APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS

available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 4 (2010), 278–283.

doi:10.2298/AADM100605021S

GROUPIES IN RANDOM BIPARTITE GRAPHS

Yilun Shang

A vertex v of a graph G is called a groupie if its degree is not less than the average of the degrees of its neighbors. In this paper we study the influence of bipartition (B_1, B_2) on groupies in random bipartite graphs $G(B_1, B_2, p)$ with both fixed p and p tending to zero.

1. INTRODUCTION

A vertex of a graph G is called a groupie if its degree is not less than the arithmetic mean of the degrees of its neighbors. Some results concerning groupies have been obtained in deterministic graph theory; see e.g. [1, 5, 6]. Recently, FER-NANDEZ DE LA VEGA and TUZA [3] investigate groupies in Erdős-Rényi random graphs G(n, p) and show that the proportion of the vertices which are groupies is almost always very near to 1/2.

In this letter, we follow the idea of [3] and deal with groupies in random bipartite graph $G(B_1, B_2, p)$. Our results indicate the proportion of groupies depends on the bipartition (B_1, B_2) . First, we give a formal definition for $G(B_1, B_2, p)$ as follows.

Definition 1. A random bipartite graph $G(B_1, B_2, p)$ with vertex set $[n] = \{1, 2, ..., n\}$ is defined by partitioning the vertex set into two classes B_1 and B_2 and taking $p_{ij} = 0$ if $i, j \in B_1$ or $i, j \in B_2$, while $p_{ij} = p$ if $i \in B_1$ and $j \in B_2$ or vice versa. Here, independently for each pair $i, j \in [n]$, we add the edge ij to the random graph with probability p_{ij} .

By convention, for a set A, let |A| denote the number of elements in A. We denote by Bin(m,q) the binomial distribution with parameters m and q.

²⁰⁰⁰ Mathematics Subject Classification. 05C80.

Keywords and Phrases. Groupie, random graph, bipartite graph, average degree.

2. MAIN RESULTS

Theorem 1. Suppose that $0 is fixed. Let N denote the number of groupies in the random bipartite graph <math>G(B_1, B_2, p)$. For i = 1, 2, let $N(B_i)$ denote the number of groupies in B_i . Then the following is true

(i) Assume $|B_1| = an$ and $|B_2| = (1 - a)n$ for some $a \in (0, 1)$. If a = 1/2, then

$$P\left(\frac{n}{4} - \omega(n)\sqrt{n} \le N(B_i) \le \frac{n}{4} + \omega(n)\sqrt{n}, \text{ for } i = 1, 2\right) \to 1$$

as $n \to \infty$, where $\omega(n) = \Omega(\ln n)$. If a < 1/2, then

$$P\left(\frac{an}{2} - \omega(n)\sqrt{n} \le N(B_1) \text{ and } N(B_2) \le \frac{an}{2} + \omega(n)\sqrt{n}\right) \to 1$$

as $n \to \infty$, where $\omega(n)$ is defined as above.

(ii) Assume $|B_1| = b_n n$ and $|B_2| = (1 - b_n)n$ with $\ln n/n \ll 1 - b_n \to 0$, as $n \to \infty$. Then

$$P(N = N(B_2) = |B_2|) \to 1$$

as $n \to \infty$.

Proof. For (i) we take vertex $x \in B_1$ and let d_x denote the degree of x in $G(B_1, B_2, p)$. Denote by S_x the sum of the degrees of the neighbors of x. Assuming that x has degree d_x , we have $S_x \sim d_x + \text{Bin}((an-1)d_x, p)$, where \sim represents identity of distribution. For any d_x , the expectation of S_x is $E S_x = d_x[1+(an-1)p]$. Since $S_x - d_x \sim \text{Bin}((an-1)d_x, p)$ and $(an-1)d_x \ge a(1-a)n^2p/2$ when $(1-a)np/2 \le d_x \le 3(1-a)np/2$, by using a large deviation bound (see [4] pp.29, Remark 2.9), we get

(1)
$$P\left(\left|S_x - d_x anp\right| \le 10n\sqrt{\ln n} \mid \frac{(1-a)np}{2} \le d_x \le \frac{3(1-a)np}{2}\right) \ge 1 - e^{-2\ln n}$$

