Applicable Analysis and Discrete Mathematics
 available online at http://pefmath.etf.rs

SELF-MATCHING BANDS IN THE PAPERFOLDING SEQUENCE

Bruce Bates, Martin Bunder, Keith Tognetti

We compare term by term the paperfolding sequence with a copy displaced by d terms to obtain the matching fraction $M(d)$. It is shown that $M(d)$ has an interesting structure in that if $d=2^{b}(1+2 s)$, then $M(d)=\left|1-\frac{3}{2^{b+1}}\right|$ thereby generating horizontal bands for each value of b. That is, $M(d)$ depends only on b.

1. INTRODUCTION

Consider two binary sequences: $S=f_{1} f_{2} f_{3} \ldots$ and S displaced by d, that is, the sequence $f_{d+1} f_{d+2} f_{d+3} \ldots$. As the terms can differ only by a unit, we look at the expression $\left|f_{d+i}-f_{i}\right|$ for $i \in \mathbb{N}$. If this is zero we have a match at the $i^{\text {th }}$ term; otherwise it is unity and we have a mismatch.
Example 1. Let $S=1101100111 \ldots$ be displaced by 3 terms. Then $\left|f_{3+i}-f_{i}\right|$ can be represented pictorially as follows.

$$
\begin{array}{ccccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & \ldots \\
& & 1 & 1 & 0 & 1 & 1 & 0 & 0 & \ldots \\
\hline\left|f_{3+i}-f_{i}\right|: & 0 & 0 & 0 & 1 & 0 & 1 & 1 & \ldots
\end{array}
$$

This suggests the following definition.
Definition 1. (The self-matching function) Let S be an infinite binary sequence. The proportion of matches for S, with S displaced by d, is given by:

$$
M(d)=\lim _{m \rightarrow \infty}\left(\frac{m-\sum_{i=1}^{m}\left|f_{d+i}-f_{i}\right|}{m}\right)
$$

2000 Mathematics Subject Classification. 11A55.
Keywords and Phrases. Paperfolding sequence, repeated subsequences, matching.

Recently, Tognetti [4] described a surprisingly simple matching pattern for Bernoulli sequences for which $f_{i}=\lfloor(i+1) \alpha\rfloor-\lfloor i \alpha\rfloor$. This represents the difference sequence for the integer parts sequence. It was shown that the graph of $M(d)$ against d exhibited a Moiré pattern and that unexpectedly this pattern was obtained by simply folding the fractional parts graph about its middle.

This paper examines the self-similarity within the paperfolding sequence and reveals yet another interesting pattern within the graph of a paperfolding $M(d)$ against d. We show that the graph forms horizontal bands.

2. THE PAPERFOLDING OPERATION

There have been many studies on the paperfolding sequence, $S=11011001110 \ldots$, since the seminal paper by Davis and Knuth [2]. It is based on the following simple operation: repeatedly fold a piece of paper, right over left, i times. When unfolded, the paper contains v-shaped and inverted v-shaped creases. If we represent a vshape by a 1 and an inverted v -shape by a 0 , we obtain the following paperfolding subsequence after i folds (containing $2^{i}-1$ creases):

$$
S_{i}=f_{1} f_{2} f_{3} \ldots f_{2^{i}-1}=110 \ldots 100
$$

For example, $S_{1}=1, S_{2}=110, S_{3}=1101100$.
As i becomes unbounded we have the infinite sequence, S. A comprehensive treatment of various paperfolding properties as well as a survey of the development of the paperfolding sequence can be found in Bates et al [1]. There it was shown that S can be represented by the interleaving of two sequences, as follows.

Definition 2. (Interleave operator) The interleave operator \# acting on the two sequences $U=u_{1} u_{2} \ldots u_{k}$ and $V=v_{1} v_{2} \ldots v_{n}$ where $k>n$, generates the following interleaved sequence:

$$
U \# V=u_{1} \ldots u_{p} v_{1} u_{p+1} \ldots u_{2 p} v_{2} u_{2 p+1} \ldots u_{n p} v_{n} u_{n p+1} \ldots u_{k}
$$

where $p=\left\lfloor\frac{k}{n+1}\right\rfloor$.
Definition 3. (Alternating sequence) The alternating sequence of length $2 r$ is given by $A_{2 r}=1010 \cdots 10$.

