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GROWTH OF MEROMORPHIC SOLUTIONS OF SOME

DIFFERENCE EQUATIONS

Xiu-Min Zheng, Zong-Xuan Chen, Jin Tu

We investigate higher order difference equations and obtain some results on

the growth of transcendental meromorphic solutions, which are complemen-

tary to the previous results. Examples are also given to show the sharpness

of these results. We also investigate the growth of transcendental entire solu-

tions of a homogeneous algebraic difference equation by using the difference

analogue of Wiman-Valiron Theory.

1. INTRODUCTION AND RESULTS

Throughout the paper, we use standard notations in the Nevanlinna theory
(see e.g. [11, 16, 23]). Let f(z) be a meromorphic function. Here and in the
following the word “meromorphic” means meromorphic in the whole complex plane.
We also use notations ρ(f) and µ(f) for the order and the lower order of f(z)
respectively. Moreover, we say that a meromorphic function g is small with respect
to f if T (r, g) = S(r, f), where S(r, f) = o(T (r, f)) outside a possible exceptional
set of finite logarithmic measure.

Recently, there has been an increasing interest in studying complex differences
and difference equations during the last decades, see for instance [1-5, 9-10, 14-15,
17, 19].

Laine, Rieppo and Silvennoinen [17] investigated several higher order
difference equations. In particular, they obtained the following result.

Theorem A. Suppose that f is a transcendental meromorphic solution of the equa-
tion

(1)
∑

{J}

αJ(z)

(

∏

j∈J

f(z + cj)

)

= f(p(z)),
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where {J} is a collection of all non-empty subsets of {1, 2, · · · , n}, cj’s are distinct
complex constants and p(z) is a polynomial of degree k ≥ 2. Moreover, we assume
that the coefficients αJ (z) are small functions relative to f and that n ≥ k. Then

T (r, f) = O((log r)α+ε),

where α =
logn

log k
.

A natural question can be posed here: What can be said about the case k = 1,
which is not discussed in Theorem A. In the following, we consider the growth of
meromorphic solutions of a difference equation more general than (1), when k = 1.

Theorem 1. Suppose that f is a transcendental meromorphic solution of the

equation

(2)
∑

{J}

αJ(z)

(

∏

j∈J

f(z + cj)

)

= Q(z, f(p(z))),

where {J} is a collection of all non-empty subsets of {1, 2, . . . , n}, cj (j = 1, . . . , n)
are distinct complex constants, p(z) = az + b, a, b ∈ C and Q(z, u) is a rational
function in u of deguQ = d (> 0). We also suppose that all the coefficients of (2)
are small functions relative to f.

(i) If 0 < |a| < 1, d ≥ n, we have

(3) µ(f) ≥
log d− log n

− log |a|
.

(ii) If |a| > 1, we have d ≤ n and

(4) ρ(f) ≤
log n− log d

log |a|
.

(iii) If |a| = 1, d > n, then we have ρ(f) = µ(f) =∞.

Theorem A can also be generalized into Theorem 2, concerning (2) instead
of (1).

Theorem 2. Suppose that f is a transcendental meromorphic solution of the

equation (2), where {J}, cj’s are the same as in Theorem 1, p(z) = pkz
k + · · · +

p1z + p0 (p0, p1, . . . , pk ∈ C) of degree k ≥ 2, and Q(z, u) is a rational function in
u of deguQ = d (> 0). We also suppose that all the coefficients of (2) are small
functions relative to f. Then dk ≤ n, and

T (r, f) = O((log r)α+ε),

where α =
logn− log d

log k
, ε > 0.
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Remark 1. Clearly, f satisfies µ(f) = ρ(f) = 0.

The following examples show that both (3) and (4) in Theorem 1 are sharp,
i.e. “≥” and “≤” in (3) and (4) respectively cannot be replaced by “>”, “<” or
“=”.

Example 1. A function f(z) = ez satisfies

f(z + c)f(z − c) + f(z + c) + f(z − c) =

(

f
(1

2
z
)

)4

+ (ec + e
−c)

(

f
(1

2
z
)

)2

,

where c is any nonzero complex constant. Clearly, we have

µ(f) = ρ(f) = 1 =
log d− logn

− log |a|
,

where n = 2 < 4 = d, a =
1

2
< 1. This example shows that the equality in (3) can be

arrived.

