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ON THE SPECTRAL RADIUS OF CACTUSES WITH
PERFECT MATCHINGS

Ziwen Huang, Hanyuan Deng, Slobodan K. Simié

Let C(2m, k) be the set of all cactuses on 2m vertices, k cycles, and with
perfect matchings. In this paper, we identify in C(2m, k) the unique graph
with the largest spectral radius.

1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph with vertex set V(G), and edge set
E(G). A(G) is the adjacency matrix of G, while P(G;)\) = det(A] — A(G)) is the
characteristic polynomial of G. Since A(G) is symmetric, its eigenvalues (or roots
of the characteristic polynomial) are real. They are also called the eigenvalues of G.
The largest eigenvalue of G, denoted by p(G), is called the spectral radius (or the
index) of G. If G is connected, or equivalently, if A(G) is irreducible, then p(G) is a
simple eigenvalue of G, i.e. its multiplicity is one. By the Perron-Frobenius theory
of non-negative matrices there exists a unique positive unit eigenvector correspond-
ing to p(G), called the Perron vector of G. Further on we will use to suppress the
graph names whenever being understood from the context.

Spectral radius of a graph is an important graph invariant, which recently
gained much attention with researchers (see [10] in the context of various applica-
tions of the spectral graph theory). Most of the early results can be found in [7] (see
also [6, 8, 9], and results therein). BRUALDI and HOFFMAN (see [2]) put forward
the problem of identifying (in some classes of graphs) those graphs whose spectral
radius is extremal (either maximal, or minimal). This problem turns to be too hard
for some classes of graphs, especially in the minimization variant. In contrast, tools
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for solving maximization variant are much more developed (see also [8, 9]). Here
we will mention only a few relevant results, addressing trees and unicyclic graphs.
Basic observations on connected graphs with small cyclomatic number are given in
[3]; in particular, for trees, the readers are referred to [16]. For trees with some
constraints on the size of matchings see [4, 11, 13, 15, 17, 18]; the corresponding
results for unicyclic can be found in [5 ,12, 19]. (Recall, two edges are said to be
independent in a graph G if they have no common vertices. A perfect matching of
G is a set of mutually independent edges which cover every vertex of G.)

In this paper we will consider cactuses. Recall, a cactus is a connected graph
in which any two cycles have at most one common vertex. Clearly, any tree,
or unicyclic graph, is a cactus as well. The maximization problem for cactuses
with fixed number of cycles is resolved in [1]. Here we consider the same problem
restricted to cactuses with perfect matchings.

The paper is organized as follows: in Section 2, we give some further defini-
tions and basic tools; in Section 3, we give our main result, i.e. we identify (in the
observed class), the unique cactus with the maximal spectral radius.

2. PRELIMINARIES

G — v (G — uwv) denotes the subgraph of G obtained by deleting a vertex
v € V(G) (resp. an edge uv € E(G)). Similarly, G 4+ uv is a graph that arises from
G by adding an edge uwv € E(G), where u,v € V(G). This notation is naturally
extended if more than one edge is deleted from, or added to G. Given a vertex
v € V(G), d(v) denotes its degree, and N(v) denotes the set of all neighbors of v.
The following lemmas will be helpful in proving our main result.

Lemma 2.1 ([9, Theorem 8.1.5, p. 230]). Let G = (V, E) be a connected graph, and
p(QG) its spectral radius. Suppose that u,v € V and W C N(v) \ N(u) (1 <|W| <
d(v)). Let x = (21,72, ...,2,)T be the Perron vector of G, where z; corresponds to
the vertex v; (1 < i <mn). Let G’ be the graph obtained from G by deleting the edges
vw, and adding the edges uw (w € W). If x,, > x, then p(G) < p(G’).

Lemma 2.2 ([14; 9, Theorem 8.1.20, p. 238]). Let G(k,{) (k,¢ > 0) be the graph
obtained from a non-trivial connected graph G by attaching hanging paths of lengths
k and l at the same vertex of G. If k > ¢ > 1 then

p(G(k,0)) > p(G(k + 1,0 — 1)).

