [k;|=a; (i=1,...,s).
%

i=1
Thus, the identity (21) may be rewritten as
£ 16)-()
ki+-+ks;=n =1
\kl\_al, ,‘k |—aé,
It follows that
> ) oy on)- x (0
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ki+-+ks=ni=1 ai+-+as=n| ki+-+ks=n a1+-+as=[n|
|ki|=ai,...,|ks|=as

()

as desired. O
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By repeatedly using the convolution formula (16), we may rewrite the left-
hand side of (19) as

n n
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Interchanging the summation order in (22), observing that

vitki-z\[(—wi—ki-z—1 :(71)|ji‘7‘ki| Ji\ (i + ki -z + [§i| — [kl
ki ji_ki kz ji

and .
(Iz‘ +ki -z + |ji| - |kz|)
Ji

is a polynomial in k; 1, ..., k;,, with the coefficient of k] being ('j |)( —1)3 /5!,
applying (17), we get
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where the second equality follows from (20). Substituting z; — —x; — 1 (i =
1,...,s) and z — —z + 1 in (23) and observing that (;x) = (1)l (x + |ll:| - 1),

we immediately get (19).

Comparing (19) with (23) and replacing s with s+ 2, we obtain the following
result.

Theorem 4.2. Forn € N™ and z € C™, it holds that
(k| +s\ (2= K[\ k<= (lk[+5)[z+s+1 k

It is easy to see that (24) is a multinomial coefficient generalization of (11).
Substituting s = 8, t > a—f—1and z — 1 +x in (24), we get
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which is a generalization of MUNARINIs identity (14). If & = 5 = |n|, then (25)
reduces to

é(l)'“"“' (n'f'k> <'“' N 'k'> 143k = ; (n@k) <|n| + |k|)xk,

which is a generalization of SIMONS’ identity (15). Note that SHATTUCK [25] and
CHEN and PANG [3] have given different combinatorial proofs of (14). It is natural
to ask the following problem.

Problem 4.3. Is there a combinatorial interpretation of (25)7

In fact, such a proof was recently found by YanaG [31].

5. CONCLUDING REMARKS

We know that binomial coefficient identities usually have nice g-analogues.
However, there are only curious (not natural) g-analogues of ABEL’s and ROTHE’s
identities (see [24] and references therein) up to now. There seems to have no
g-analogues of JENSEN’s identity in the literature.

It is interesting that HOU and ZENG [16] gave a g-analogue of SUN’s identity

(13):
(26) é(m—k[ H”*’“} s mspagl 2 ) (3)
B

where (a§ Q)n = (1 - a)(l —aq)--- (1 _ aqn—l) and

@k s
b - 07
[ﬂ - (@) '

0, if k < 0.

Clearly, (26) may be written as a g-analogue of MUNARINI’S identity (14):

7 ST e O
sl e

as mentioned by GUO and ZENG [14]. We end this paper with the following prob-
lem.
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Problem 5.1. Is there a g-analogue of (25)7 Or equivalently, is there a multi-sum
generalization of (27)7
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