Applicable Analysis and Discrete Mathematics
 available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 4 (2010), 269-277.
doi:10.2298/AADM100428020L

ON SPECTRAL RADIUS OF THE DISTANCE MATRIX

Zhongzhu Liu

We characterize graphs with minimal spectral radius of the distance matrix in three classes of simple connected graphs with n vertices: with fixed vertex connectivity, matching number and chromatic number, respectively.

1. INTRODUCTION

Let G be a simple connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance matrix of G is defined as the $n \times n$ matrix $D(G)=\left(d_{i j}\right)$, where $d_{i j}$ is the distance (i.e., the number of edges of a shortest path) between vertices v_{i} and v_{j} in $G[\mathbf{1}]$. Denoted by $\rho(G)$ the spectral radius (the largest eigenvalue) of $D(G)$. Properties for eigenvalues of the distance matrix and especially for ρ may be found in e.g., $[\mathbf{2}, \mathbf{3}, 4,5,6]$.

In this paper, we characterize graphs with minimal spectral radius of the distance matrix in three classes of simple connected graphs with n vertices: with fixed vertex connectivity, matching number and chromatic number, respectively.

2. PRELIMINARIES

The following lemma is an immediate consequence of Perron-Frobenius Theorem.
Lemma 1. Let G be a connected graph with $u, v \in V(G)$ and uv $\notin E(G)$. Then $\rho(G)>\rho(G+u v)$.

Let $J_{a \times b}$ be the $a \times b$ matrix whose entries are all equal to 1 and I_{n} be the $n \times n$ unit matrix. Let $J=J_{n \times n}$.

[^0]Let $N_{G}(v)$ be the neighborhood of the vertex v of G. Let $G_{1} \cup \cdots \cup G_{k}$ be the vertex-disjoint union of the graphs $G_{1}, \cdots, G_{k}(k \geq 2)$, and $G_{1} \vee G_{2}$ be the graph obtained from $G_{1} \cup G_{2}$ by joining each vertex of G_{1} to each vertex of G_{2}. Let $x(G)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be a unit eigenvector of $D(G)$ corresponding to $\rho(G)$. Then

$$
\begin{equation*}
\rho(G) x_{i}=\sum_{v_{j} \in V(G)} d_{i j} x_{j} . \tag{1}
\end{equation*}
$$

Lemma 2. Let G be a connected graph, $x(G)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and $v_{r}, v_{s} \in$ $V(G)$. If $N_{G}\left(v_{r}\right) \backslash\left\{v_{s}\right\}=N_{G}\left(v_{s}\right) \backslash\left\{v_{r}\right\}$, then $x_{r}=x_{s}$.

Proof. From Eq. (1), we have

$$
d_{r s} x_{s}+\sum_{v_{t} \in V(G) \backslash\left\{v_{r}, v_{s}\right\}} d_{r t} x_{t}=\rho(G) x_{r}, d_{r s} x_{r}+\sum_{v_{t} \in V(G) \backslash\left\{v_{r}, v_{s}\right\}} d_{s t} x_{t}=\rho(G) x_{s}
$$

Since $N_{G}\left(v_{r}\right) \backslash\left\{v_{s}\right\}=N_{G}\left(v_{s}\right) \backslash\left\{v_{r}\right\}$, we have $d_{r t}=d_{s t}$ for $v_{t} \in V(G) \backslash\left\{v_{r}, v_{s}\right\}$. Then

$$
\begin{aligned}
\left(\rho(G)+d_{r s}\right) x_{r} & =d_{r s}\left(x_{r}+x_{s}\right)+\sum_{v_{t} \in V(G) \backslash\left\{v_{r}, v_{s}\right\}} d_{r t} x_{t} \\
& =d_{r s}\left(x_{r}+x_{s}\right)+\sum_{v_{t} \in V(G) \backslash\left\{v_{r}, v_{s}\right\}} d_{s t} x_{t}=\left(\rho(G)+d_{r s}\right) x_{s},
\end{aligned}
$$

and thus $x_{r}=x_{s}$.