= $1 - o(n^{-1}).$

Dividing by d_x , we have for some absolute constant $C_1 > 20/[(1-a)p]$

$$P\left(\left|\frac{S_x}{d_x} - anp\right| \le C_1 \sqrt{\ln n} \ \left| \ \frac{(1-a)np}{2} \le d_x \le \frac{3(1-a)np}{2} \right) = 1 - o(n^{-1}).$$

Note that $d_x \sim Bin((1-a)n, p)$ and a concentration inequality (see [4] pp.27, Corollary 2.3) yields

$$P\left(\left|d_x - (1-a)np\right| \le \frac{(1-a)np}{2}\right) = 1 - o(n^{-1}).$$

Hence, recalling the total probability formula we obtain

(2)
$$P\left(\left|\frac{S_x}{d_x} - anp\right| \le C_1 \sqrt{\ln n}, \text{ for every } x \in B_1\right) = 1 - o(1).$$

Likewise,

(3)
$$P\left(\left|\frac{S_x}{d_x} - (1-a)np\right| \le C_1\sqrt{\ln n}, \text{ for every } x \in B_2\right) = 1 - o(1).$$

We treat the following two scenarios separately.

Case 1. a = 1/2. For i = 1, 2, let $N^+(B_i)$ (resp. $N^-(B_i)$) denote the number of vertices in B_i , whose degrees are at least $np/2 + C_1\sqrt{\ln n}$ (resp. at most $np/2 - C_1\sqrt{\ln n}$). From (2), (3) and the definition of a groupie, it follows that

$$P\left(N^+(B_i) \le N(B_i) \le \frac{n}{2} - N^-(B_i), \text{ for } i = 1, 2\right) = 1 - o(1).$$

Therefore, it suffices to prove

(4)
$$P\left(N^+(B_1) \ge \frac{n}{4} - \omega(n)\sqrt{n}\right) = 1 - o(1)$$

and the analogous statements for $N^{-}(B_1)$, $N^{+}(B_2)$ and $N^{-}(B_2)$.

Note that $N^+(B_1) = \sum_{x \in B_1} \mathbb{1}_{[d_x \ge np/2 + C_1 \sqrt{\ln n}]}$. Since $\operatorname{Bin}(n/2, p)$ is flat about

its maximum, the expectation of $N^+(B_1)$ is seen to be given by

$$EN^+(B_1) = \frac{n}{2}P\left(d_x \ge \frac{np}{2} + C_1\sqrt{\ln n}\right) = \frac{n}{4} - \Theta(\sqrt{n\ln n}).$$

Arguing as in [3], we derive $Var(N^+(B_1)) \leq C_2 n$ for some absolute constant C_2 and then (4) follows by applying the Chebyshev inequality. Alternatively, we may deduce (4) by the bounded difference inequality (see [2] pp.24, Theorem 1.20) without estimating the variance.

Case 2. a < 1/2. Let $\tilde{N}^+(B_1)$ denote the number of vertices in B_1 with degrees at least $(1-a)np + C_1\sqrt{\ln n}$. Hence $\tilde{N}^+(B_1) = \sum_{x \in B_1} 1_{[d_x \ge (1-a)np + C_1\sqrt{\ln n}]}$, and reasoning similarly as in Case 1, we get

(5)
$$P\left(N(B_1) \ge \frac{an}{2} - \omega(n)\sqrt{n}\right) \ge P\left(\tilde{N}^+(B_1) \ge \frac{an}{2} - \omega(n)\sqrt{n}\right) = 1 - o(1).$$

Next, let $\tilde{N}^-(B_2)$ denote the number of vertices in B_2 with degrees at most $anp - C_1 \sqrt{\ln n}$. Similarly, we have

(6)
$$P\left(N(B_2) \le \frac{an}{2} + \omega(n)\sqrt{n}\right) \ge P\left(\frac{n}{2} - \tilde{N}^-(B_2) \le \frac{an}{2} + \omega(n)\sqrt{n}\right) = 1 - o(1).$$

We then conclude the proof in this case by combining (5) and (6). It is worth noting that the upper bound on $N(B_1)$ and the lower bound on $N(B_2)$ can not be obtained by using the above techniques.