Example 2. A function f(z) = ez2

satisfies

f(z + c) + f(z − c) = e
c2 (

e
2zc + e

−2zc)
(

f
(1

2
z
)

)4

,

where c, n, d, a are the same as in Example 1. Moreover, we note that the coefficients e2zc

and e−2zc are small functions relative to ez2

. Clearly, we have

µ(f) = ρ(f) = 2 > 1 =
log d− logn

− log |a|
,

which shows that the inequality in (3) may hold.

Example 3. A function f(z) = ez satisfies

f(z + c)f(z − c)f(z + 2c)f(z − 2c) + f(z + c)f(z − c) = (f(2z))2 + f(2z),

where c is any nonzero complex constant. Clearly, we have

µ(f) = ρ(f) = 1 =
logn− log d

log |a|
,

where n = 4 > 2 = d, a = 2 > 1. This example shows that the equality in (4) can be

arrived.

Example 4. A function f(z) = ez2

satisfies

e
−60c2

f(z + c)f(z − c)f(z + 2c)f(z − 2c)f(z + 3c)f(z − 3c)f(z + 4c)f(z − 4c)

+e
−(5/2)c2

f(z + c)f(z − c)f

(

z +
c

2

)

f

(

z −
c

2

)

= (f(2z))2 + f(2z),

where c, d, a are the same as in the above example, except for n = 10. Clearly, we have

µ(f) = ρ(f) = 2 < log2 5 =
logn− log d

log |a|
,
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which shows that the inequality in (4) may hold.

The following example illustrates the case (iii) of Theorem 1.

Example 5. A function f(z) = eez satisfies

f(z + c1) + f(z + c2) + f(z + c1)f(z + c2) = f(z + b) + f(z + b)2 + f(z + b)3,

where c1 =
c2

2
= b = log 2, a = 1, d = 3 > 2 = n. Clearly, ρ(f) = µ(f) = ∞ holds,

showing that Theorem 1 (iii) may hold.

In the following, we consider the growth of transcendental entire solutions of
some kind of homogeneous algebraic difference equation.

We introduce some notations here. Let c be a fixed non-zero complex number,
then the forward difference 4n

c f for each integer n ∈ N is defined in the standard
way [22, pp. 52] by

41
cf(z) = 4cf(z) = f(z + c)− f(z),

4n
c f(z) = 4c(4

n−1
c f(z)) = 4n−1

c f(z + c)−4n−1
c f(z), n ≥ 2.

In particular, if c = 1, we use the usual difference notation 4n
c f(z) = 4

nf(z).

An algebraic difference polynomial is a finite sum of difference products, that
is, an expression of the form

P (z, f) =
∑

λ∈I

Pλ(z)f
i0(4f)i1 · · · (4nf)in ,

where I is a finite set of multi-indices λ = (i0, i1, . . . , in), and Pλ(z), λ ∈ I are
meromorphic coefficients. We denote the degree and the weight of each monomial
Pλ(z)f

i0(4f)i1 · · · (4nf)in of P (z, f) by

d(λ) = i0 + i1 + · · ·+ in and w(λ) = i1 + 2i2 + · · ·+ nin

respectively. Then we denote the degree and the weight of P (z, f) by

d(P ) = max
λ∈I

{d(λ)} and w(P ) = max
λ∈I

{w(λ)}

respectively. In particular, if each monomial of P (z, f) is of the same degree, we
call P (z, f) is a homogeneous algebraic difference polynomial, and P (z, f) = 0 is a
homogeneous algebraic difference equation.

Recently, Chiang and Feng [5] investigated point-wise estimates for differ-
ence quotient and applied to difference equations, obtaining the following theorem.

Theorem B. Let Q0(z), Q1(z), . . . , Qn(z) be polynomials such that there exists an
integer `, 0 ≤ ` ≤ n so that

deg(Q`) > max
0≤j≤n

j 6=`

{deg(Qj)}
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holds. Suppose that f(z) is a meromorphic solution to the difference equation

(5) Qn(z)f(z + n) + · · ·+Q1(z)f(z + 1) +Q0(z)f(z) = 0,

then we have ρ(f) ≥ 1.

