Applicable Analysis and Discrete Mathematics
 available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 4 (2010), 278-283.

GROUPIES IN RANDOM BIPARTITE GRAPHS

Yilun Shang

A vertex v of a graph G is called a groupie if its degree is not less than the average of the degrees of its neighbors. In this paper we study the influence of bipartition $\left(B_{1}, B_{2}\right)$ on groupies in random bipartite graphs $G\left(B_{1}, B_{2}, p\right)$ with both fixed p and p tending to zero.

1. INTRODUCTION

A vertex of a graph G is called a groupie if its degree is not less than the arithmetic mean of the degrees of its neighbors. Some results concerning groupies have been obtained in deterministic graph theory; see e.g. $[\mathbf{1}, \mathbf{5}, \mathbf{6}]$. Recently, Fernandez de la Vega and Tuza [3] investigate groupies in Erdős-Rényi random graphs $G(n, p)$ and show that the proportion of the vertices which are groupies is almost always very near to $1 / 2$.

In this letter, we follow the idea of [3] and deal with groupies in random bipartite graph $G\left(B_{1}, B_{2}, p\right)$. Our results indicate the proportion of groupies depends on the bipartition $\left(B_{1}, B_{2}\right)$. First, we give a formal definition for $G\left(B_{1}, B_{2}, p\right)$ as follows.

Definition 1. A random bipartite graph $G\left(B_{1}, B_{2}, p\right)$ with vertex set $[n]=\{1,2, \ldots$, $n\}$ is defined by partitioning the vertex set into two classes B_{1} and B_{2} and taking $p_{i j}=0$ if $i, j \in B_{1}$ or $i, j \in B_{2}$, while $p_{i j}=p$ if $i \in B_{1}$ and $j \in B_{2}$ or vice versa. Here, independently for each pair $i, j \in[n]$, we add the edge $i j$ to the random graph with probability $p_{i j}$.

By convention, for a set A, let $|A|$ denote the number of elements in A. We denote by $\operatorname{Bin}(m, q)$ the binomial distribution with parameters m and q.

[^0]
2. MAIN RESULTS

Theorem 1. Suppose that $0<p<1$ is fixed. Let N denote the number of groupies in the random bipartite graph $G\left(B_{1}, B_{2}, p\right)$. For $i=1,2$, let $N\left(B_{i}\right)$ denote the number of groupies in B_{i}. Then the following is true
(i) Assume $\left|B_{1}\right|=$ an and $\left|B_{2}\right|=(1-a) n$ for some $a \in(0,1)$. If $a=1 / 2$, then

$$
P\left(\frac{n}{4}-\omega(n) \sqrt{n} \leq N\left(B_{i}\right) \leq \frac{n}{4}+\omega(n) \sqrt{n}, \text { for } i=1,2\right) \rightarrow 1
$$

as $n \rightarrow \infty$, where $\omega(n)=\Omega(\ln n)$. If $a<1 / 2$, then

$$
P\left(\frac{a n}{2}-\omega(n) \sqrt{n} \leq N\left(B_{1}\right) \text { and } N\left(B_{2}\right) \leq \frac{a n}{2}+\omega(n) \sqrt{n}\right) \rightarrow 1
$$

as $n \rightarrow \infty$, where $\omega(n)$ is defined as above.
(ii) Assume $\left|B_{1}\right|=b_{n} n$ and $\left|B_{2}\right|=\left(1-b_{n}\right) n$ with $\ln n / n \ll 1-b_{n} \rightarrow 0$, as $n \rightarrow \infty$. Then

