# Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.rs 

Appl. Anal. Discrete Math. 5 (2011), 80-86.

# ASYMPTOTIC EXPANSION FOR THE SUM OF INVERSES OF ARITHMETICAL FUNCTIONS INVOLVING ITERATED LOGARITHMS 

## Hacène Belbachir, Djamel Berkane

A generalized formula is obtained for the sum of inverses of the prime counting function for a large class of arithmetical functions related to the iterated logarithms.

## 1. INTRODUCTION AND MAIN RESULT

Let $\pi(x)$ be the number of primes not exceeding $x$. In 2000, using the asymptotic formula

$$
\begin{equation*}
\pi(x)=\frac{x}{\log (x)}\left(\sum_{k=0}^{m-1} \frac{k!}{\log ^{k}(x)}+O\left(\frac{1}{\log ^{m}(x)}\right)\right) \tag{1}
\end{equation*}
$$

L. Panaitopol [4] obtained

$$
\frac{1}{\pi(x)}=\frac{1}{x}\left(\log (x)-1-\frac{k_{1}}{\log (x)}-\cdots-\frac{k_{m}}{\log ^{m}(x)}+O\left(\frac{1}{\log ^{m+1}(x)}\right)\right)
$$

where $m \geq 1$ and $\left\{k_{j}\right\}_{j}$ is the sequence of integers given by the recurrence relation

$$
k_{n}+1!k_{n-1}+2!k_{n-2}+\cdots+(n-1)!k_{1}=n \cdot n!.
$$

Two years later, A. Ivić [3] proved that

$$
\begin{aligned}
\sum_{2 \leq n \leq x} \frac{1}{\pi(n)} & =\frac{1}{2} \log ^{2}(x)-\log (x)-\log \log (x)+C \\
& +\frac{k_{2}}{\log (x)}+\cdots+\frac{k_{m}}{(m-1) \log ^{m-1}(x)}+O\left(\frac{1}{\log ^{m}(x)}\right)
\end{aligned}
$$

where $C$ is an absolute constant not depending on $m$.
In 2009, the first author and F. Bencherif [1] derived an asymptotic formula for the sum of reciprocals of a large class of arithmetic functions having the following expansion

$$
f(n)=\frac{n}{\log (n)}\left(a_{0}+\frac{a_{1}}{\log (n)}+\cdots+\frac{a_{m-1}}{\log ^{m-1}(n)}+O\left(\frac{1}{\log ^{m}(n)}\right)\right), \text { with } a_{0} \neq 0
$$

they obtained

$$
\begin{aligned}
\sum_{2 \leq n \leq x}^{\prime} \frac{1}{f(n)} & =\frac{b_{0}}{2} \log ^{2}(x)+b_{1} \log (x)+b_{2} \log \log (x)+C_{0} \\
& -\frac{b_{3}}{\log (x)}-\cdots-\frac{b_{m+1}}{(m-1) \log ^{m-1}(x)}+O\left(\frac{1}{\log ^{m}(x)}\right)
\end{aligned}
$$

where $\sum_{2 \leq n \leq x}{ }^{\prime} \frac{1}{f(n)}$ is a sum restricted to integers $n$ for which $f(n) \neq 0$ and $b_{j}=$ $A_{j}\left(a_{0}, a_{1}, \ldots, a_{j}\right)$ for $0 \leq j \leq m+1$, with

$$
\begin{gathered}
A_{0}\left(t_{0}\right)=\frac{1}{t_{0}}, \quad A_{1}\left(t_{0}, t_{1}\right)=-\frac{t_{1}}{t_{0}^{2}}, \\
A_{n}\left(t_{0}, t_{1}, \cdots, t_{n}\right)=\frac{(-1)^{n}}{t_{0}^{n+1}} .\left|\begin{array}{ccccc}
t_{1} & t_{2} & \cdots & \cdots & t_{n} \\
t_{0} & t_{1} & \cdots & \cdots & t_{n-1} \\
0 & t_{0} & t_{1} & \cdots & t_{n-2} \\
0 & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & t_{0} & t_{1}
\end{array}\right|, \quad(n \geq 1) .
\end{gathered}
$$

