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SELF-MATCHING BANDS IN THE PAPERFOLDING

SEQUENCE

Bruce Bates, Martin Bunder, Keith Tognetti

We compare term by term the paperfolding sequence with a copy displaced by

d terms to obtain the matching fraction M(d). It is shown that M(d) has an

interesting structure in that if d = 2b(1+2s), thenM(d) =

∣∣∣∣1−
3

2b+1

∣∣∣∣ thereby

generating horizontal bands for each value of b. That is, M(d) depends only

on b.

1. INTRODUCTION

Consider two binary sequences: S = f1f2f3 . . . and S displaced by d, that is,
the sequence fd+1fd+2fd+3 . . . . As the terms can differ only by a unit, we look at
the expression |fd+i − fi| for i ∈ N. If this is zero we have a match at the ith term;
otherwise it is unity and we have a mismatch.

Example 1. Let S = 1101100111 . . . be displaced by 3 terms. Then |f3+i − fi| can be
represented pictorially as follows.

1 1 0 1 1 0 0 1 1 1 . . .

1 1 0 1 1 0 0 . . .

|f3+i − fi| : 0 0 0 1 0 1 1 . . .

This suggests the following definition.

Definition 1. (The self-matching function) Let S be an infinite binary sequence.
The proportion of matches for S, with S displaced by d, is given by:

M(d) = lim
m→∞







m−
m∑

i=1

|fd+i − fi|

m






.
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Recently, Tognetti [4] described a surprisingly simple matching pattern
for Bernoulli sequences for which fi = b(i+ 1)αc − biαc . This represents the dif-
ference sequence for the integer parts sequence. It was shown that the graph of
M(d) against d exhibited a Moiré pattern and that unexpectedly this pattern was
obtained by simply folding the fractional parts graph about its middle.

This paper examines the self-similarity within the paperfolding sequence and
reveals yet another interesting pattern within the graph of a paperfolding M(d)
against d. We show that the graph forms horizontal bands.

2. THE PAPERFOLDING OPERATION

There have been many studies on the paperfolding sequence, S = 11011001110 . . . ,
since the seminal paper byDavis andKnuth [2]. It is based on the following simple
operation: repeatedly fold a piece of paper, right over left, i times. When unfolded,
the paper contains v-shaped and inverted v-shaped creases. If we represent a v-
shape by a 1 and an inverted v-shape by a 0, we obtain the following paperfolding
subsequence after i folds (containing 2i − 1 creases):

Si = f1f2f3 . . . f2i−1 = 110 . . .100.

For example, S1 = 1, S2 = 110, S3 = 1101100.

As i becomes unbounded we have the infinite sequence, S. A comprehensive
treatment of various paperfolding properties as well as a survey of the development
of the paperfolding sequence can be found in Bates et al [1]. There it was shown
that S can be represented by the interleaving of two sequences, as follows.

Definition 2. (Interleave operator) The interleave operator # acting on the two
sequences U = u1u2 . . . uk and V = v1v2 . . . vn where k > n, generates the following
interleaved sequence:

U#V = u1 . . . upv1up+1 . . . u2pv2u2p+1 . . . unpvnunp+1 . . . uk,

where p =
⌊

k

n + 1

⌋

.

Definition 3. (Alternating sequence) The alternating sequence of length 2r is given
by A2r = 1010 · · ·10.

Definition 4. (Interleaving expression for paperfolding) For i ≥ 2, the paperfolding
sequence of length 2i − 1, Si, is defined as

Si = A2i−1#Si−1 where S1 = 1.

S can also be represented through mirroring.

Definition 5. (Mirror paperfolding sequence) The mirror paperfolding sequence

of length 2i − 1, SR
i , is defined as the reversal of Si combined with each 1 being

replaced by 0 and each 0 being replaced by 1.
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The following results are found in Bates et al [1].

Theorem 1. Si+1 = Si 1 SR
i and SR

i+1
= Si 0 SR

i where S1 = 1.

Corollary 1. Si = A2i−1#A2i−2# · · ·#A2#1 and SR
i = A2i−1#A2i−2# · · ·#A2#0.