Definition 4. (Interleaving expression for paperfolding) For $i \geq 2$, the paperfolding sequence of length $2^{i}-1, S_{i}$, is defined as

$$
S_{i}=A_{2^{i-1}} \# S_{i-1} \text { where } S_{1}=1
$$

S can also be represented through mirroring.
Definition 5. (Mirror paperfolding sequence) The mirror paperfolding sequence of length $2^{i}-1, \overline{S_{i}^{R}}$, is defined as the reversal of S_{i} combined with each 1 being replaced by 0 and each 0 being replaced by 1.

The following results are found in Bates et al [1].
Theorem 1. $S_{i+1}=S_{i} 1 \overline{S_{i}^{R}}$ and $\overline{S_{i+1}^{R}}=S_{i} 0 \overline{S_{i}^{R}}$ where $S_{1}=1$.
Corollary 1. $S_{i}=A_{2^{i-1}} \# A_{2^{i-2}} \# \cdots \# A_{2} \# 1$ and $\overline{S_{i}^{R}}=A_{2^{i-1}} \# A_{2^{i-2}} \# \cdots \# A_{2} \# 0$.
Corollary 1 tells us that the paperfolding sequence is equivalent to a series of successive interleaves of alternating sequences applied to the term $S_{1}=1$; and the mirror paperfolding sequence is equivalent to a series of successive interleaves of alternating sequences applied to the term $\overline{S_{1}^{R}}=0$.

Theorem 2. S_{i} contains $2^{i-1}-1$ instances of 0 and 2^{i-1} instances of 1 .
We now demonstrate a more general result: the paperfolding sequence is an interleave of smaller paperfolding sequences.

Definition 6. (Alternating paperfolding sequence). The alternating paperfolding sequence of length $2^{i}-2^{n}, 0<n<i$, is given by

$$
\mathcal{A}_{i, n}=S_{i-n} \overline{S_{i-n}^{R}} S_{i-n} \overline{S_{i-n}^{R}} \ldots S_{i-n} \overline{S_{i-n}^{R}}
$$

where the right hand side consists of 2^{n-1} copies of $S_{i-n} \overline{S_{i-n}^{R}}$.
Theorem 3. $S_{i}=\mathcal{A}_{i, n} \# S_{n}$ and $\overline{S_{i}^{R}}=\mathcal{A}_{i, n} \# \overline{S_{n}^{R}}$.
Note that particular values of n yield familiar expressions for S_{i}. That is,
i) For $n=1, S_{i}=\mathcal{A}_{i, 1} \# S_{1}=S_{i-1} 1 \overline{S_{i-1}^{R}}$ and
ii) For $n=i-1, S_{i}=\mathcal{A}_{i, i-1} \# S_{i-1}=A_{2^{i-1}} \# S_{i-1}$.

In order to evaluate f_{i}, we represent i as $2^{k}(2 r+1)$ where $k, r \geq 0$. This representation is characteristic of many folding structures apart from paperfolding, such as with the stickbreaking sequence, the Stern-Brocot tree and the Sarkovsky ordering of cycles in chaos (See Devaney [3]). It follows that i in binary is the binary number r, followed by a 1 and then $k 0 \mathrm{~s}$.

The following two results for f_{i} are found in BATES et al [1].
Theorem 4. For $i=2^{k}(2 r+1), f_{i}=1+r \bmod 2$.
We use the fact that $2 r+1$ can be partitioned into $4 h+1$, for $r=2 h$; and $4 h+3$, for $r=2 h+1$ in the formulation of the following result.

Theorem 5. For $k, h \geq 0$,

$$
f_{i}= \begin{cases}1, & \text { if } i=2^{k}(4 h+1) \\ 0, & \text { if } i=2^{k}(4 h+3)\end{cases}
$$

Corollary 2. For $i=2^{k}(4 h+a)$ and $s=2^{b}(4 \ell+t)$ where $a, t \in\{1,3\}$,
i) $f_{i}=\frac{1}{2}(3-a)$
ii) $f_{i}=f_{s}$, if and only if $a=t$.

Theorem 6. For $i=2^{k}(4 h+a)$ and $s=2^{b}(4 \ell+t)$ where $a, t \in\{1,3\}$,
i) if $b<k-1$,
(a) $f_{i+s}=f_{s}$,
(b) $f_{i+s}=f_{i}$, if and only if $a=t$,
ii) if $b=k-1$,
(a) $f_{i+s} \neq f_{s}$,
(b) $f_{i+s}=f_{i}$, if and only if $a \neq t$,
iii) if $b=k$,
(a) $f_{i+s}=f_{i}$, if and only if $a=t$ and $2 \mid(h+\ell)$; or, $a \neq t$ and $h+\ell+1=2^{u}(4 v+a)$ for some $u, v \geq 0$,
(b) $f_{i+s}=f_{s}$, if and only if $a=t$ and $2 \mid(h+\ell)$; or, $a \neq t$ and $h+\ell+1=2^{u}(4 v+t)$ for some $u, v \geq 0$.