For (ii) we need to prove the following two statements:

- (a) Almost surely none of the vertices in B_1 is a groupie; and
- (b) Almost surely every vertex in B_2 is a groupie.

In what follows we prove (a) only, as (b) may be proved similarly.

Fix a vertex $x \in B_1$ and assume that x has degree d_x , we then have $S_x \sim d_x + Bin(b_nnd_x, p)$. For any d_x , the E $S_x = d_x(b_nnp+1)$. Since $S_x - d_x \sim Bin(b_nnd_x, p)$ and $b_nnd_x \ge b_n(1-b_n)n^2p/2$ when $(1-b_n)np/2 \le d_x \le 3(1-b_n)np/2$, as in situation (i) we obtain

$$P\left(\left|S_x - b_n n d_x p\right| \le 10n\sqrt{\ln n} \mid \frac{(1 - b_n)np}{2} \le d_x \le \frac{3(1 - b_n)np}{2}\right) = 1 - o(n^{-1}).$$

Dividing by d_x we have

(7)
$$P\left(\left|\frac{S_x}{d_x} - b_n np\right| \le \frac{20\sqrt{\ln n}}{(1-b_n)p} \left| \frac{(1-b_n)np}{2} \le d_x \le \frac{3(1-b_n)np}{2} \right) = 1 - o(n^{-1}).$$

Since $d_x \sim Bin((1-b_n)n, p)$ and $ln n/n \ll 1-b_n$, we get

(8)
$$P\left(\left|d_x - (1 - b_n)np\right| \le \frac{(1 - b_n)np}{2}\right) = 1 - o(n^{-1})$$

by exploiting a concentration inequality (see [4] pp.27, Corollary 2.3). From (7) and (8), it follows

(9)
$$P\left(\left|\frac{S_x}{d_x} - b_n np\right| \le \frac{20\sqrt{\ln n}}{(1 - b_n)p}\right) = 1 - o(n^{-1})$$

We have

(10)
$$P\left(d_x \ge b_n np - \frac{20\sqrt{\ln n}}{(1-b_n)p}\right) \le P\left(d_x - (1-b_n)np \ge \frac{3}{2}\sqrt{(1-b_n)n\ln n}\right) \le e^{-(3/2)\cdot\ln n} = o(n^{-1})$$

where the second inequality follows by an application of Theorem 2.1 of [4] (pp.26). Consequently, (9) and (10) yield

$$P(x \text{ is a groupie}) = o(n^{-1}),$$

which clearly concludes the proof of statement (a).

We remark that the assumption $\ln n/n \ll 1 - b_n$ given in Theorem 1 Case (ii) is not very stringent, since we must have $1 - b_n = \Omega(n^{-1})$ in our situation. The following theorem can be proved similarly.

Theorem 2. Suppose that $np^2 \gg \ln n$, as $n \to \infty$. Let N denote the number of groupies in the random bipartite graph $G(B_1, B_2, p)$. For i = 1, 2, let $N(B_i)$ denote the number of groupies in B_i . Then the following is true:

(i) Assume $|B_1| = an \text{ and } |B_2| = (1-a)n$ for some $a \in (0,1)$. If a = 1/2, then

$$P\left(\frac{n(1-\varepsilon(n))}{4} \le N(B_i) \le \frac{n(1+\varepsilon(n))}{4}, \text{ for } i=1,2\right) \to 1$$

as $n \to \infty$, where $\varepsilon(n)$ is any function tending to zero sufficient slowly. If a < 1/2, then

$$P\left(\frac{an(1-\varepsilon(n))}{2} \le N(B_1) \text{ and } N(B_2) \le \frac{an(1+\varepsilon(n))}{2}\right) \to 1$$

as $n \to \infty$, where $\varepsilon(n)$ is defined as above.

(ii) Assume $|B_1| = b_n n$ and $|B_2| = (1 - b_n)n$ with $1 - b_n = \Omega(1/\sqrt{\ln n})$ and $b_n \to 1$, as $n \to \infty$. Then

$$P(N = N(B_2) = |B_2|) \to 1$$

as $n \to \infty$.