3. GRAPHS WITH GIVEN VERTEX CONNECTIVITY

Let $G=K_{s} \vee\left(K_{n_{1}} \cup K_{n_{2}}\right)$, where $s+n_{1}+n_{2}=n$. By Lemma 2, entries of $x(G)$ have the same value, say y_{0}, for the vertices in $V\left(K_{s}\right), y_{1}$ for the vertices in $V\left(K_{n_{1}}\right)$ and y_{2} for the vertices in $V\left(K_{n_{2}}\right)$.

Lemma 3. In the setup as above, if $n_{2}>n_{1}+1$, then $\left(n_{2}-1\right) y_{2}-n_{1} y_{1}>0$.
Proof. Let $\rho=\rho(G)$. From Eq. (1), we have

$$
\begin{aligned}
& s y_{0}+\left(n_{1}-1\right) y_{1}+2 n_{2} y_{2}=\rho y_{1}, \\
& s y_{0}+2 n_{1} y_{1}+\left(n_{2}-1\right) y_{2}=\rho y_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
n_{2} y_{2}-n_{1} y_{1} & =(\rho+1)\left(y_{1}-y_{2}\right), \\
y_{1} / y_{2} & =\left(\rho+n_{2}+1\right) /\left(\rho+n_{1}+1\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left(n_{2}-1\right) y_{2}-n_{1} y_{1} & =(\rho+1)\left(y_{1}-y_{2}\right)-y_{2} \\
& =y_{2}\left[(\rho+1) \frac{y_{1}}{y_{2}}-(\rho+2)\right] \\
& =y_{2}\left[(\rho+1) \frac{\rho+n_{2}+1}{\rho+n_{1}+1}-(\rho+2)\right] \\
& =\frac{y_{2}}{\rho+n_{1}+1}\left[(\rho+1)\left(n_{2}-n_{1}-1\right)-n_{1}\right] .
\end{aligned}
$$

Note that $n_{2}-n_{1} \geq 2$ and by Lemma $1, \rho+1 \geq \rho\left(K_{n}\right)+1=n>n_{1}$. Then

$$
(\rho+1)\left(n_{2}-n_{1}-1\right)-n_{1}>n_{1}\left(n_{2}-n_{1}-1\right)-n_{1}=n_{1}\left(n_{2}-n_{1}-2\right) \geq 0
$$

Thus $\left(n_{2}-1\right) y_{2}-n_{1} y_{1}>0$.
Recall that the vertex connectivity of the graph G is the minimum number of vertices whose deletion yields a disconnected graph.

Theorem 1. Let G be an n-vertex connected graph with vertex connectivity s, where $1 \leq s \leq n-2$. Then $\rho(G) \geq \rho\left(K_{s} \vee\left(K_{1} \cup K_{n-1-s}\right)\right)$ with equality if and only if $G=K_{s} \vee\left(K_{1} \cup K_{n-1-s}\right)$.

Proof. Let G be a graph with minimal spectral radius of $D(G)$ in the class of n-vertex connected graphs with vertex connectivity s. By Lemma $1, G=K_{s} \vee$ $\left(K_{n_{1}} \cup K_{n_{2}}\right)$, for $n_{2} \geq n_{1} \geq 1$ and $s+n_{1}+n_{2}=n$.

Suppose that $n_{1}>1$. Let $G_{1}=K_{s} \vee\left(K_{n_{1}-1} \cup K_{n_{2}+1}\right)$ and by Lemma 2, $x\left(G_{1}\right)$ can be written as

$$
x\left(G_{1}\right)=(\underbrace{y_{0}, \ldots, y_{0}}_{s}, \underbrace{y_{1}, \ldots, y_{1}}_{n_{1}-1}, \underbrace{y_{2}, \ldots, y_{2}}_{n_{2}+1})^{T} .
$$