Chiang and Feng [4] also applied higher order difference quotient estimates
to difference equations and obtained the following theorem, which generalizes The-
orem B.

Theorem C. Let P0(z), P1(z), . . . , Pn(z) be polynomials such that

deg(P0) ≥ max
1≤`≤n

{deg(P`)}.

Suppose that f(z) is a meromorphic solution to the difference equation

(6) Pn(z)4
nf(z) + · · ·+ P1(z)4f(z) + P0(z)f(z) = 0,

then we have ρ(f) ≥ 1.

Remark 2. Note that equations (5) and (6) are both linear difference equations.

The following theorem is also from [4].

Theorem D. Suppose that f is a transcendental entire solution of the first order
algebraic difference equation

(7) P (z, f(z),4f(z)) = 0,

with polynomial coefficients, then ρ(f) > 0.

In what follows, we consider a homogenous algebraic difference equation,
which is more general than (5)-(7), by using the difference analogue of Wiman-
Valiron Theory in the entire solution case, and obtain the following results, which
generalizes Theorems C and D to some extent.

Theorem 3. Suppose that f is a transcendental entire solution of a homogeneous
algebraic difference equation of the form

(8) P (z, f) =
∑

λ∈I

Pλ(z)f
i0(4f)i1 · · · (4nf)in = 0,

with polynomial coefficients Pλ(z), λ ∈ I, where I is a finite set of multi-indices

λ = (i0, i1, . . . , in). If f satisfies ρ(f) < 1, then we have that

ρ(f) = χ,

where χ is a rational number which can be determined from a gradient of the cor-

responding Newton-Puisseux diagram for the linear differential equation

∑

λ∈I

Pλ(z)g
(w(λ)) = 0,



314 Xiu-Min Zheng, Zong-Xuan Chen, Jin Tu

where w(λ) = i1 + 2i2 + · · ·+ nin, λ ∈ I. In particular, χ > 0.

The following theorem is closely related in spirit to Theorem C in [13].

Theorem 4. Suppose that f is a transcendental entire solution of a homogeneous
algebraic difference equation of the form (8), with polynomial coefficients Pλ(z), λ ∈
I, where I is a finite set of multi-indices λ = (i0, i1, · · · , in). If w is a positive integer
such that

(9) w(λ) = i1 + 2i2 + · · ·+ nin = w

holds for all λ ∈ I, and

(10)
∑

λ∈I

Pλ(z) 6≡ 0,

then ρ(f) ≥ 1.

The following example illustrates Theorem 4.
Example 6. A function f(z) = zez satisfies the homogeneous algebraic difference equation

P1(z)f
44f42

f43
f + P2(z)f(4f)6 = 0,

where P1(z) = −((e− 1)z + e)5, P2(z) = z3
(

(e− 1)2z + 2e2 − 2e
) (

(e− 1)3z + 3e3 − 6e2

+3e
)

. Clearly, the assumptions (9) and (10) are satisfied and we have ρ(f) = 1, showing

that Theorem 4 may hold.

2. AUXILIARY RESULTS

The following Lemma 1, due to Valiron [21] and Mohon’ko [18], has
proved to be an extremely useful tool in the study of meromorphic solutions of
differential, difference and functional equations.

Lemma 1. [16, 18, 21] (Valiron-Mohon’ko). Let f(z) be a meromorphic
function. Then, for all irreducible rational functions in f,

R(z, f(z)) =

m
∑

i=0

ai(z)f(z)
i

n
∑

j=0

bj(z)f(z)j
,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f(z))
satisfies

T (r,R(z, f(z))) = dT (r, f) +O(Ψ(r)),

where d = max{m,n} and Ψ(r) = max
i,j
{T (r, ai), T (r, bj)}.
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Lemma 2. [17] Given distinct complex numbers c1, . . . , cn, a meromorphic func-
tion f, and small functions αJ (z) relative to f, we have

T

(

r,
∑

{J}

αJ(z)

(

∏

j∈J

f(z + cj)

)

)

≤

n
∑

k=1

T (r, f(z + ck)) + S(r, f),

where {J} is a collection of all non-empty subsets of {1, 2, . . . , n}.