Proof. We have $i=2^{k}(4 h+a)$ and $s=2^{b}(4 \ell+t)$ where $a, t \in\{1,3\}$. We examine each case.
i) Since $i+s=2^{b}\left(4\left(2^{k-b} h+\ell+2^{k-b-2} a\right)+t\right)$, (a) and (b) follow from Corollary 2 ii).
ii) Since $i+s=2^{k-1}(4(\ell+2 h)+(2 a+t))$, as $t \neq(2 a+t) \bmod 4$ for any a and t and $a=(2 a+t) \bmod 4$, if and only if $a \neq t$, (a) and (b) follow by Corollary 2 ii).
iii) (a) For $a=t, i+s=2^{k+1}(2(h+\ell)+a)$. Also by Corollary 2 ii),

- if $2 \mid(h+\ell)$, then $i+s=2^{k+1}\left(4\left(\frac{h+\ell}{2}\right)+a\right)$ so $f_{i+s}=f_{i}=f_{s}$,
- if $2 \nmid(h+\ell)$, and $a=3$, then $i+s=2^{k+1}\left(4\left(\frac{h+\ell+1}{2}\right)+1\right)$ so $f_{i+s} \neq f_{i}, f_{s}$,
- if $2 \nmid(h+\ell)$, and $a=1$, then $i+s=2^{k+1}\left(4\left(\frac{h+\ell-1}{2}\right)+3\right)$ so $f_{i+s} \neq f_{i}, f_{s}$.
(b) For $a \neq t, i+s=2^{k+2}(h+\ell+1)$. Accordingly,
- if $h+\ell+1=2^{u}(4 v+a)$ for some $u, v \geq 0, f_{i+s}=f_{i}$,
- if $h+\ell+1=2^{u}(4 v+t)$ for some $u, v \geq 0, f_{i+s}=f_{s}$.

In the special case where $s=1$, by i), ii) and iii) for $u \geq 0$ and $h^{\prime}=4-h$,

$$
f_{i+1}=f_{i} \quad \text { if and only if } i=\left\{\begin{array}{l}
2^{u+2}(4 h+1), \text { or } \\
2(4 h+3), \text { or } \\
8 h^{\prime}+1, \text { or } \\
2^{u+2}(4 v+3)-1
\end{array}\right.
$$

3. THE GRAPH OF THE SELF-MATCHING FUNCTION, $M(d)$

We now state our main result.
Theorem 7. Let $d=2^{b}(2 r+1)$. Then $M(d)=\left|1-\frac{3}{2^{b+1}}\right|$.
Proof. There are two cases to consider:
i) d is odd, that is, $b=0$. There are two sub-cases:
(a) $d=4 \ell+1$.
(I) Consider $\ell=0$, that is, $d=1$. From Definition $4, S$ is the interleave of the sequences in 3.1.1 and 3.1.2 while S displaced by 1 , is the interleave of 3.1.3 and 3.1.4. Corresponding matched or mismatched entries in the overlay are shown by

(3.1.1)	$\lim _{i \rightarrow \infty} A_{2^{i-1}}:$	1		0		1		0		1		\ldots
(3.1.2)	$S:$		1	\vdots	1	\vdots	0	\vdots	1	\vdots	1	\ldots
			\vdots									
$(3.1 .3)$	$\lim _{i \rightarrow \infty} A_{2^{i-1}}:$		1	\vdots	0	\vdots	1	\vdots	0	\vdots	1	\ldots
$(3.1 .4)$	$S:$			1		1		0		1		\ldots

Consider (3.1.3):