More recently, the authors in [2] studied the arithmetical function $n K(n)$, where

$$
K(x):=\max \left\{k \in \mathbb{N} / p_{1} p_{2} \cdots p_{k} \leq x\right\}
$$

and $p_{k}$ is the $k^{\text {th }}$ prime number. Using the asymptotic expansion

$$
\begin{equation*}
K(x)=\frac{\log (x)}{\log \log (x)}\left(\sum_{j=0}^{m} \frac{j!}{[\log \log (x)]^{j}}+O\left(\frac{1}{[\log \log (x)]^{m+1}}\right)\right) \tag{2}
\end{equation*}
$$

they get a similar result to the one in A. Ivić [3], with three levels of logarithmic iterations $x, \log x, \log \log x$,

$$
\begin{aligned}
\sum_{2 \leq n \leq x} \frac{1}{n K(n)} & =\frac{1}{2} \log ^{2} \log (x)-\log \log (x)-\log \log \log (x)+C_{1} \\
& +\frac{k_{2}}{\log \log (x)}+\cdots+\frac{k_{m}}{(m-1) \log ^{m-1} \log (x)}+O\left(\frac{1}{\log ^{m} \log (x)}\right)
\end{aligned}
$$

where $C_{1}$ is an absolute constant not depending on $m$.
Let $s \geq 0$ be an integer. We define the function

$$
£_{s}(x):=\prod_{i=0}^{s} \log _{i}(x), \text { with } \log _{i}(x)=\underbrace{\log \log \ldots \log }_{i \text { times }}(x) \text { and } \log _{0}(x)=x
$$

For $s=2, £_{2}(x)=x \log (x) \log \log (x)$.
Let $f_{s}$ be the arithmetical function admitting, for all $m \geq 1$, the following asymptotic formula

$$
\begin{equation*}
f_{s}(n)=\frac{£_{s}(n)}{\log _{s+1}(n)}\left\{\sum_{i=0}^{m-1} \frac{a_{i}}{\log _{s+1}^{i}(n)}+O\left(\frac{1}{\log _{s+1}^{m}(n)}\right)\right\}, a_{0} \neq 0 \tag{3}
\end{equation*}
$$

For $s=0$ and $a_{i}=i$ !, we obtain (1), which corresponds to $\pi(n)$. For $s=1$ with $a_{i}=i$ !, we find (2), which corresponds to $n K(n)$.

Considering the above background, here is our main result:
Theorem 1. For all integers $m \geq 1$ and $s \geq 0$, we have

$$
\begin{aligned}
\sum_{n \leq x}^{\prime} \frac{1}{f_{s}(n)} & =\frac{\delta_{0}}{2} \log _{s+1}^{2}(x)+\delta_{1} \log _{s+1}(x)+\delta_{2} \log _{s+2}(x)+C_{s} \\
& -\frac{\delta_{3}}{\log _{s+1}(x)}-\cdots-\frac{\delta_{m+1}}{(m-1) \log _{s+1}^{m-1}(x)}+O\left(\frac{1}{\log _{s+1}^{m}(x)}\right)
\end{aligned}
$$

where $\sum_{n \leq x}{ }^{\prime} \frac{1}{f_{s}(n)}$ is a sum restricted to integers $e(s)<n \leq x$ for which $f_{s}(n) \neq 0$, $C_{s}$ is an absolute constant not depending on $m,\left\{\delta_{i}\right\}_{i}$ is the sequence given by the recurrence relation

$$
a_{0} \delta_{n}+a_{1} \delta_{n-1}+\cdots+a_{n} \delta_{0}=0, a_{0} \delta_{0}=1
$$

and $e(s):=\underbrace{\exp \exp \ldots \exp }_{s \text { times }}(0)$.
For $a_{i}=i$ ! and $s=0$ and $s=1$, respectively we find the results of A. Ivić [3] and H. Belbachir and D. Berkane [2].

## 2. LEMMAS AND PROOF OF THE MAIN RESULT

Let $\left\{\delta_{i}\right\}_{i}$ be the sequence of real numbers defined by expanding the following expression of the rational function $\Delta$, for $y>0$ we consider

$$
\Delta(y):=\left(\sum_{i=0}^{m} \frac{a_{i}}{y^{i+1}}\right)\left(\sum_{i=0}^{m+1} \frac{\delta_{i}}{y^{i-1}}\right), m \geq 1
$$

such that $a_{0} \delta_{0}=1$, and terms with $\frac{1}{y^{i}}, 1 \leq i \leq m$ vanish.
Then, when $y \rightarrow \infty$, we obtain

$$
\begin{equation*}
\Delta=1+O\left(\frac{1}{y^{m+1}}\right) \tag{4}
\end{equation*}
$$

Lemma 1. The coefficient $\delta_{n}, n \geq 1$, is given by the relation

$$
\delta_{n}=\frac{1}{a_{0}^{n+1}}\left|\begin{array}{lllll}
0 & a_{1} & \ldots & a_{n-1} & a_{n} \\
0 & a_{0} & \ldots & a_{n-2} & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & a_{0} & a_{1} \\
1 & 0 & \ldots & 0 & a_{0}
\end{array}\right|
$$