Corollary 1 tells us that the paperfolding sequence is equivalent to a series
of successive interleaves of alternating sequences applied to the term S1 = 1; and
the mirror paperfolding sequence is equivalent to a series of successive interleaves

of alternating sequences applied to the term SR
1
= 0.

Theorem 2. Si contains 2i−1 − 1 instances of 0 and 2i−1 instances of 1.

We now demonstrate a more general result: the paperfolding sequence is an
interleave of smaller paperfolding sequences.

Definition 6. (Alternating paperfolding sequence). The alternating paperfolding
sequence of length 2i − 2n, 0 < n < i, is given by

Ai,n = Si−nS
R
i−nSi−nS

R
i−n . . . Si−nS

R
i−n,

where the right hand side consists of 2n−1 copies of Si−nS
R
i−n.

Theorem 3. Si = Ai,n#Sn and SR
i = Ai,n#SR

n .

Note that particular values of n yield familiar expressions for Si. That is,

i) For n = 1, Si = Ai,1#S1 = Si−1 1 SR
i−1

and

ii) For n = i− 1, Si = Ai,i−1#Si−1 = A2i−1#Si−1.

In order to evaluate fi, we represent i as 2k(2r + 1) where k, r ≥ 0. This
representation is characteristic of many folding structures apart from paperfolding,
such as with the stickbreaking sequence, the Stern-Brocot tree and the Sarkovsky
ordering of cycles in chaos (See Devaney [3]). It follows that i in binary is the
binary number r, followed by a 1 and then k 0s.

The following two results for fi are found in Bates et al [1].

Theorem 4. For i = 2k(2r + 1), fi = 1 + rmod 2.

We use the fact that 2r + 1 can be partitioned into 4h + 1, for r = 2h; and
4h+ 3, for r = 2h+ 1 in the formulation of the following result.

Theorem 5. For k, h ≥ 0,

fi =

{

1, if i = 2k(4h+ 1)
0, if i = 2k(4h+ 3).

Corollary 2. For i = 2k(4h+ a) and s = 2b(4`+ t) where a, t ∈ {1, 3},

i) fi =
1

2
(3− a)

ii) fi = fs, if and only if a = t.
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Theorem 6. For i = 2k(4h+ a) and s = 2b(4`+ t) where a, t ∈ {1, 3},

i) if b < k − 1,

(a) fi+s = fs,

(b) fi+s = fi, if and only if a = t,

ii) if b = k − 1,

(a) fi+s 6= fs,

(b) fi+s = fi, if and only if a 6= t,

iii) if b = k,

(a) fi+s = fi, if and only if a = t and 2 | (h+ `); or,

a 6= t and h+ `+ 1 = 2u(4v + a) for some u, v ≥ 0,

(b) fi+s = fs, if and only if a = t and 2 | (h+ `); or,

a 6= t and h+ `+ 1 = 2u(4v + t) for some u, v ≥ 0.

Proof. We have i = 2k(4h+ a) and s = 2b(4`+ t) where a, t ∈ {1, 3}. We examine
each case.

i) Since i+s = 2b
(

4(2k−bh+`+2k−b−2a)+ t
)

, (a) and (b) follow from Corollary
2 ii).

ii) Since i+ s = 2k−1
(

4(`+ 2h) + (2a+ t)
)

, as t 6= (2a+ t)mod 4 for any a and
t and a = (2a+ t)mod 4, if and only if a 6= t, (a) and (b) follow by Corollary
2 ii).

iii) (a) For a = t, i+ s = 2k+1
(

2(h+ `) + a
)

. Also by Corollary 2 ii),

• if 2 | (h+ `), then i+ s = 2k+1

(

4
(

h+ `

2

)

+ a

)

so fi+s = fi = fs,

• if 2 - (h+ `), and a = 3, then i+s = 2k+1

(

4
(

h + `+ 1

2

)

+1

)

so fi+s 6= fi, fs,

• if 2 - (h+ `), and a = 1, then i+s = 2k+1

(

4
(

h + `− 1

2

)

+3

)

so fi+s 6= fi, fs.