Then, by minimality argument we have

$$
x^{T}\left(G_{1}\right) D\left(G_{1}\right) x\left(G_{1}\right)=\rho\left(G_{1}\right) \geq \rho(G) \geq x^{T}\left(G_{1}\right) D(G) x\left(G_{1}\right),
$$

i.e.,

$$
\begin{equation*}
x^{T}\left(G_{1}\right) D\left(G_{1}\right) x\left(G_{1}\right)-x^{T}\left(G_{1}\right) D(G) x\left(G_{1}\right) \geq 0 \tag{2}
\end{equation*}
$$

Note that

$$
\begin{gathered}
D(G)=J-I_{n}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & J_{n_{1} \times n_{2}} \\
0 & J_{n_{2} \times n_{1}} & 0
\end{array}\right), \\
D\left(G_{1}\right)=J-I_{n}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & J_{\left(n_{1}-1\right) \times\left(n_{2}+1\right)} \\
0 & J_{\left(n_{2}+1\right) \times\left(n_{1}-1\right)} & 0
\end{array}\right) .
\end{gathered}
$$

By Lemma 3, we have

$$
\begin{aligned}
x^{T}\left(G_{1}\right) & \left(D(G)-D\left(G_{1}\right)\right) x\left(G_{1}\right) \\
& =x^{T}\left(G_{1}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -J_{\left(n_{1}-1\right) \times 1} & 0 \\
0 & -J_{1 \times\left(n_{1}-1\right)} & 0 & J_{1 \times n_{2}} \\
0 & 0 & J_{n_{2} \times 1} & 0
\end{array}\right) x\left(G_{1}\right) \\
& =x^{T}\left(G_{1}\right)\left(\begin{array}{c}
0 \\
-y_{2} J_{\left(n_{1}-1\right) \times 1} \\
n_{2} y_{2}-\left(n_{1}-1\right) y_{1} \\
y_{2} J_{n_{2} \times 1}
\end{array}\right) \\
& =2\left[\left(\left(n_{2}+1\right)-1\right) y_{2}-\left(n_{1}-1\right) y_{1}\right] y_{2}=2\left(n_{2} y_{2}-n_{1} y_{1}+y_{1}\right) y_{2}>0,
\end{aligned}
$$

which is a contradiction to (2).
Thus $n_{1}=1$, and therefore $G=K_{s} \vee\left(K_{1} \cup K_{n-1-s}\right)$.

4. GRAPHS WITH GIVEN MATCHING NUMBER

Let $G=V\left(K_{s} \vee\left(K_{n_{1}} \cup K_{n_{2}} \cup \cdots \cup K_{n_{t}}\right)\right)$, where $s+\sum_{i=1}^{t} n_{i}=n$. By Lemma 2, entries of $x(G)$ have the same value, say y_{0}, for the vertices in $V\left(K_{s}\right)$, and y_{i} for the vertices in $V\left(K_{n_{i}}\right)$, where $i=1,2, \cdots, t$.

In a similar way as Lemma 3, we have
Lemma 4. In the setup as above, if $n_{2}>n_{1}+1$, then $\left(n_{2}-1\right) y_{2}-n_{1} y_{1}>0$.
A component of a graph is said to be even (odd) if it has an even (odd) number of vertices. Let G be a graph with n vertices. Let $o(G)$ be the number of odd components of G. By the Tutte-Berge formula $[\mathbf{8}, \mathbf{9}]$,

$$
n-2 m=\max \{o(G-X)-|X|: X \subset V(G)\}
$$

The matching number of the graph G is the number of edges in a maximum matching, denoted by $m(G)$ and if the graph G is understood, we omit the argument G and simply write m.

Theorem 2. Let G be an n-vertex connected graphs with matching number m, where $2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor$.
(i) If $m=\left\lfloor\frac{n}{2}\right\rfloor$, then $\rho(G) \geq n-1$ with equality if and only if $G=K_{n}$;
(ii) If $2 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, then $\rho(G) \geq \rho\left(K_{m} \vee \overline{K_{n-m}}\right)$ with equality if and only if $G=K_{m} \vee \overline{K_{n-m}}$.