Proof. From the definition of $\Delta(y)$, we notice that the vector $\delta=\left(\delta_{0}, \ldots, \delta_{n}\right)$, is the unique solution to the following Cramer's system

$$
\left\{\begin{aligned}
a_{0} \delta_{n}+a_{1} \delta_{n-1}+\cdots+a_{n} \delta_{0}= & 0 \\
a_{0} \delta_{n-1}+\cdots+a_{n-1} \delta_{0}= & 0 \\
\vdots & \\
a_{0} \delta_{1}+a_{1} \delta_{0}= & 0 \\
a_{0} \delta_{0}= & 1
\end{aligned}\right.
$$

Lemma 2. For n sufficiently large, we have

$$
f_{s}(n)=\frac{£_{s}(n)}{\delta_{0} \log _{s+1}(n)+\delta_{1}+\varepsilon(n)},
$$

where $\lim _{n \rightarrow \infty} \varepsilon(n)=0$.
Proof. From (3), we have

$$
\begin{equation*}
f_{s}(n)=£_{s}(n)\left(\sum_{j=0}^{m} \frac{a_{j}}{\log _{s+1}^{j+1}(n)}\right)+O\left(\frac{£_{s}(n)}{\log _{s+1}^{m+2}(n)}\right) \tag{5}
\end{equation*}
$$

and from (4) it follows

$$
\begin{equation*}
\sum_{j=0}^{m} \frac{a_{j}}{y^{j+1}}=\frac{1+O\left(\frac{1}{y^{m+1}}\right)}{\delta_{0} y+\sum_{j=1}^{m+1} \frac{\delta_{j}}{y^{j-1}}}=\frac{1}{\delta_{0} y+\sum_{j=1}^{m+1} \frac{\delta_{j}}{y^{j-1}}}+O\left(\frac{1}{y^{m+2}}\right) \tag{6}
\end{equation*}
$$

The substitution of $y=\log _{s+1}(n)$ in (6) and in relation (5) gives

$$
\begin{align*}
& f_{s}(n)=\frac{£_{s}(n)}{\delta_{0} \log _{s+1}(n)+\delta_{1}+\frac{\delta_{2}}{\log _{s+1}(n)}+\frac{\delta_{3}}{\log _{s+1}^{2}(n)}+\cdots+\frac{\delta_{m+1}}{\log _{s+1}^{m}(n)}}  \tag{7}\\
&+O\left(\frac{£_{s}(n)}{\log _{s+1}^{m+2}(n)}\right)
\end{align*}
$$

Thus we can write

$$
f_{s}(n)=\frac{£_{s}(n)}{\delta_{0} \log _{s+1}(n)+\delta_{1}+\varepsilon(n)}
$$

with $\varepsilon(n)=O\left(\frac{1}{\log _{s+1}(n)}\right)$ from which it follows that $\lim _{n \rightarrow \infty} \varepsilon(n)=0$.
The case $s=0$ and $a_{i}=i$ !, gives the approximation given by L. Panaitopol [4],

$$
\pi(n)=\frac{n}{\log (n)-1-\varepsilon(n)}
$$

Proof of the main result. Simplifying formula (7), we can write for all $m \geq 1$,

$$
f_{s}(n)=\frac{£_{s}(n)}{\delta_{0} \log _{s+1}(n)+\delta_{1}+\frac{\delta_{2}}{\log _{s+1}(n)}+\frac{\delta_{3}}{\log _{s+1}^{2}(n)}+\cdots+\frac{\delta_{m+1}\left(1+\varepsilon_{m}(n)\right)}{\log _{s+1}^{m}(n)}},
$$

with

$$
\varepsilon_{m}(n) \ll_{m} \frac{1}{\log _{s+1}(n)}
$$

Then, for all $m \geq 1$ and all $n>e(s)$, we obtain

$$
\begin{aligned}
\frac{1}{f_{s}(n)}=\frac{1}{£_{s}(n)}\left(\delta_{0} \log _{s+1}(n)+\delta_{1}+\right. & \frac{\delta_{2}}{\log _{s+1}(n)} \\
& \left.+\frac{\delta_{3}}{\log _{s+1}^{2}(n)}+\cdots+\frac{\delta_{m+1}\left(1+\varepsilon_{m}(n)\right)}{\log _{s+1}^{m}(n)}\right)
\end{aligned}
$$

and by summation, we obtain

$$
\begin{equation*}
\sum_{n \leq x}{ }^{\prime} \frac{1}{f_{s}(n)}=A_{1}+A_{2}+A_{3}+\sum_{r=2}^{m} B_{r}+\sum_{e(s)<n \leq x} \frac{\delta_{m+1} \varepsilon_{m}(n)}{£_{s}(n) \log _{s+1}^{m}(n)} \tag{8}
\end{equation*}
$$

with

$$
\begin{aligned}
& A_{1}=\sum_{e(s)<n \leq x} \frac{\delta_{0} \log _{s+1}(n)}{£_{s}(n)}, \quad A_{2}=\sum_{e(s)<n \leq x} \frac{\delta_{1}}{£_{s}(n)}, \\
& A_{3}=\sum_{e(s)<n \leq x} \frac{\delta_{2}}{£_{s}(n) \log _{s+1}(n)}, B_{r}=\sum_{e(s)<n \leq x} \frac{\delta_{r+1}}{£_{s}(n) \log _{s+1}^{r}(n)}, 2 \leq r \leq m .
\end{aligned}
$$