Proof. We sketch the proof as follows. For (i) the inequality (1) holds following the same reasoning as in the proof of Theorem 1. Therefore, we get

$$P\left(\left|\frac{S_x}{d_x} - anp\right| \le \frac{20\sqrt{\ln n}}{(1-a)p} \mid \frac{(1-a)np}{2} \le d_x \le \frac{3(1-a)np}{2}\right) = 1 - o(n^{-1}).$$

The following two large deviation statements hold similarly:

$$P\left(\left|\frac{S_x}{d_x} - anp\right| \le \frac{20\sqrt{\ln n}}{(1-a)p}, \text{ for every } x \in B_1\right) = 1 - o(1),$$

and

$$P\left(\left|\frac{S_x}{d_x} - (1-a)np\right| \le \frac{20\sqrt{\ln n}}{(1-a)p}, \text{ for every } x \in B_2\right) = 1 - o(1).$$

Case 1. a = 1/2. For i = 1, 2, let $N^+(B_i)$ (resp. $N^-(B_i)$) denote the number of vertices in B_i , whose degrees are at least $np/2 + 20\sqrt{\ln n}/[(1-a)p]$ (resp. at most $np/2 - 20\sqrt{\ln n}/[(1-a)p]$). As in the proof of Theorem 1, in the sequel we shall prove that

(11)
$$P\left(N^+(B_1) \ge \frac{n(1-\varepsilon(n))}{4}\right) = 1 - o(1).$$

Note that $N^+(B_1) = \sum_{x \in B_1} \mathbb{1}_{[d_x \ge np/2 + 20\sqrt{\ln n}/[(1-a)p]]}$. Since $\operatorname{Bin}(n/2, p)$ is flat about its maximum, the expectation of $N^+(B_1)$ is given by

about its maximum, the expectation of
$$W^{-}(D_1)$$
 is given by

$$EN^{+}(B_{1}) = \frac{n}{2}P\left(d_{x} \ge \frac{np}{2} + \frac{20\sqrt{\ln n}}{(1-a)p}\right) = \frac{n}{4} - \Theta\left(\frac{\sqrt{n\ln n}}{p}\right).$$

By using the assumption $np^2 \gg \ln n$, we may also obtain $Var(N^+(B_1)) \le C_3 n$ for some absolute constant C_3 . Since $\varepsilon(n)$ is a function tending to zero sufficient slowly, we have $\sqrt{n \ln n}/p \ll \varepsilon n$ and $1/\varepsilon^2 n \to 0$, as $n \to \infty$. Combining these estimations, we get (11) by employing the Chebyshev inequality as in [3].

Case 2. a < 1/2. Let $\widetilde{N}^+(B_1)$ denote the number of vertices in B_1 with degrees at least $(1-a)np + 20\sqrt{\ln n}/[(1-a)p]$ and the proof follows similarly as before.

For (ii), note that our assumptions imply $\ln n/n \ll 1 - b_n \to 0$ as $n \to \infty$, and the corresponding proof in Theorem 1 holds verbatim.

REFERENCES

- E. BERTRAM, P. ERDŐS, P. HORÁK, J. ŠIRÁŇ, ZS. TUZA: Local and global average degree in graphs and multigraphs. J. Graph Theory, 18 (1994), 647–661.
- 2. B. BOLLOBÁS: Random Graphs. Cambridge University Press, Cambridge, 2001.
- 3. W. FERNANDEZ DE LA VEGA, ZS. TUZA: *Groupies in random graphs*. Information Processing Letters, **109** (2009), 339–340.
- 4. S. JANSON, T. ŁUCZAK, A. RUCIŃSKI: Random Graphs. Wiley, New York, 2000.
- 5. J. MACKEY: A lower bound for groupies in graphs. J. Graph Theory, **21** (1996), 323–326.
- S. POLJAK, T. SZABÓ, ZS. TUZA: Extremum and convergence of local average degrees in graphs. Congressus Numerantium, 112 (1995), 191–198.

Department of Mathematics, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai, China E-mail: shyl@sjtu.edu.cn (Received February 19, 2010) (Revised May 5, 2010)