Lemma 3. [1] Given ε > 0 and a meromorphic function f, the Nevanlinna cha-
racteristic function T satisfies

T (r, f(z ± 1)) ≤ (1 + ε)T (r + 1, f) +K,

for all r ≥
1

ε
and some constant K. Similarly, we have that

T (r, f(z ± c)) ≤ (1 + ε)T (r + |c|, f)

holds for ε > 0 and all r > r0, where r0 is some positive constant.

Lemma 4. [7] Let f(z) be a transcendental meromorphic function and p(z) =
pkz

k+pk−1z
k−1+ . . .+p1z+p0 be a complex polynomial of degree k > 0. For given

0 < δ < |pk|, let λ = |pk| + δ, µ = |pk| − δ, then for given ε > 0 and for r large
enough,

(1− ε)T (µrk, f) ≤ T (r, f ◦ p) ≤ (1 + ε)T (λrk, f).

Lemma 5. [8] Let g : (0,+∞)→ R, h : (0,+∞)→ R be nondecreasing functions.

If (i) g(r) ≤ h(r) outside of an exceptional set of finite linear measure, or (ii)
g(r) ≤ h(r), r 6∈ H ∪ (0, 1], where H ⊂ (1,∞) is a set of finite logarithmic measure,
then for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 6. [19] Let φ : (r0,∞)→ (1,∞), where r0 ≥ 1, be a monotone increasing
function. If for some real constant α > 1, there exists a real number K > 1 such
that φ(αr) ≥ Kφ(r), then

lim
r→∞

log φ(r)

log r
≥
logK

logα
.

Lemma 7. [6] Let ψ(r) be a function of r(r ≥ r0), positive and bounded in every
finite interval.

(i) Suppose that ψ(µrm) ≤ Aψ(r)+B (r ≥ r0), where µ(µ > 0), m(m > 1), A(A ≥

1), B are constants. Then ψ(r) = O((log r)α) with α =
logA

logm
, unless A = 1 and

B > 0; and if A = 1 and B > 0, then for any ε > 0, ψ(r) = O((log r)ε).

(ii) Suppose that (with the notation of (i)) ψ(µrm) ≥ Aψ(r) (r ≥ r0). Then for all

sufficiently large values of r, ψ(r) ≥ K(log r)α with α =
logA

logm
, for some positive

constant K.
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Lemma 8. [2] Let n ∈ N and f be transcendental and meromorphic of order less
than 1 in the plane. Then there exists an ε-set En such that 4

nf(z) ∼ f (n)(z), as

z →∞ in C\En, i.e.
4nf(z)

f (n)(z)
→ 1 as z →∞ in C\En.

Lemma 9. [16] Let f be a transcendental entire function, let 0 < δ <
1

4
and z be

such that |z| = r and that

|f(z)| > M(r, f)ν(r, f)−1/4+δ

holds, where ν(r, f) is the central index of f. Then there exists a set F ⊂ R+ of

finite logarithmic measure such that

f (k)(z)

f(z)
=

(

ν(r, f)

z

)k

(1 + o(1))

holds for all k ∈ N, r 6∈ F.

Lemma 10. [16] If f is a non-constant entire function of order ρ, then

ρ = lim
r→∞

log ν(r, f)

log r
,

where ν(r, f) is the cental index of f.

Remark 3. [12] Following Hayman [12, pp. 75-76], we define an ε-set E to be a countable

union of open discs not containing the origin and subtending angles at the origin whose

sum is finite. If E is an ε-set, then the set of r ≥ 1 for which the circle S(0, r) meets E

has finite logarithmic measure and hence zero logarithmic density, and for almost all real

θ the intersection of E with the ray arg z = θ is bounded.

3. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. (i) We may suppose that d > n, since the case d = n is
trivial.