(b) For a 6= t, i+ s = 2k+2(h+ `+ 1). Accordingly,

• if h+ `+ 1 = 2u(4v + a) for some u, v ≥ 0, fi+s = fi,

• if h+ `+ 1 = 2u(4v + t) for some u, v ≥ 0, fi+s = fs. �
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In the special case where s = 1, by i), ii) and iii) for u ≥ 0 and h′ = 4− h,

fi+1 = fi if and only if i =















2u+2 (4h+ 1) , or
2 (4h+ 3) , or
8h′ + 1, or
2u+2 (4v + 3)− 1.

3. THE GRAPH OF THE SELF-MATCHING FUNCTION, M(d)

We now state our main result.

Theorem 7. Let d = 2b(2r + 1). Then M(d) =
∣

∣

∣
1−

3

2b+1

∣

∣

∣
.

Proof. There are two cases to consider:

i) d is odd, that is, b = 0. There are two sub-cases:

(a) d = 4`+ 1.

(I) Consider ` = 0, that is, d = 1. From Definition 4, S is the interleave
of the sequences in 3.1.1 and 3.1.2 while S displaced by 1, is the
interleave of 3.1.3 and 3.1.4. Corresponding matched or mismatched

entries in the overlay are shown by
...

(3.1)

(3.1.1) lim
i→∞

A2i−1 : 1 0 1 0 1 · · ·

(3.1.2) S : 1
... 1

... 0
... 1

... 1 · · ·
...

...
...

...
...

...
...

...
...

(3.1.3) lim
i→∞

A2i−1 : 1
... 0

... 1
... 0

... 1 · · ·

(3.1.4) S : 1 1 0 1 · · ·

Consider (3.1.3):

• Every odd entry is a 1. Each is aligned with odd entries in S in
(3.1.2) which by Definition 4 are consecutive values of an infinite
alternating sequence. Thus half of these alignments match.

• Every even entry is a 0. Each is aligned with even entries in S

in (3.1.2) which by Definition 4 are consecutive values of S. By

Theorem 2, the ratio of matching 0s in (3.1.3) is lim
i→∞

2i−1 − 1

2i − 1
=

1

2
.

Thus half of these alignments match.
Consider (3.1.4):

• Consecutive odd entries form an infinite alternating sequence. Each
is aligned to even entries in (3.1.1) which are all 0s. Thus half of
these alignments match.
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• Consecutive even entries form S. Each is aligned with a 1 from

(3.1.1). By Theorem 2, the ratio of matching 1s in (3.1.4) is lim
i→∞

2i−1

2i − 1

=
1

2
. Thus half of these alignments match.

It follows that M(1) =
1

2
.

(II) Consider ` > 0. Each entry in 3.1.3 and 3.1.4 moves 4` spaces to
the right. Despite this move, each entry in 3.1.1 and 3.1.2 (except
the leftmost d entries which are now unaligned) is aligned to a value
identical to that found in the case for ` = 0. Thus M(4` + 1) =

M(1) =
1

2
, ` ∈ N.

(b) d = 4`+ 3.

(I) Consider ` = 0, that is, d = 3. As with (a), S overlaid with itself,
with displacement 3, can be broken down into the following four
subsequences:

(3.2)

(3.2.1) lim
i→∞

A2i−1 : 1 0 1 0 1 · · ·

(3.2.2) S : 1 1
... 0

... 1
... 1 · · ·

...
...

...
...

...
...

...

(3.2.3) lim
i→∞

A2i−1 : 1
... 0

... 1
... 0 · · ·

(3.2.4) S : 1 1 0 · · ·

Consider (3.2.3) :

• Every odd entry is a 1. Each is aligned with even entries in S

in (3.2.2) which by Definition 4 are consecutive values of S. By

Theorem 2, the ratio of matching 1s in (3.2.3) is lim
i→∞

2i−1

2i − 1
=

1

2
.

Thus half of these alignments match.

• Every even entry is a 0. Each is aligned with odd entries in (3.2.2)
which form an infinite alternating sequence. Thus half of these align-
ments match.
Consider (3.2.4):

• Consecutive odd entries form an infinite alternating sequence. Each
is aligned to odd entries in (3.2.1) which are all 1s. Thus half of
these alignments match.