$$
P\left(N=N\left(B_{2}\right)=\left|B_{2}\right|\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof. For (i) we take vertex $x \in B_{1}$ and let d_{x} denote the degree of x in $G\left(B_{1}, B_{2}, p\right)$. Denote by S_{x} the sum of the degrees of the neighbors of x. Assuming that x has degree d_{x}, we have $S_{x} \sim d_{x}+\operatorname{Bin}\left((a n-1) d_{x}, p\right)$, where \sim represents identity of distribution. For any d_{x}, the expectation of S_{x} is $\mathrm{E} S_{x}=$ $d_{x}[1+(a n-1) p]$. Since $S_{x}-d_{x} \sim \operatorname{Bin}\left((a n-1) d_{x}, p\right)$ and $(a n-1) d_{x} \geq a(1-a) n^{2} p / 2$ when $(1-a) n p / 2 \leq d_{x} \leq 3(1-a) n p / 2$, by using a large deviation bound (see [4] pp.29, Remark 2.9), we get
(1) $P\left(\left|S_{x}-d_{x} a n p\right| \leq 10 n \sqrt{\ln n} \left\lvert\, \frac{(1-a) n p}{2} \leq d_{x} \leq \frac{3(1-a) n p}{2}\right.\right) \geq 1-e^{-2 \ln n}$

$$
=1-o\left(n^{-1}\right)
$$

Dividing by d_{x}, we have for some absolute constant $C_{1}>20 /[(1-a) p]$

$$
P\left(\left.\left|\frac{S_{x}}{d_{x}}-a n p\right| \leq C_{1} \sqrt{\ln n} \right\rvert\, \frac{(1-a) n p}{2} \leq d_{x} \leq \frac{3(1-a) n p}{2}\right)=1-o\left(n^{-1}\right)
$$

Note that $d_{x} \sim \operatorname{Bin}((1-a) n, p)$ and a concentration inequality (see [4] pp.27, Corollary 2.3) yields

$$
P\left(\left|d_{x}-(1-a) n p\right| \leq \frac{(1-a) n p}{2}\right)=1-o\left(n^{-1}\right)
$$

Hence, recalling the total probability formula we obtain

$$
\begin{equation*}
P\left(\left|\frac{S_{x}}{d_{x}}-a n p\right| \leq C_{1} \sqrt{\ln n}, \text { for every } x \in B_{1}\right)=1-o(1) \tag{2}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
P\left(\left|\frac{S_{x}}{d_{x}}-(1-a) n p\right| \leq C_{1} \sqrt{\ln n}, \text { for every } x \in B_{2}\right)=1-o(1) \tag{3}
\end{equation*}
$$

We treat the following two scenarios separately.
Case 1. $a=1 / 2$. For $i=1,2$, let $N^{+}\left(B_{i}\right)$ (resp. $\left.N^{-}\left(B_{i}\right)\right)$ denote the number of vertices in B_{i}, whose degrees are at least $n p / 2+C_{1} \sqrt{\ln n}$ (resp. at most $n p / 2-$ $C_{1} \sqrt{\ln n}$). From (2), (3) and the definition of a groupie, it follows that

$$
P\left(N^{+}\left(B_{i}\right) \leq N\left(B_{i}\right) \leq \frac{n}{2}-N^{-}\left(B_{i}\right), \text { for } i=1,2\right)=1-o(1) .
$$

Therefore, it suffices to prove

$$
\begin{equation*}
P\left(N^{+}\left(B_{1}\right) \geq \frac{n}{4}-\omega(n) \sqrt{n}\right)=1-o(1) \tag{4}
\end{equation*}
$$

and the analogous statements for $N^{-}\left(B_{1}\right), N^{+}\left(B_{2}\right)$ and $N^{-}\left(B_{2}\right)$.
Note that $N^{+}\left(B_{1}\right)=\sum_{x \in B_{1}} 1_{\left[d_{x} \geq n p / 2+C_{1} \sqrt{\ln n}\right]}$. Since $\operatorname{Bin}(n / 2, p)$ is flat about its maximum, the expectation of $N^{+}\left(B_{1}\right)$ is seen to be given by

$$
E N^{+}\left(B_{1}\right)=\frac{n}{2} P\left(d_{x} \geq \frac{n p}{2}+C_{1} \sqrt{\ln n}\right)=\frac{n}{4}-\Theta(\sqrt{n \ln n})
$$