It is well-known that if G’ is a proper spanning subgraph of a connected graph
G, then p(G) > p(G"). Note that any proper subgraph of G, if not being a spanning
subgraph of G, can be extended to a proper spanning subgraph of G by adding
isolated vertices. So we have the following lemma (see, for example, [6, Theorem
0.6, p. 19]):

Lemma 2.3. Let G be a connected graph, and let G’ be a proper subgraph of G.
Then p(G) > p(G).
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Lemma 2.4 ([14; 9, Lemma 8.1.19, p. 237]). If H is a proper spanning subgraph
of the connected graph G, then

P(H:\) > P(G;))
for all A > p(G).

Let L = K1 3+ e. Denote by L, (L) the rooted variant of L, where the root
(i.e. distinguished vertex) is of degree 2 (resp. 3) in L. Let H (= H,) be any non-
trivial connected graph having r as its root. Let G = H,. - L,, while G' = H,. - Ly,
where - denote the dot-product (or coalescence) of two graphs (see, for example, [6,
pp. 158-159]). Then we have:

Lemma 2.5. Let G and G’ be the graphs described as above. Then p(G') > p(G).

Proof. Let v’ (v) be a pendant vertex of G’ (resp. G) originating from the pendant
vertex of L. Using Heilbronner’s formula (see, [6, Theorem 2.11, p. 59]) at v (resp.
v), we easily obtain

P(G';\) — P(G;\) = —[P(B; \) — P(A; )],

where B = (H —r) U K3 and A = H - K5. Since B is a spanning subgraph of A,
P(B; ) > P(A; ) for A > p(A) (by Lemma 2.4). So P(G';\) — P(G;\) < 0 for
A > p(A), and consequently for A > p(G’) (by Lemma 2.3). Therefore, we have
p(G") > p(G), as required. O

3. MAIN RESULTS

Denote by C(2m, k) the set of all cactuses on 2m vertices and k cycles, having
perfect matchings. If all cycles of some cactus have exactly one vertex in common,
we say that they form a bundle, or that the graph itself is a bundle. The graph
G(m,k,i) € C(2m, k) is obtained as follows:

e its cycles form the bundle consisting of k triangles, vy being their common
vertex;

e a pendant edge together with m — k — ¢ — 1 hanging paths of length two are
attached at vg;

e all other pendant edges, 2¢ in total, are attached at 2¢ vertices of degree 2 of
i (0 <14 < k) triangles from the bundle.

So G(m, k z) is a bundle. In particular, for m = 4 and k = 3 the cactuses
G(8,3,0), G(8,3,1), G(8,3,2) and G(8,3,3) are depicted in Fig. 1.

Shaka

Fig. 1. Graphs G(8,3,0), G(8,3,1), G(8,3,2), G(8,3,3).
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Our main result reads:
Theorem 3.1. Let G € C(2m, k). If m > 4 and k > 2 then

p(G) < p(G(m, k,0)),
with equality if and only if G = G(m, k,0).

To prove the theorem, we will prove six lemmas. In each of them, let G e
C(2m, k) be a graph with maximal spectral radius. Let V(G’) = {v1,v2,...,0,},
and let x = (z1,22,...,2,)7 be the Perron vector of G. The quantity x; will be
regarded as the weight of the vertex v;. Finally, let M be a fixed perfect matching

of G.
Lemma 3.1. The length of any cycle in G is equal to 3.

Proof. Assume, on the contrary, that there is a cycle C' with length p > 3. For
short, let C' = ujug - - - upuy. Without loss of generality, we may assume that u; is
a vertex of C' with minimal weight. Consider next the edges upu; and usu; (of C).
One of them, say upu;, does not belong to M. Let G = G- upt1 + upug. Then
G € C(2m,k) (it is a cactus having M as a matching). By Lemma 2.1 we have

p(G) > p(@G), a contradiction. O
Lemma 3.2. Any two cycles in G have one common vertex.

Proof. Assume, on the contrary, that there are two disjoint cycles C; and Cs.
Then, there exists a path P = ujus - - - up of length p— 1 (p > 2) joining the cycles
Ci and Cy, where uy; € V(C1), up € V(C2) and u; & (V(Ch) UV (Cy)) for i # 1, p.
By Lemma 3.1, C; (and C2) are triangles. We write C7 = ujvwus.

