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WORDS CODING SET PARTITIONS

Kamilla Oliver, Helmut Prodinger

The words in the title are characterized by the fact that a smaller number

must (first) appear earlier than a larger number, and that all numbers 1, . . . , k

are present (for some k). Under the assumption that the letters are drawn

from a geometric distribution, the probability that a word of length n enjoys

these properties is determined, both exactly and asymptotically.

1. INTRODUCTION

For a set partition of {1, 2, . . . , n} into k blocks, a natural coding is as follows:
Element 1 is in block 1, and the smallest number not in block 1 is in block 2, and
the smallest number not in blocks 1 or 2, is in block 3, etc. In this way, to every
element i a number ai is attached, namely the block in which it lies. Writing
these numbers as a word a1 . . . an, the set partition is coded in a natural way. One
particular reference for this is [3].

Forgetting now about set partitions, we are talking about words where the
letters are the positive integers, and, assuming that k is the largest letter that
appears in the word, then the letters 1, . . . , k − 1 must also appear, and the word
has exactly k (strict) left-to-right maxima, which is the same as saying that, if
i < j, the first appearance of i is earlier than the first appearance of j. As one
referee has kindly pointed out, such words are known as restricted growth strings
in the literature [6].

Now we assign the (geometric) probability pqi−1 (where p+q = 1) to the letter
i and consider Pn, the probability that a random word of length n has the restricted
growth property. We are thus in the context of combinatorics of geometrically
distributed words, a series of papers started with [4] and continued by the second
writer as well as many others; a recent contribution is the paper [5].
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The present question is not only appealing from a combinatorial point of view
(easy to formulate but not trivial to solve) but the approach used here (with the
parameter q) leads to “richer” results, and often the instance q = 1 corresponds to
the classical combinatorial instance, especially, when the parameter is of the order
statistics type.

We will prove the following theorems.

Theorem 1. The probability Pn that a random word of length n has the restricted
growth property is (exactly) given by

Pn = p

n−1
∑

j=0

(−1)j
(

n− 1

j

)

qj(p; q)j .

Here we use the (standard) notation (x; q)m = (1−x)(1−xq) . . . (1−xqm−1).
We will also need the limit of it as m → ∞, denoted by (x; q)∞, as well as the
Gaussian q-binomial coefficients

[

n

k

]

q

:=
(q; q)n

(q; q)k(q; q)n−k

.

We need the following standard formulae:

N
∑

k=0

[

N

k

]

q

(−1)kq

(

k

2

)

xk = (x; q)N ,
1

(w; q)∞
=

∑

n≥0

wn

(q; q)n
.

All this can be found in [1].

The asymptotic evaluation leads to our second theorem.

Theorem 2. The probability that a random word of length n has the restricted
growth property is asymptotically given by

Pn ∼
(p; q)∞
L(q; q)∞

Γ
( log p

log q

)

n
−

log p

log q + n
−

log p

log qΦ(logQ n),

where Φ(x) is a 1-periodic function with mean zero. The abbreviations Q = 1/q
and L = logQ are used. The function is given by its Fourier series

Φ(x) =
(p; q)∞
L(q; q)∞

∑

k 6=0

Γ

(

log p

log q
+

2πik

L

)

e−2πikx.

In the symmetric case p = q, this looks better:

1

L
n−1 + n−1Φ(log2 n).
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2. ANALYSIS

We use the natural decomposition

1{≤ 1}∗2{≤ 2}∗3{≤ 3}∗ . . . k{≤ k}∗,

which translates into

zp

1− (1− q)z

zpq

1− (1− q2)z
· · ·

zpqk−1

1− (1− qk)z
= zkpkq

(

k

2

) k
∏

j=1

1

1− (1− qj)z
.

This has to be summed over all k, to get the generating function of the sought
probabilities (Pn is the coefficient of zn in this series):

∑

k≥1

zkpkq

(

k

2

) k
∏

j=1

1

1− (1− qj)z
.

Substituting z = w/(w − 1), this becomes

∑

k≥1

wk(−1)kpkq

(

k

2

) k
∏

j=1

1

1− wqj
=

∑

k≥1

wk(−1)kpkq

(

k

2

)

(wq; q)k
.

