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SELF-MATCHING BANDS IN THE PAPERFOLDING
SEQUENCE

Bruce Bates, Martin Bunder, Keith Tognett:

We compare term by term the paperfolding sequence with a copy displaced by
d terms to obtain the matching fraction M (d). It is shown that M (d) has an

interesting structure in that if d = 2°(14-2s), then M (d) = ‘1 — %' thereby

generating horizontal bands for each value of b. That is, M (d) depends only
on b.

1. INTRODUCTION

Consider two binary sequences: S = f1fof3... and S displaced by d, that is,
the sequence fyi1fayrafars-... As the terms can differ only by a unit, we look at
the expression |fy1; — fi| for i € N. If this is zero we have a match at the i*" term;
otherwise it is unity and we have a mismatch.

EXAMPLE 1. Let S = 1101100111 ... be displaced by 3 terms. Then |fs4+; — fi| can be
represented pictorially as follows.

1 1.0 1 1 0 0 1 1 1
1 1 0 1 1
[fsgi—fil: 0 0 0 1 0 1 1

This suggests the following definition.

Definition 1. (The self-matching function) Let S be an infinite binary sequence.
The proportion of matches for S, with S displaced by d, is given by:

m— Z |fari — fil

m—o0 m
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Recently, TOGNETTI [4] described a surprisingly simple matching pattern
for Bernoulli sequences for which f; = |[(i + 1)a] — [ia| . This represents the dif-
ference sequence for the integer parts sequence. It was shown that the graph of
M (d) against d exhibited a Moiré pattern and that unexpectedly this pattern was
obtained by simply folding the fractional parts graph about its middle.

This paper examines the self-similarity within the paperfolding sequence and
reveals yet another interesting pattern within the graph of a paperfolding M (d)
against d. We show that the graph forms horizontal bands.

2. THE PAPERFOLDING OPERATION

There have been many studies on the paperfolding sequence, S = 11011001110.. .,
since the seminal paper by Davis and KNUTH [2]. It is based on the following simple
operation: repeatedly fold a piece of paper, right over left, ¢ times. When unfolded,
the paper contains v-shaped and inverted v-shaped creases. If we represent a v-
shape by a 1 and an inverted v-shape by a 0, we obtain the following paperfolding
subsequence after i folds (containing 2° — 1 creases):

Si = fifafs... fai_y = 110...100.

For example, S; =1, S; = 110, S3 = 1101100.

As i becomes unbounded we have the infinite sequence, S. A comprehensive
treatment of various paperfolding properties as well as a survey of the development
of the paperfolding sequence can be found in BATES et al [1]. There it was shown
that S can be represented by the interleaving of two sequences, as follows.

Definition 2. (Interleave operator) The interleave operator # acting on the two
sequences U = ujug ... ux and V. = vivs ... v, where k > n, generates the following
interleaved sequence:

U#V = U1 ... UpV1Up41 - - U2pU2U2p41 - - - UnpUnUnpL1 - - - Uk,

where p = LL—HJ .

Definition 3. (Alternating sequence) The alternating sequence of length 2r is given
by Ag. = 1010---10.

Definition 4. (Interleaving expression for paperfolding) Fori > 2, the paperfolding
sequence of length 2¢ — 1, S;, is defined as

S; = Agi—1#S;_1 where S, = 1.

S can also be represented through mirroring.

Definition 5. (Mirror paperfolding sequence) The mirror paperfolding sequence

of length 2¢ — 1, SiP”, is defined as the reversal of S; combined with each 1 being
replaced by 0 and each 0 being replaced by 1.
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The following results are found in BATES et al [1].
Theorem 1. S;;1 =5; 1 S’_iR and Sﬁrl =50 S’_iR where S1 = 1.
Corollary 1. S; = Agic1#Agi—a#t - #Ag#1 and SE = Agii #Agi ot - - # Ay #0.

Corollary 1 tells us that the paperfolding sequence is equivalent to a series
of successive interleaves of alternating sequences applied to the term S; = 1; and
the mirror paperfolding sequence is equivalent to a series of successive interleaves
of alternating sequences applied to the term S{ = 0.

Theorem 2. S; contains 2! — 1 instances of 0 and 2°~1 instances of 1.

We now demonstrate a more general result: the paperfolding sequence is an
interleave of smaller paperfolding sequences.

Definition 6. (Alternating paperfolding sequence). The alternating paperfolding
sequence of length 2¢ —2™,0 < n < i, is given by
Ai,n = Sz_nSﬁnSl_nSZPin cee Si_nSR

where the right hand side consists of 2"~ copies of S;—,SE .
Theorem 3. S; = A; ,#S5, and S_Z-R = Ai,n#S_ﬁ.

Note that particular values of n yield familiar expressions for .S;. That is,

i) For n = 1, Sz = Ai71#51 = Si—l 1 ﬁ and

ii)y Forn=i-1,5; = Ai i1#8i-1 = Agi-1#5;1.