- Every odd entry is a 1 . Each is aligned with odd entries in S in (3.1.2) which by Definition 4 are consecutive values of an infinite alternating sequence. Thus half of these alignments match.
- Every even entry is a 0 . Each is aligned with even entries in S in (3.1.2) which by Definition 4 are consecutive values of S. By Theorem 2, the ratio of matching 0 s in (3.1.3) is $\lim _{i \rightarrow \infty} \frac{2^{i-1}-1}{2^{i}-1}=\frac{1}{2}$. Thus half of these alignments match. Consider (3.1.4):
- Consecutive odd entries form an infinite alternating sequence. Each is aligned to even entries in (3.1.1) which are all 0s. Thus half of these alignments match.
- Consecutive even entries form S. Each is aligned with a 1 from (3.1.1). By Theorem 2, the ratio of matching 1 s in (3.1.4) is $\lim _{i \rightarrow \infty} \frac{2^{i-1}}{2^{i}-1}$ $=\frac{1}{2}$. Thus half of these alignments match.
It follows that $M(1)=\frac{1}{2}$.
(II) Consider $\ell>0$. Each entry in 3.1 .3 and 3.1 .4 moves 4ℓ spaces to the right. Despite this move, each entry in 3.1.1 and 3.1.2 (except the leftmost d entries which are now unaligned) is aligned to a value identical to that found in the case for $\ell=0$. Thus $M(4 \ell+1)=$ $M(1)=\frac{1}{2}, \ell \in \mathbb{N}$.
(b) $d=4 \ell+3$.
(I) Consider $\ell=0$, that is, $d=3$. As with (a), S overlaid with itself, with displacement 3 , can be broken down into the following four subsequences:

$(3.2 .1)$	$\lim _{i \rightarrow \infty} A_{2^{i-1}}:$	1		0		1		0		1		\cdots
$(3.2 .2)$	$S:$		1		1	\vdots	0	\vdots	1	\vdots	1	\cdots
					\vdots							
					1	\vdots	0	\vdots	1	\vdots	0	\cdots
$(3.2 .3)$	$\lim _{i \rightarrow \infty} A_{2^{i-1}}:$											
$(3.2 .4)$	$S:$				1		1		0		\cdots	

- Every odd entry is a 1 . Each is aligned with even entries in S in (3.2.2) which by Definition 4 are consecutive values of S. By Theorem 2, the ratio of matching 1 s in $(3.2 .3)$ is $\lim _{i \rightarrow \infty} \frac{2^{i-1}}{2^{i}-1}=\frac{1}{2}$. Thus half of these alignments match.
- Every even entry is a 0 . Each is aligned with odd entries in (3.2.2) which form an infinite alternating sequence. Thus half of these alignments match. Consider (3.2.4):
- Consecutive odd entries form an infinite alternating sequence. Each is aligned to odd entries in (3.2.1) which are all 1s. Thus half of these alignments match.
- Consecutive even entries form S. Each is aligned with a 0 from (3.2.1). By Theorem 2, the ratio of matching 0 s in (3.2.4) is $\lim _{i \rightarrow \infty} \frac{2^{i-1}-1}{2^{i}-1}=\frac{1}{2}$. Thus half of these alignments match.
It follows that $M(3)=\frac{1}{2}$.
(II) Consider $\ell>0$. Each entry in 3.2 .3 and 3.2 .4 moves 4ℓ spaces to the right. Despite this move, each entry in 3.2.1 and 3.2.2 (except the leftmost d entries which are now unaligned) is aligned to a value identical to that found in the case for $\ell=0$. Thus $M(4 \ell+3)=\frac{1}{2}$, $\ell \in \mathbb{N}$.
Combining (a) and (b), for $b=0, M(d)=\frac{1}{2}$.
ii) d is even, that is, $d=2^{b}(4 \ell+t)$ where $t \in\{1,3\}, b>0$.

From Theorem 3, taking limits, $S=S_{b} f_{1} \overline{S_{b}^{R}} f_{2} S_{b} f_{3} \overline{S_{b}^{R}} f_{4} \ldots$. Since each $S_{b} f_{i}$ and $\overline{S_{b}^{R}} f_{i}$ is of length 2^{b}, we also have

$$
S=S_{b} f_{2^{b}} \overline{S_{b}^{R}} f_{2 \cdot 2^{b}} S_{b} f_{3 \cdot 2^{b}} \overline{S_{b}^{R}} f_{4 \cdot 2^{b}} \ldots
$$