Reading off coefficients:

Pn = [zn]
∑

k≥1

wk(−1)kpkq

(

k

2

)

(wq; q)k

=
1

2πi

∮

∑

k≥1

dz

zn+1

wk(−1)kpkq

(

k

2

)

(wq; q)k
by Cauchy’s integral formula

=
1

2πi

∮

∑

k≥1

dw(1− w)n−1

wn+1

wk(−1)n−kpkq

(

k

2

)

(wq; q)k

=

n
∑

k=1

[wn−k](1− w)n−1
(−1)n−kpkq

(

k

2

)

(wq; q)k

=

n
∑

k=1

n−1
∑

j=0

(

n− 1

j

)

(−1)j [wn−k−j ]
(−1)n−kpkq

(

k

2

)

(wq; q)k

=

n
∑

k=1

n−1
∑

j=0

(

n− 1

j

)

(−1)n−k−jpkq

(

k

2

)

[

n− j − 1

k − 1

]

q

qn−k−j the known expansion

of the denominator

= p

n−1
∑

j=0

(

n− 1

j

)

qn−j−1(−1)n−j−1

n−j−1
∑

k=0

(−1)kpkq

(

k

2

)

[

n− j − 1

k

]

q
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= p

n−1
∑

j=0

(

n− 1

j

)

qn−j−1(−1)n−j−1(p; q)n−j−1

the sum is known

as Rothe’s sum

= p

n−1
∑

j=0

(

n− 1

j

)

qj(−1)j(p; q)j .

Is there a more direct way to prove this formula?

Here is an example for n = 3; the words enjoying the restricted growth
property are 111, 112, 121, 122, 123, and they appear with probabilities p3, p3q, p3q,
p3q2, p3q3. And

p3 + p3q + p3q + p3q2 + p3q3 = p

2
∑

j=0

(

2

j

)

qj(−1)j(p; q)j

= p
(

1− 2q(1− p) + q2(1− p)(1− pq)
)

.

For the asymptotic evaluation, we use the following integral representation
as in [2]:

p

n−1
∑

j=0

(−1)j
(

n− 1

j

)

qj(p; q)j =
−p

2πi

∫

C

qz(p; q)z
Γ(n)Γ(−z)

Γ(n− z)
dz.

Here, C enclosed the poles 0, 1, . . . , n − 1 and no others, and the interpretation of
(p; q)z is

(p; q)z =
(p; q)∞
(pqz; q)∞

.

For the readers’ convenience we note that n! = Γ(n+ 1), and thus

Γ(n)Γ(−z)

Γ(n− z)
=

Γ(n)

(n− z − 1)(n− z − 2) · · · (−z)
=

(−1)n(n− 1)!

z(z − 1) · · · (z + 1− n)
.

Furthermore, the residue of this expression at z = k is

(−1)n(n− 1)!

k(k − 1) · · · 1 · (−1) · · · (k + 1− n)
=

(−1)k−1(n− 1)!

k!(n− 1− k)!
.

To get asymptotics, we extend the contour of integration and have to consider
the residues at the extra poles of

pqz(p; q)∞
(1− pqz)(pqz+1; q)∞

Γ(n)Γ(−z)

Γ(n− z)
.

The poles with largest real part leading to the dominant contribution are at

z = −
log p

log q
+

2πik

log q
, for k ∈ Z.
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For k = 0 we get the interesting term, and the others define a small fluctuation
around this value. We find:

pq
−

log p

log q
+

2πik
log q (p; q)∞

L(pq
1−

log p

log q
−

2πik
L ; q)∞

Γ(n)Γ
(

log p

log q
+

2πik

L

)

Γ
(

n+
log p

log q
+

2πik

L

)

=
(p; q)∞

L(q1−
2πik
L ; q)∞

Γ(n)Γ
(

log p

log q
+

2πik

L

)

Γ
(

n+
log p

log q
+

2πik

L

) ∼
(p; q)∞Γ

(

log p

log q
+

2πik

L

)

L(q; q)∞
n
−

log p

log q
−

2πik
L .

The term k = 0 leads to

(p; q)∞Γ
(

log p

log q

)

L(q; q)∞
n
−

log p

log q

and the other ones to n
−

log p

log q Φ(logQ n), where Φ(x) is a 1-periodic function with

mean zero. Note that pq
−t

log p

log q
+

2πik
log q = 1, which was used in these computations.
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