Suppose that d1(z), d2(z), . . . , dν(z) are all coefficients of Q(z, f(p(z))). De-
note Ψ(r) = max{T (r, di)|i = 1, 2, . . . , ν}, and C = max{|c1|, |c2|, . . . , |cn|}. Apply-
ing Lemma 1 to the right-hand side of (2), we obtain by Lemmas 2 and 3 that

dT (r, f(p(z))) +O(Ψ(r)) = T (r,Q(z, f(p(z))))(11)

= T

(

r,
∑

{J}

αJ (z)

(

∏

j∈J

f(z + cj)

)

)

≤
n
∑

k=1

T (r, f(z + ck)) + S(r, f)

≤
(

1 +
ε

2

)

n
∑

k=1

T (r + C, f) + S(r, f) ≤ n
(

1 +
ε

2

)

T (βr, f) + S(r, f),
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for sufficiently large r and any given β > 1, ε > 0. By Lemma 4 and (11), we obtain
that for µ = |a| − δ(0 < δ < |a|, 0 < µ < 1) and sufficiently large r,

d(1− ε)T (µr, f) ≤ n(1 + ε)T (βr, f)

outside of a possible exceptional set of finite linear measure. By Lemma 5, we
obtain that for any given γ > 1 and sufficiently large r,

d(1− ε)T (µr, f) ≤ n(1 + ε)T (βγr, f),

that is
d(1− ε)

n(1 + ε)
T (r, f) ≤ T

(

βγ

µ
r, f

)

.

Since β, γ > 1, µ < 1 and d > n, we note that
βγ

µ
> 1 and

d(1− ε)

n(1 + ε)
> 1 for

sufficiently small ε. Then by Lemma 6, we obtain that

µ(f) ≥
log d(1− ε)− log n(1 + ε)

log βγ − log µ
.

Letting ε→ 0, δ → 0, and β, γ → 1, we obtain that

µ(f) ≥
log d− log n

− log |a|
.

(ii) Similarly as in (i), we obtain that

d(1− ε)T (µr, f) ≤ dT (r, f(p(z))) ≤ n
(

1 +
ε

2

)

T (r + C, f) + S(r, f),

where µ = |a|−δ (δ > 0 is chosen to be such that µ > 1), and r is sufficiently large.

We can select sufficiently small ε > 0 such that
1

µ
+ ε < 1. Therefore, we have

T (r, f) ≤
n(1 + ε)

d(1− ε)
T

(

r + C

µ
, f

)

≤
n(1 + ε)

d(1− ε)
T

(

( 1

µ
+ ε
)

r, f

)

outside of a possible exceptional set of finite logarithmic measure. We immediately
note that d ≤ n. Applying Lemma 3.1 in [9], where we use Lemma 4 to get rid of
the possible exceptional set of finite logarithmic measure, we obtain that

ρ(f) ≤
log n(1 + ε)− log d(1− ε)

− log
(

1

µ
+ ε
) .

Letting ε→ 0, δ → 0, we obtain that

ρ(f) ≤
log n− log d

log |a|
.
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(iii) The case |a| = 1, d > n follows the case 0 < |a| < 1, d > n in (i),
word by word. In fact, when |a| = 1, d > n, we can also set µ = |a| − δ = 1 − δ

(0 < δ < 1, 0 < µ < 1), similarly as in (i). Then we have

µ(f) ≥
log d− log n

− log |a|
.

Since |a| = 1, we obtain that ρ(f) = µ(f) =∞. ¤

Proof of Theorem 2. By Lemmas 1-3, we obtain (11) here, where Ψ(r), C, β
and ε are defined as in the proof of Theorem 1. By Lemma 4, we obtain that for
µ = |pk| − δ(> 0) and sufficiently large r,

d(1− ε)T (µrk, f) ≤ n(1 + ε)T (βr, f)

outside of a possible exceptional set of finite linear measure. By Lemma 5, we
obtain that for any given γ > 1 and sufficiently large r,

d(1− ε)T (µrk, f) ≤ n(1 + ε)T (βγr, f),

that is

T

(

µ

(βγ)k
tk, f

)

≤
n(1 + ε)

d(1− ε)
T (t, f),

where t = βγr. We immediately note that d ≤ n, since k ≥ 2. It follows by Lemma
7 that

T (r, f) = O((log r)α1),

where α1 =
log n(1 + ε)− log d(1− ε)

log k
=

log n− log d

log k
+ε1.Denoting α =

logn− log d

log k
,

we have that
T (r, f) = O((log r)α+ε1).