So S overlaid with itself with displacement d can be viewed as

$$
\begin{array}{cccccccccccc}
S_{b} & 1 & \overline{S_{b}^{R}} & 1 & \cdots & S_{b} & f_{d} & \overline{S_{b}^{R}} & f_{d+2^{b}} & S_{b} & \cdots & \tag{3.3}\\
& & & & & & S_{b} & 1 & \overline{S_{b}^{R}} & 1 & \cdots
\end{array}
$$

where after the $\left\lceil\frac{4 \ell+t}{2}\right\rceil$-th instance of S_{b} in the first line, S_{b} entries are overlaid with $\overline{S_{b}^{R}}$, and $\overline{S_{b}^{R}}$ entries are overlaid with S_{b}. Consider these overlays of S_{b} and $\overline{S_{b}^{R}}$ entries in (3.3). By Theorem 1, each middle term is mismatched, thereby generating mismatches every 2^{b} spacings in (3.3). Thus for large m, $\frac{m}{2^{b}}$ terms are mismatched. Now consider the overlay of the other entries in (3.3). These occur every 2^{b} spacings and represent S overlaid with itself with odd displacement. By i), half of these entries mismatch and so for large m, there are $\frac{m}{2^{b+1}}$ of these mismatches. Since these overlays are mutually exclusive, we can add the mismatches. That is, for large m, there are $\frac{3 m}{2^{b+1}}$ mismatches. Thus $M(d)=1-\frac{3}{2^{b+1}}$ for d even.

From Theorem 7, as $M(d)$ is a function of b only, then $M(d)$ is constant for constant b. Hence the graph of $M(d)$ consists of horizontal bands based on b such that each band has height $\left|1-\frac{3}{2^{b+1}}\right|$ as shown in Figure 1. We note that although the matching band for $2(2 r+1)$ is below the band for odd numbers $(b=0)$ all the other bands are above the odd band. That is,
Band $0,(b=0), \quad M(d)=\frac{1}{2}, \quad d$ is odd,
Band 1, $(b=1), \quad M(d)=\frac{1}{4}, \quad d=2+4 s=2,6,10, \ldots$,
Band 2, $(b=2), \quad M(d)=\frac{5}{8}, \quad d=4+8 s=4,12,20, \ldots$,

Band $n,(b=n), \quad M(d)=\left|1-\frac{3}{2^{n+1}}\right|, \quad d=2^{n}+2^{n+1} \cdot s=2^{n}, 2^{n} \cdot 3,2^{n} \cdot 5, \ldots$

Figure 1. Self Matching $M(d)$ versus d
Theorem 8. For $k>0$, and $1 \leq d<2^{k}$, we have $M(d)=M\left(2^{k} \pm d\right)$.
Proof. If $d=2^{b}(2 r+1)<2^{k}$, then $b<k$, and $2^{k} \pm d=2^{b}\left(2\left(2^{k-b-1} \pm r\right) \pm 1\right)$. By Theorem 7, $M\left(2^{k} \pm d\right)=M(d)$.

Theorem 8 tells us that if we have the section of the graph up to $d=2^{b}-1$, we can generate the graph up to $2^{b+1}-1$ by adding the point $\left(2^{b}, M\left(2^{b}\right)\right)$ and then translating the earlier section to the right of 2^{b}.

4. THE EXPECTED VALUE OF $M(d)$

The terms associated with band b for $b>0$ have period 2^{b+1}. Hence the proportion of these terms that possess this matching is $\frac{1}{2^{b+1}}$. Band 0 makes the largest contribution to the expected value of $M(d), E(M(d))$, of any band. It contains half the total number of points, each with value $\frac{1}{2}$, making its total contribution $\frac{1}{4}$. It contributes half of $E(M(d))$ as shown below.

$$
E(M(d))=\sum_{b=0}^{\infty}\left|1-\frac{3}{2^{b+1}}\right| \frac{1}{2^{b+1}}=\frac{1}{4}+\sum_{b=1}^{\infty}\left(1-\frac{3}{2^{b+1}}\right) \frac{1}{2^{b+1}}=\frac{1}{2}
$$

REFERENCES

1. B. P. Bates, M. W. Bunder, K. P. Tognetti: Mirroring and Interleaving in the Paperfolding Sequence. Appl. Anal. Discrete Math., 4 (2010), 96-118.
2. C. Davis, D. E. Knuth: Number Representations and Dragon Curves - 1. J. Recreat. Math., 3 (1970), 66-81.
3. R. L. Devaney: An Introduction to Chaotic Dynamical Systems, second ed. AddisonWesley, 1989.
4. K. P. Tognetti: On self-matching within integer part sequences. Discrete Math., $\mathbf{3 8}$ (24) (2008), 6539-6545.

Centre for Pure Mathematics,
School of Mathematics and Applied Statistics,
(Received August 4, 2010)

University of Wollongong,
Wollongong, NSW,
Australia 2522
E-mails: bbates@uow.edu.au

> mbunder@uow.edu.au tognetti@uow.edu.au