Arguing as in [3], we derive $\operatorname{Var}\left(N^{+}\left(B_{1}\right)\right) \leq C_{2} n$ for some absolute constant C_{2} and then (4) follows by applying the Chebyshev inequality. Alternatively, we may deduce (4) by the bounded difference inequality (see [2] pp.24, Theorem 1.20) without estimating the variance.
Case 2. $a<1 / 2$. Let $\widetilde{N}^{+}\left(B_{1}\right)$ denote the number of vertices in B_{1} with degrees at least $(1-a) n p+C_{1} \sqrt{\ln n}$. Hence $\tilde{N}^{+}\left(B_{1}\right)=\sum_{x \in B_{1}} 1_{\left[d_{x} \geq(1-a) n p+C_{1} \sqrt{\ln n}\right]}$, and reasoning similarly as in Case 1, we get

$$
\begin{equation*}
P\left(N\left(B_{1}\right) \geq \frac{a n}{2}-\omega(n) \sqrt{n}\right) \geq P\left(\widetilde{N}^{+}\left(B_{1}\right) \geq \frac{a n}{2}-\omega(n) \sqrt{n}\right)=1-o(1) \tag{5}
\end{equation*}
$$

Next, let $\widetilde{N}^{-}\left(B_{2}\right)$ denote the number of vertices in B_{2} with degrees at most anp$C_{1} \sqrt{\ln n}$. Similarly, we have
(6) $P\left(N\left(B_{2}\right) \leq \frac{a n}{2}+\omega(n) \sqrt{n}\right) \geq P\left(\frac{n}{2}-\widetilde{N}^{-}\left(B_{2}\right) \leq \frac{a n}{2}+\omega(n) \sqrt{n}\right)=1-o(1)$.

We then conclude the proof in this case by combining (5) and (6). It is worth noting that the upper bound on $N\left(B_{1}\right)$ and the lower bound on $N\left(B_{2}\right)$ can not be obtained by using the above techniques.

For (ii) we need to prove the following two statements:
(a) Almost surely none of the vertices in B_{1} is a groupie; and
(b) Almost surely every vertex in B_{2} is a groupie.

In what follows we prove (a) only, as (b) may be proved similarly.
Fix a vertex $x \in B_{1}$ and assume that x has degree d_{x}, we then have $S_{x} \sim d_{x}+$ $\operatorname{Bin}\left(b_{n} n d_{x}, p\right)$. For any d_{x}, the $\mathrm{E} S_{x}=d_{x}\left(b_{n} n p+1\right)$. Since $S_{x}-d_{x} \sim \operatorname{Bin}\left(b_{n} n d_{x}, p\right)$ and $b_{n} n d_{x} \geq b_{n}\left(1-b_{n}\right) n^{2} p / 2$ when $\left(1-b_{n}\right) n p / 2 \leq d_{x} \leq 3\left(1-b_{n}\right) n p / 2$, as in situation (i) we obtain

$$
P\left(\left|S_{x}-b_{n} n d_{x} p\right| \leq 10 n \sqrt{\ln n} \left\lvert\, \frac{\left(1-b_{n}\right) n p}{2} \leq d_{x} \leq \frac{3\left(1-b_{n}\right) n p}{2}\right.\right)=1-o\left(n^{-1}\right)
$$

Dividing by d_{x} we have
(7) $P\left(\left.\left|\frac{S_{x}}{d_{x}}-b_{n} n p\right| \leq \frac{20 \sqrt{\ln n}}{\left(1-b_{n}\right) p} \right\rvert\, \frac{\left(1-b_{n}\right) n p}{2} \leq d_{x} \leq \frac{3\left(1-b_{n}\right) n p}{2}\right)=1-o\left(n^{-1}\right)$.