Finally, we affirm that dk ≤ n. Otherwise, the contrary fact that dk > n results in
α < 1, then we have α+ε1 = α1 < 1 for sufficiently small ε1 > 0, which contradicts
with the transcendency of f. ¤

4. PROOFS OF THEOREMS 3 AND 4

Proof of Theorem 3. Since the equation (8) is homogeneous, say of degree d, we
may divide it by fd and have that

(12)
∑

λ∈I

Pλ(z)

(

4f

f

)i1

· · ·

(

4nf

f

)in

= 0.

By Lemma 8 and the assumption that ρ(f) < 1, there exists an ε-set E such that
as z →∞, z ∈ C\E,

(13)
4kf(z)

f(z)
∼
f (k)(z)

f(z)
, k = 1, . . . , n.
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Denoting
F1 = {r = |z| ∈ (1,∞) : z ∈ E},

we have by REMARK 3 that F1 is of finite logarithmic measure. By Lemma 9, we
have that

(14)
f (k)(z)

f(z)
=

(

ν(r, f)

z

)k

(1 + o(1)), k = 1, . . . , n,

for all large z satisfying |z| = r 6∈ F2 and |f(z)| = M(r, f), where F2 ⊂ R+ is of
finite logarithmic measure and ν(r, f) is the central index of f. By (13) and (14),
we have that

(15)
4kf(z)

f(z)
=
f (k)(z)

f(z)
(1 + o(1)) =

(

ν(r, f)

z

)k

(1 + o(1)), k = 1, . . . , n,

for all large z satisfying |z| = r 6∈ [0, 1] ∪ F1 ∪ F2 and |f(z)| = M(r, f). Applying
(15) to (12), we have that

(16)
∑

λ∈I

Aλz
pλ

(

ν(r, f)

z

)w(λ)

(1 + o(1)) = 0,

where Aλ are the leading coefficients of Pλ(z), pλ are the degrees of Pλ(z), and
w(λ) = i1+2i2+ · · ·+nin respectively. Since solutions of an algebraic equation are
continuous functions of coefficients, ν(r, f) approximately equals to the solution of

(17)
∑

λ∈I

Aλz
pλ−w(λ)ν(r, f)w(λ) = 0.

By Valiron [20, p.108 and Appendix A], we have that

(18) ν(r, f) ∼ Brχ,

for all sufficiently large r 6∈ [0, 1] ∪ F1 ∪ F2, where B is a constant and χ is a
fixed rational number which can only take values equal to the gradients of the
corresponding Newton-Puisseux diagram for the linear differential equation

(19)
∑

λ∈I

Pλ(z)g
(w(λ)) = 0.

In fact, assuming that g is a transcendental entire solution of (19), we may apply
Lemma 9 to (19) and have that ν(r, g) satisfies

(20)
∑

λ∈I

Aλz
pλ

(

ν(r, g)

z

)w(λ)

(1 + o(1)) = 0, r 6∈ F3,

where F3 ⊂ R+ is of finite logarithmic measure and ν(r, g) is the central index of g.
Similar to (16), (20) means that ν(r, g) also approximately equals to the solution
of (17). By Valiron [20, p.108 and Appendix A] again, we have that

ν(r, g) ∼ B1r
χ1 , r 6∈ F3,
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where B1 is a constant and χ1 is a fixed rational number which can only take
values equal to the gradients of the corresponding Newton-Puisseux diagram for
(19). Thus, the possible values of χ are the same as χ1. Finally, by (18) and
Lemmas 5 and 10, we have that ρ(f) = χ. In particular, χ > 0. ¤

Proof of Theorem 4. Assume to the contrary that ρ(f) < 1. Since the equation
(8) is homogeneous, say of degree d, we may rewrite it in the form

(21)
∑

λ∈I

Pλ(z)
f i0(4f)i1 · · · (4nf)in

fd
= 0.

Since ρ(f) < 1, we have that (13)-(15) hold as in the proof of Theorem 3. Applying
(15) to (21), we have by (9) that

(22)

(

∑

λ∈I

Pλ(z)

)(

ν(r, f)

z

)w

(1 + o(1)) = 0,

where |z| = r 6∈ [0, 1] ∪ F1 ∪ F2 and z is chosen such that |f(z)| = M(r, f), and
where F1, F2 are the same as in the proof of Theorem 3. It follows by (10) and (22)
that ν(r, f) ≡ 0, which contradicts with the transcendency of f. Hence, ρ(f) ≥ 1.¤
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