Let us evaluate these sums. First we can notice that the functions involved in the previous sums are all positive and decreasing for a given constant $\omega \geq e(s)$. Let's compose for $A_{1}$,

$$
\sum_{\lfloor\omega\rfloor<n \leq x} \frac{\log _{s+1}(n)}{£_{s}(n)}=\int_{\lceil\omega\rceil}^{x} \frac{\log _{s+1}(t)}{£_{s}(t)} \mathrm{d} t+O\left(\frac{\log _{s+1}(x)}{£_{s}(x)}\right) .
$$

Thus there is a constant $\alpha_{1}$ which includes the sum $\sum_{n=2}^{\lfloor\omega\rfloor} \frac{\log _{s+1}(n)}{L_{s}(n)}$ such that

$$
A_{1}=\frac{\delta_{0}}{2} \log _{s+1}^{2}(x)+\alpha_{1}+O\left(\frac{\log _{s+1}(x)}{£_{s}(x)}\right)
$$

Using similar argument, we also obtain

$$
\begin{aligned}
& A_{2}=\delta_{1} \log _{s+1}(x)+\alpha_{2}+O\left(\frac{1}{£_{s}(x)}\right) \\
& A_{3}=\delta_{2} \log _{s+2}(x)+\alpha_{3}+O\left(\frac{1}{£_{s}(x) \log _{s+1}(x)}\right) \\
& B_{r}=\frac{-\delta_{r+1}}{(r-1) \log _{s+1}^{r-1}(x)}+\beta_{r}+O\left(\frac{1}{£_{s}(x) \log _{s+1}^{r}(x)}\right)
\end{aligned}
$$

As $\varepsilon_{m}(n)$ is bounded and the series

$$
\sum_{n>e(s)} \frac{1}{£_{s}(n) \log _{s+1}^{m}(n)}
$$

is convergent for all $m \geq 2$ (Bertrand's series), with the sum noted $S_{m}$, we deduce that

$$
\sum_{e(s)<n \leq x} \frac{\delta_{m+1} \varepsilon_{m}(n)}{£_{s}(n) \log _{s+1}^{m}(n)}=S_{m}+O\left(\frac{1}{\log _{s+1}^{m}(x)}\right)
$$

Putting together the above expression in (8) we infer that

$$
\begin{aligned}
\sum_{n \leq x}^{\prime} \frac{1}{f_{s}(n)}=\frac{\delta_{0}}{2} & \log _{s+1}^{2}(x)+\delta_{1} \log _{s+1}(x)+\delta_{2} \log _{s+2}(x) \\
& +\alpha_{1}+\alpha_{2}+\alpha_{3}+\sum_{r=2}^{m} \beta_{r}+S_{m} \\
& -\frac{\delta_{3}}{\log _{s+1}(x)}-\cdots-\frac{\delta_{m+1}}{(m-1) \log _{s+1}^{m-1}(x)}+O\left(\frac{1}{\log _{s+1}^{m}(x)}\right)
\end{aligned}
$$

Setting $C_{s}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\sum_{r=2}^{m} \beta_{r}+S_{m}$ we find the formula mentioned in the main Theorem. This constant is independent of the value of $m$ because the difference between two developments of $\sum_{n \leq x}{ }^{\prime} \frac{1}{f_{s}(n)}$ is a quantity which is absorbed by the roundness when $x \rightarrow+\infty$.

Acknowledgments. The authors wish to warmly thank their referee for valuable advice and comments which helped to improve the quality of this paper.

## REFERENCES

1. H. Belbachir, F. Bencherif: Développement asymptotique de la somme des inverses d'une fonction arithmétique. Ann. Math. Blaise Pascal, 16 (2009), 93-99.
2. H. Belbachir, D. Berkane: Asymptotic expansion of a sum involving the largest product of primes (submitted).
3. A. Ivić: On a sum involving the prime counting function. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 13 (2002), 85-88.
4. L. Panaitopol: A formula for $\pi(x)$ applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. (5), $\mathbf{1}$ (1) (2000), 55-56.

USTHB, Faculty of Mathematics,
Po. Box 32, El Alia 16111,
(Revised February 6, 2011)
Algiers, Algeria
E-mail: hacenebelbachir@gmail.com, hbelbachir@usthb.dz
Department of Mathematics,
University of Blida
Po. Box 270,
Route de Soumaa,
Blida, Algeria
E-mail: djameberkan@gmail.com