Since $d_{x} \sim \operatorname{Bin}\left(\left(1-b_{n}\right) n, p\right)$ and $\ln n / n \ll 1-b_{n}$, we get

$$
\begin{equation*}
P\left(\left|d_{x}-\left(1-b_{n}\right) n p\right| \leq \frac{\left(1-b_{n}\right) n p}{2}\right)=1-o\left(n^{-1}\right) \tag{8}
\end{equation*}
$$

by exploiting a concentration inequality (see [4] pp.27, Corollary 2.3). From (7) and (8), it follows

$$
\begin{equation*}
P\left(\left|\frac{S_{x}}{d_{x}}-b_{n} n p\right| \leq \frac{20 \sqrt{\ln n}}{\left(1-b_{n}\right) p}\right)=1-o\left(n^{-1}\right) \tag{9}
\end{equation*}
$$

We have

$$
\begin{align*}
P\left(d_{x} \geq b_{n} n p-\frac{20 \sqrt{\ln n}}{\left(1-b_{n}\right) p}\right) & \leq P\left(d_{x}-\left(1-b_{n}\right) n p \geq \frac{3}{2} \sqrt{\left(1-b_{n}\right) n \ln n}\right) \tag{10}\\
& \leq e^{-(3 / 2) \cdot \ln n}=o\left(n^{-1}\right)
\end{align*}
$$

where the second inequality follows by an application of Theorem 2.1 of $[\mathbf{4}]$ (pp.26). Consequently, (9) and (10) yield

$$
P(x \text { is a groupie })=o\left(n^{-1}\right),
$$

which clearly concludes the proof of statement (a).
We remark that the assumption $\ln n / n \ll 1-b_{n}$ given in Theorem 1 Case (ii) is not very stringent, since we must have $1-b_{n}=\Omega\left(n^{-1}\right)$ in our situation. The following theorem can be proved similarly.

Theorem 2. Suppose that $n p^{2} \gg \ln n$, as $n \rightarrow \infty$. Let N denote the number of groupies in the random bipartite graph $G\left(B_{1}, B_{2}, p\right)$. For $i=1,2$, let $N\left(B_{i}\right)$ denote the number of groupies in B_{i}. Then the following is true:
(i) Assume $\left|B_{1}\right|=$ an and $\left|B_{2}\right|=(1-a) n$ for some $a \in(0,1)$. If $a=1 / 2$, then

$$
P\left(\frac{n(1-\varepsilon(n))}{4} \leq N\left(B_{i}\right) \leq \frac{n(1+\varepsilon(n))}{4}, \text { for } i=1,2\right) \rightarrow 1
$$

as $n \rightarrow \infty$, where $\varepsilon(n)$ is any function tending to zero sufficient slowly. If $a<1 / 2$, then

$$
P\left(\frac{a n(1-\varepsilon(n))}{2} \leq N\left(B_{1}\right) \text { and } N\left(B_{2}\right) \leq \frac{a n(1+\varepsilon(n))}{2}\right) \rightarrow 1
$$

as $n \rightarrow \infty$, where $\varepsilon(n)$ is defined as above.
(ii) Assume $\left|B_{1}\right|=b_{n} n$ and $\left|B_{2}\right|=\left(1-b_{n}\right) n$ with $1-b_{n}=\Omega(1 / \sqrt{\ln n})$ and $b_{n} \rightarrow 1$, as $n \rightarrow \infty$. Then

$$
P\left(N=N\left(B_{2}\right)=\left|B_{2}\right|\right) \rightarrow 1
$$

as $n \rightarrow \infty$.
Proof. We sketch the proof as follows. For (i) the inequality (1) holds following the same reasoning as in the proof of Theorem 1. Therefore, we get

$$
P\left(\left.\left|\frac{S_{x}}{d_{x}}-a n p\right| \leq \frac{20 \sqrt{\ln n}}{(1-a) p} \right\rvert\, \frac{(1-a) n p}{2} \leq d_{x} \leq \frac{3(1-a) n p}{2}\right)=1-o\left(n^{-1}\right) .
$$