In order to evaluate f;, we represent i as 2¥(2r + 1) where k,7 > 0. This
representation is characteristic of many folding structures apart from paperfolding,
such as with the stickbreaking sequence, the Stern-Brocot tree and the Sarkovsky
ordering of cycles in chaos (See DEVANEY [3]). It follows that 4 in binary is the
binary number r, followed by a 1 and then & 0s.

The following two results for f; are found in BATES et al [1].

Theorem 4. Fori=2%2r+1), fi =1 +rmod2.

We use the fact that 2r + 1 can be partitioned into 4h + 1, for » = 2h; and
4h + 3, for r = 2h + 1 in the formulation of the following result.

Theorem 5. For k,h > 0,
= 1, ifi=2F4h+1)
YT 0, ifi=2F4h+3).

Corollary 2. Fori=2F(4h +a) and s = 2°(4¢ +t) where a,t € {1,3},
1

i) fi = 33— a)

i) fi = fs, if and only if a = t.
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Theorem 6. For i = 2%(4h +a) and s = 2°(4¢ + t) where a,t € {1,3},
i) ifb<k—1,
(a) Ji+s = [s,
(b) fivs = fi, if and only if a = ¢,
i) ifb=k—1,
() firs # fs,
(b) firs = fi, if and only if a # t,
iii) if b=k,
(@) fixs = fi, if and only if a=1t and 2| (h+¢); or,
a#tand h+0+1=2"(4v + a) for some u,v >0,

(b) fivs = fs, if and only if a =1t and 2 | (h + £); or,
a#tand h+0+1=2"(4v +t) for some u,v > 0.

Proof. We have i = 28(4h + a) and s = 2°(4¢ +t) where a,t € {1,3}. We examine
each case.

i) Sincei+s = 2°(4(2""h+¢+2F"""2a)+1), (a) and (b) follow from Corollary
2 ii).

ii) Since i+ s =2F"1(4(¢ +2h) + (2a + 1)), as t # (2a + t) mod 4 for any a and
t and a = (2a + t) mod 4, if and only if a # ¢, (a) and (b) follow by Corollary
2 ii).

iii) (a) Fora=¢,i+s=2""1(2(h+{)+a). Also by Corollary 2 ii),

o if 2| (h+ (), theni+s= 2k+1(4(¥) +a) 80 fits = fi = fs,

e if 21 (h+/), and a = 3, then i+ s = 2~*1 <4<h+TH1)+1> 80 fivs # fis [s,

e if 24 (h+/), and a = 1, then i +s = 2~+1 (4(%) +3) SO fiys # [fis [s-

(b) For a # t, i + s = 2872(h + £ + 1). Accordingly,

o if h+0+4+1=2"4v+ a) for some u,v > 0, fiys = fi,

o ifh+ 0+ 1=2"4v+1t) for some u,v >0, fits = fs. O
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In the special case where s = 1, by i), ii) and iii) for v > 0 and h' =4 — h,

2u*2 (4h + 1), or
2(4h+3), or
8h' +1, or

92u+2 (4y 4 3) — 1.

fivi = f; ifand only if =

3. THE GRAPH OF THE SELF-MATCHING FUNCTION, M(d)

We now state our main result.
3
ob+1

Theorem 7. Let d = 2°(2r +1). Then M(d) = ‘1 -

Proof. There are two cases to consider:

i) d is odd, that is, b = 0. There are two sub-cases:

(a) d=40+ 1.

(I) Consider ¢ = 0, that is, d = 1. From Definition 4, S is the interleave
of the sequences in 3.1.1 and 3.1.2 while S displaced by 1, is the
interleave of 3.1.3 and 3.1.4. Corresponding matched or mismatched

entries in the overlay are shown by :

(3.1.1) lim Agia: 1 0 1 0 1
11— 00
(3.1.2) S 1 1 :0 1 : 1
(3.1)
(3.1.3)  lim Agi : 1 :0 : 1 :0 : 1
11— 00
(3.1.4) S: 1 1 0 1

Consider (3.1.3):

e Every odd entry is a 1. Each is aligned with odd entries in S in
(3.1.2) which by Definition 4 are consecutive values of an infinite
alternating sequence. Thus half of these alignments match.

e Every even entry is a 0. Each is aligned with even entries in S
in (3.1.2) which by Definition 4 are consecutive values of S. By
27t —1 1

Theorem 2, the ratio of matching Os in (3.1.3) is lim — =_.
isoo 20 —1 2

Thus half of these alignments match.
Consider (3.1.4):

e Consecutive odd entries form an infinite alternating sequence. Each
is aligned to even entries in (3.1.1) which are all 0s. Thus half of
these alignments match.
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e Consecutive even entries form S. Each is aligned with a 1 from
i—1

(3.1.1). By Theorem 2, the ratio of matching 1sin (3.1.4) is lim 23 T
11— 00 -

= % . Thus half of these alignments match.

It follows that M(1) = .

(IT) Consider ¢ > 0. Each entry in 3.1.3 and 3.1.4 moves 4¢ spaces to
the right. Despite this move, each entry in 3.1.1 and 3.1.2 (except
the leftmost d entries which are now unaligned) is aligned to a value
identical to that found in the case for £ = 0. Thus M(4¢ + 1) =

M(1)=-,¢€N.