We now prove that neither uyv, nor uyw, is in M. Assume, on the contrary,
that uyv € M. If so, there is a vertex w’ € V(G) such that ww’ € M.

(i) Zu, > 2o Let G = G—{ww'} 4+ {ujw'}. Note that M’ = M —{ujv, ww'} +
{vw,u1w'} is a perfect matching in G.

(ii) Ty, < Tw. Let G =G —{wy | y € N(u1) \ {v,w}} +{wy | y € N(u1) \
{v,w}}. Now M is a perfect matching also in G.

Then, in either case, G € C(2m, k) and by Lemma 2.1 we have p(G) > p(G),
a contradiction. So, uyv € M, and similarly, u;w ¢ M.

Without loss of generality, assume next that z,, > x,,. Let G = G-
{urv, vaw} + {upv, upw}. Then G € C(2m, k), since G is a cactus having M as

a matching. By Lemma 2.1 we have p(G) > p(G), a contradiction. O
Lemma 3.3. Any three cycles in G have exactly one common vertex.

Proof. Assume, on the contrary, that cycles Cq, Co and C5 have no common
vertices. Having in mind Lemma 3.2, let u, v, w be the common vertices of C'; and
Cy, Cy and C5, C1 and Cj, respectively. But then the shortest paths between u
and v, v and w, w and u form a cycle which has at least one edge in common with
any of observed cycles, a contradiction. O

By Lemmas 3.1-3.3, all cycles of G are triangles, and they have exactly one
vertex in common, i.e. they form a bundle having vy as the common vertex. We
next consider hanging trees attached at vertices belonging to cycles.
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Lemma 3.4. Any tree T attached at vertex u of some cycles (belonging to G')
consists of hanging paths of lengths 2 and possibly one pendant edge, all of them
attached at w. In addition, any two hanging paths of length 2 are attached at the
same vertez.

Proof. Let T be a tree attached at the vertex u. Assume that v is a vertex of T'
of degree at least 3 being at the largest distance from u. Then all hanging paths at
v, but possibly one, have an even length (otherwise, G has no perfect matchings).
Then we can substitute any hanging path of length ¢ (> 3), by two hanging paths
attached also at v whose lengths are 2 and ¢ — 2, to get a graph G € C(2m, k). But
then p(G) > p(G), a contradiction (by Lemma 2.2). Therefore, we can assume that
all paths but possibly one are of length 2, while the remaining (if any) of length
1. Suppose now that the distance between u and v is greater than 1. If 2, > z,,
let vv’ be an edge of one of the aforementioned hanging paths of length 2, and let
G = G —v'v+v'u. Otherwise, if 2, < x, let uu’ be an edge of the cycle which does
not belong to M, and let G = G — w/u + vw/v. Clearly, in both cases G € C(2m, k),
and by Lemma 2.1, p(G) > p(é’), a contradiction. So v = u, and the proof of
the first claim follows. To prove the second claim, assume on the contrary, that
vertices u; and us, in the role of u, have attached hanging paths P; = wujviws
and P, = usvews, respectively. Then uiv; and usve are not in M. Without loss of
generality, let v, < z,, and let G = G — viuy + vius. Then G € C(2m, k), and by
Lemma 2.1, p(G) > p(G), a contradiction. This completes the proof. O

Let T; = vovswivg (i = 1,2,...,k) be a triangle in G. Recall first that for
each 7 at most one edge is attached at v;, or w;. We classify the T;’s as follows:
type-1: v; and w; have no pendant edges attached;
type-2: both, v; and w;, have just one pendant edge attached;
type-3: either v;, or w;, has just one pendant edge attached.

Lemma 3.5. Any hanging path of length 2 (in G‘) is attached to vy. Moreover, any
triangle T; is of type-1 or type-2.