The following two large deviation statements hold similarly:

$$
P\left(\left|\frac{S_{x}}{d_{x}}-a n p\right| \leq \frac{20 \sqrt{\ln n}}{(1-a) p}, \text { for every } x \in B_{1}\right)=1-o(1)
$$

and

$$
P\left(\left|\frac{S_{x}}{d_{x}}-(1-a) n p\right| \leq \frac{20 \sqrt{\ln n}}{(1-a) p}, \text { for every } x \in B_{2}\right)=1-o(1)
$$

Case 1. $a=1 / 2$. For $i=1,2$, let $N^{+}\left(B_{i}\right)$ (resp. $\left.N^{-}\left(B_{i}\right)\right)$ denote the number of vertices in B_{i}, whose degrees are at least $n p / 2+20 \sqrt{\ln n} /[(1-a) p]$ (resp. at most $n p / 2-20 \sqrt{\ln n} /[(1-a) p])$. As in the proof of Theorem 1 , in the sequel we shall prove that

$$
\begin{equation*}
P\left(N^{+}\left(B_{1}\right) \geq \frac{n(1-\varepsilon(n))}{4}\right)=1-o(1) \tag{11}
\end{equation*}
$$

Note that $N^{+}\left(B_{1}\right)=\sum_{x \in B_{1}} 1_{\left[d_{x} \geq n p / 2+20 \sqrt{\ln n} /[(1-a) p]\right]}$. Since Bin $(n / 2, p)$ is flat about its maximum, the expectation of $N^{+}\left(B_{1}\right)$ is given by

$$
E N^{+}\left(B_{1}\right)=\frac{n}{2} P\left(d_{x} \geq \frac{n p}{2}+\frac{20 \sqrt{\ln n}}{(1-a) p}\right)=\frac{n}{4}-\Theta\left(\frac{\sqrt{n \ln n}}{p}\right)
$$

By using the assumption $n p^{2} \gg \ln n$, we may also obtain $\operatorname{Var}\left(N^{+}\left(B_{1}\right)\right) \leq C_{3} n$ for some absolute constant C_{3}. Since $\varepsilon(n)$ is a function tending to zero sufficient slowly,
we have $\sqrt{n \ln n} / p \ll \varepsilon n$ and $1 / \varepsilon^{2} n \rightarrow 0$, as $n \rightarrow \infty$. Combining these estimations, we get (11) by employing the Chebyshev inequality as in [3].
Case 2. $a<1 / 2$. Let $\widetilde{N}^{+}\left(B_{1}\right)$ denote the number of vertices in B_{1} with degrees at least $(1-a) n p+20 \sqrt{\ln n} /[(1-a) p]$ and the proof follows similarly as before.

For (ii), note that our assumptions imply $\ln n / n \ll 1-b_{n} \rightarrow 0$ as $n \rightarrow \infty$, and the corresponding proof in Theorem 1 holds verbatim.

REFERENCES

1. E. Bertram, P. Erdős, P. Horák, J. Širáñ, Zs. Tuza: Local and global average degree in graphs and multigraphs. J. Graph Theory, 18 (1994), 647-661.
2. B. Bollobás: Random Graphs. Cambridge University Press, Cambridge, 2001.
3. W. Fernandez de la Vega, Zs. Tuza: Groupies in random graphs. Information Processing Letters, 109 (2009), 339-340.
4. S. Janson, T. Łuczak, A. Ruciński: Random Graphs. Wiley, New York, 2000.
5. J. Mackey: A lower bound for groupies in graphs. J. Graph Theory, 21 (1996), 323-326.
6. S. Poljak, T. Szabó, Zs. Tuza: Extremum and convergence of local average degrees in graphs. Congressus Numerantium, 112 (1995), 191-198.

Department of Mathematics,

[^0]: 2000 Mathematics Subject Classification. 05C80.
 Keywords and Phrases. Groupie, random graph, bipartite graph, average degree.