N | =

(b) d=4f+3.

(I) Consider ¢ = 0, that is, d = 3. As with (a), S overlaid with itself,
with displacement 3, can be broken down into the following four

subsequences:
(3.21) lim Agii: 1 0 1 0 1
11— 00
(3.2.2) S : 1 1 @0 @ 1 : 1
(3.2.3) lim Agi1 : 130 1 : 0
11— 00
(3.2.4) S : 1 1 0

Consider (3.2.3) :

e Every odd entry is a 1. FEach is aligned with even entries in S
in (3.2.2) which by Definition 4 are consecutive values of S. By
2t 1

2-1" 2

Theorem 2, the ratio of matching 1s in (3.2.3) is lim
1—> 00
Thus half of these alignments match.

e Every even entry is a 0. Each is aligned with odd entries in (3.2.2)
which form an infinite alternating sequence. Thus half of these align-
ments match.

Consider (3.2.4):

e Consecutive odd entries form an infinite alternating sequence. Each
is aligned to odd entries in (3.2.1) which are all 1s. Thus half of
these alignments match.

e Consecutive even entries form S. Each is aligned with a 0 from

(3.2.1). By Theorem 2, the ratio of matching 0Os in (3.2.4) is
27t -1
lim

iboo 20 —1

= % . Thus half of these alignments match.

It follows that M (3) = % .
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(3.3)

(IT) Consider ¢ > 0. Each entry in 3.2.3 and 3.2.4 moves 4¢ spaces to
the right. Despite this move, each entry in 3.2.1 and 3.2.2 (except
the leftmost d entries which are now unaligned) is aligned to a value
identical to that found in the case for £ = 0. Thus M (4¢ + 3)
{eN.

1

Combining (a) and (b), for b =0, M(d) = 3

:5,

ii) d is even, that is, d = 2° (4¢ +t) where t € {1,3},b > 0.

From Theorem 3, taking limits, S = Sy f1 S_f” f2 S f3 S_f” fa ... Since each
Spfi and Sffi is of length 2°, we also have

S = Sy for SF fo.00 S0 fa.0 SF faan - .
So S overlaid with itself with displacement d can be viewed as

Sy 1 S_f 1 - S fa S_f faror  Sp_
Sy 1 Sl? 1

where after the [@—‘fth instance of Sy in the first line, S, entries are

overlaid with S_f‘, and?f‘ entries are overlaid with S;. Consider these overlays
of Sy and S_f” entries in (3.3). By Theorem 1, each middle term is mismatched,
thereby generating mismatches every 2° spacings in (3.3). Thus for large m,
g terms are mismatched. Now consider the overlay of the other entries in
(3.3). These occur every 2° spacings and represent S overlaid with itself with
odd displacement. By i), half of these entries mismatch and so for large
m, there are —_ of these mismatches. Since these overlays are mutually

ob+1
exclusive, we can add the mismatches. That is, for large m, there are 2?:)211
mismatches. Thus M(d) =1 — 2 for d even. O

ob+1

From Theorem 7, as M(d) is a function of b only, then M (d) is constant for

constant b. Hence the graph of M(d) consists of horizontal bands based on b such

that each band has height ‘1 —

as shown in Figure 1. We note that although

ob+1

the matching band for 2 (2r + 1) is below the band for odd numbers (b = 0) all the
other bands are above the odd band. That is,

Band 0, (b=10), M(d)=
Band 1, (b=1), M(d) =

Band 2, (b=2), M(d)=

Band n,. (b=n), M(d)= ’1

d is odd,

d=2+4s=2,6,10,...,

d=4+8s=4,12,20,...,

O U =N~

, d=2" 42"l .s=2"92".397.5 ..




Self-Matching bands in the paperfolding sequence 53

1.2

1.0 .

08 'Y 'Y 'Y 'Y ' ' ' '

06 ° ° o o o ° ° o o ° o o o ° o o

0.4

0.2

0 T T T T T T ]

0 20 40 60 80 100 120 140
d

Figure 1. Self Matching M (d) versus d
Theorem 8. For k>0, and 1 < d < 2, we have M(d) = M (2% £ d).

Proof. If d = 2°(2r +1) < 2%, then b < k, and 2" £d = 2°(2(2=*=1 £ ) £ 1). By
Theorem 7, M (2% £ d) = M(d). O

Theorem 8 tells us that if we have the section of the graph up to d = 2 — 1,
we can generate the graph up to 2°+! — 1 by adding the point (2*’7 M(2b)) and then
translating the earlier section to the right of 2°.

4. THE EXPECTED VALUE OF M (d)

The terms associated with band b for b > 0 have period 2°*!. Hence the pro-

portion of these terms that possess this matching is L Band 0 makes the largest

2b+1"°
contribution to the expected value of M(d), E(M(d)), of any band. It contains

half the total number of points, each with value %, making its total contribution

i. It contributes half of E(M(d)) as shown below.

> 3 1 — 3 1 1

EM@)=> - grlgm=7t 2150 )5 =5
b=0 b=1
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