• Consecutive even entries form S. Each is aligned with a 0 from
(3.2.1). By Theorem 2, the ratio of matching 0s in (3.2.4) is

lim
i→∞

2i−1 − 1

2i − 1
=

1

2
. Thus half of these alignments match.

It follows that M(3) =
1

2
.
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(II) Consider ` > 0. Each entry in 3.2.3 and 3.2.4 moves 4` spaces to
the right. Despite this move, each entry in 3.2.1 and 3.2.2 (except
the leftmost d entries which are now unaligned) is aligned to a value

identical to that found in the case for ` = 0. Thus M(4`+ 3) =
1

2
,

` ∈ N.

Combining (a) and (b), for b = 0, M(d) =
1

2
.

ii) d is even, that is, d = 2b (4`+ t) where t ∈ {1, 3} , b > 0.

From Theorem 3, taking limits, S = Sb f1 SR
b f2 Sb f3 SR

b f4 . . . Since each

Sbfi and SR
b fi is of length 2b, we also have

S = Sbf2bS
R
b f2·2bSbf3·2bS

R
b f4·2b . . .

So S overlaid with itself with displacement d can be viewed as

(3.3)
Sb 1 SR

b 1 · · · Sb fd SR
b fd+2b Sb · · ·

Sb 1 SR
b 1 · · ·

where after the
⌈

4` + t

2

⌉

–th instance of Sb in the first line, Sb entries are

overlaid with SR
b , and SR

b entries are overlaid with Sb. Consider these overlays

of Sb and SR
b entries in (3.3). By Theorem 1, each middle term is mismatched,

thereby generating mismatches every 2b spacings in (3.3). Thus for large m,
m

2b
terms are mismatched. Now consider the overlay of the other entries in

(3.3). These occur every 2b spacings and represent S overlaid with itself with
odd displacement. By i), half of these entries mismatch and so for large

m, there are
m

2b+1
of these mismatches. Since these overlays are mutually

exclusive, we can add the mismatches. That is, for large m, there are
3m

2b+1

mismatches. Thus M(d) = 1−
3

2b+1
for d even. �

From Theorem 7, as M(d) is a function of b only, then M(d) is constant for
constant b. Hence the graph of M(d) consists of horizontal bands based on b such

that each band has height
∣

∣

∣
1−

3

2b+1

∣

∣

∣
as shown in Figure 1. We note that although

the matching band for 2 (2r + 1) is below the band for odd numbers (b = 0) all the
other bands are above the odd band. That is,

Band 0, (b = 0), M(d) =
1

2
, d is odd,

Band 1, (b = 1), M(d) =
1

4
, d = 2 + 4s = 2, 6, 10, . . . ,

Band 2, (b = 2), M(d) =
5

8
, d = 4 + 8s = 4, 12, 20, . . . ,

...
...

...

Band n, (b = n), M(d) =
∣

∣

∣
1−

3

2n+1

∣

∣

∣
, d = 2n + 2n+1 · s = 2n, 2n · 3, 2n · 5, . . .
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Figure 1. Self Matching M(d) versus d

Theorem 8. For k > 0, and 1 ≤ d < 2k, we have M(d) = M(2k ± d).

Proof. If d = 2b(2r+1) < 2k, then b < k, and 2k ± d = 2b
(

2(2k−b−1 ± r)± 1
)

. By
Theorem 7, M(2k ± d) = M(d).

Theorem 8 tells us that if we have the section of the graph up to d = 2b − 1,
we can generate the graph up to 2b+1−1 by adding the point

(

2b,M(2b)
)

and then
translating the earlier section to the right of 2b.

4. THE EXPECTED VALUE OF M(d)

The terms associated with band b for b > 0 have period 2b+1. Hence the pro-

portion of these terms that possess this matching is
1

2b+1
. Band 0 makes the largest

contribution to the expected value of M(d), E
(

M(d)
)

, of any band. It contains

half the total number of points, each with value
1

2
, making its total contribution

1

4
. It contributes half of E

(

M(d)
)

as shown below.

E
(

M(d)
)

=

∞
∑

b=0

∣

∣

∣

∣

1−
3

2b+1

∣

∣

∣

∣

1

2b+1
=

1

4
+

∞
∑

b=1

(

1−
3

2b+1

)

1

2b+1
=

1

2
.
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