Proof. Assume, on the contrary, that there exists a path P = vyvw attached at
vertex v1 of T7. Then vw € M, and viv € M. Consider next a triangle T (recall
k> 2). If 2y, > 2y, let G = G — vy +vvg. Then G € C(2m, k), and we are done
(by Lemma 2.1). So let x,, < ,,. If both edges vov2 and vows do not belong to
M, consider G = G — {v2v0, wavp } + {v2v1, wav1 }. But then G € C(2m, k), and by
Lemma 2.1, p(G) > p(G), a contradiction. So let, say vowy € M. But then Ty must
be of type-3 (w2 has no pendant edges attached, while vo must have a pendant
edge attached). Having in mind Lemma 3.4, we easily deduce that G=H-L, (in
the notation used in Lemma 2.5). But this is a contradiction (due to Lemma 2.5).
So the first claim is proved. To prove the second claim, we only need to reproduce
the last arguments from the proof of the first claim. This completes the proof. O

By Lemmas 3.1-3.6 it follows that G must be one of the graphs G(m, k,1),
for some . To resolve this situation, we prove the following lemma:
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Lemma 3.6. Let m >3 and k > 2. Then
p(G(m, k,i+1)) < p(G(m, k,1)),

where i =0,1,...,k— 1.

Proof. Let H = G(m,k,i+1) and H = G(m, k,i). Note that H' can be obtained
from H as follows: two hanging edges attached at the triangle T;4; of type-2 are
deleted (say sp and tq, where for short, s = v;41 and t = w;y; are the vertices of
T;+1), and a hanging path of length 2 is attached at vy (by inserting edges vop and
pq)-

Recall next that

2T A(K)z

Rz K) = —g— (2 € R"\{0})

z
is the Rayleigh’s quotient for a graph K. Then p(K) < R(z; K), where z runs over
the sphere ||z|| = 1; the equality holds if and only if z is an eigenvector of K (see,
for example, [9, pp. 11-12]).

Next, assume that K = H, and that x = (21,...,7,) is the Perron vector
of H. Bearing in mind the above facts we have:

p(H') = p(H) > R(x; H') = R(x; H).

By symmetry, and for simplicity, let z; = 2 = a, 2, = 24 = b and z,, = c.
Therefore we have:

R(x; H') — R(x; H) = 2[(b* + bc) — 2ab).

The latter expression is non-negative if b+ ¢ > 2a. Since p(H)a = a + b+ ¢ (the
eigenvalue equation at s or ¢ in H), we are done provided p(H) > 3.

Consider now any graph G € C(2m, k) with m > 3 and k > 2. It is easy
to see that G(6,2,2) is its induced subgraph. By direct calculations, we obtain
p(G(6,2,2) > 3.03840. So, by Lemma 2.3, p(G(m, k, i) > 3, as required. Therefore,
the proof follows. O

REMARK 3.1. When m < 3, we can use newGRAPH! to show that G(m, k,0) is the
unique graph with the largest spectral radius in C(2m, k), except for m = 3 and k = 1.

Proof of Theorem 3.1. So far, by Lemmas 3.1-3.5, we have proved that G =
G(m, k, 1) for some i. Next, by Lemma 3.6, G = G(2m, k, 0), if k > 2. This completes
the proof. 0

For k < 2 the the corresponding classes C(2m, k) are the sets of all trees

(k = 0) and unicyclic graphs (k = 1). This cases are covered by the following
results from the literature:

Theorem 3.2 ([4, 18]). Let T be a tree in C(2m,0). Then p(T) < p(G(m,0,0))
and the equality holds if and only if T = G(m,0,0).

'newGRAPH is available at the following address: http://www.mi.sanu.ac.rs/newgraph/
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Theorem 3.3 ([5]). Let U be a unicyclic graph in C(2m,1), with m > 4. Then
p(U) < p(G(m,1,0)) and the equality holds if and only if U = G(m, 1,0).

Finally, observe that G(m,k — 1,0) is a proper subgraph of G(m,k,0). By
Lemma 2.3, we have p(G(m,0,0)) < p(G(m,1,0)) < --- < p(G(m,m — 1,0)). So,

we also have:

Theorem 3.4. The graph G(2m, m — 1,0) has mazximal spectral radius in the set
of all cactuses on 2m wvertices having perfect matchings.
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