Proof. Let G be a graph with minimal spectral radius of $D(G)$ in the class of n-vertex connected graphs with matching number m. By the Tutte-Berge formula, there is a vertex subset $X_{0} \subset V(G)$ such that $n-2 m=\max \{o(G-X)-|X|$: $X \subset V(G)\}=o\left(G-X_{0}\right)-\left|X_{0}\right|$. For convenience, let $\left|X_{0}\right|=s$ and $o\left(G-X_{0}\right)=k$. Then $n-2 m=k-s$.

Suppose that $s=0$. Then $G-X_{0}=G$ and $n-2 m=k \leq 1$. If $k=0$, then $m=\frac{n}{2}$, and if $k=1$, then $m=\frac{n-1}{2}$. In both cases, we have by Lemma 1 that $G=K_{n}$.

Suppose in the following that $s \geq 1$. Then $k \geq 1$. Let $G_{1}, G_{2}, \ldots, G_{k}$ be all odd components of $G-X_{0}$. If $G-X_{0}$ has an even component, then by adding an edge to G between a vertex of an even component and a vertex of an odd component of $G-X_{0}$, we obtain a graph G^{\prime}, for which $n-2 m\left(G^{\prime}\right) \geq o\left(G^{\prime}-x_{0}\right)=o\left(G-X_{0}\right)$, and then $m\left(G^{\prime}\right)=m(G)$. By Lemma 1, $\rho(G)>\rho\left(G^{\prime}\right)$, it is a contradiction to the choice of G. Thus $G-X_{0}$ does not have an even component. Similarly, $G_{1}, G_{2}, \ldots, G_{k}$ and the subgraph induced by X_{0} are all complete, and any vertex of $G_{i}(i=1, \ldots, k)$ is adjacent to every vertex in X_{0}. Thus $G=K_{s} \vee\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots \cup K_{n_{k}}\right)$.

First, we show that $G-X_{0}$ has at most one odd component whose number of vertex is more than one. Assume that $n_{2} \geq n_{1} \geq 2$. Let $G_{1}=K_{s} \vee\left(K_{n_{1}-1} \cup\right.$ $\left.K_{n_{2}+1} \cup K_{n_{3}} \ldots \cup K_{n_{k}}\right)$ and by Lemma $2, x\left(G_{1}\right)$ may be written as

$$
x\left(G_{1}\right)=(\underbrace{y_{0}, \ldots, y_{0}}_{s}, \underbrace{y_{1}, \ldots, y_{1}}_{n_{1}-1}, \underbrace{y_{2}, \ldots, y_{2}}_{n_{2}+1}, \underbrace{y_{3}, \ldots, y_{3}}_{n_{3}}, \ldots, \underbrace{y_{k}, \ldots, y_{k}}_{n_{k}})^{T} .
$$

Then, by minimality argument we have

$$
x^{T} D\left(G_{1}\right) x=\rho\left(G_{1}\right) \geq \rho(G) \geq x^{T} D(G) x
$$

i.e.,

$$
\begin{equation*}
x^{T}\left(G_{1}\right) D\left(G_{1}\right) x\left(G_{1}\right)-x^{T}\left(G_{1}\right) D(G) x\left(G_{1}\right) \geq 0 \tag{3}
\end{equation*}
$$

Note that

$$
D(G)=J-I_{n}+\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & J_{n_{1} \times n_{2}} & J_{n_{1} \times n_{3}} & \cdots & J_{n_{1} \times n_{t}} \\
0 & J_{n_{2} \times n_{1}} & 0 & J_{n_{2} \times n_{3}} & \cdots & J_{n_{2} \times n_{t}} \\
0 & J_{n_{3} \times n_{1}} & J_{n_{3} \times n_{2}} & 0 & \cdots & J_{n_{3} \times n_{t}} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right) .
$$

By Lemma 4, we have

$$
\begin{aligned}
& x^{T}\left(G_{1}\right)\left(D(G)-D\left(G_{1}\right)\right) x\left(G_{1}\right) \\
& =x^{T}\left(G_{1}\right)\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -J_{\left(n_{1}-1\right) \times 1} & 0 & 0 \\
0 & -J_{1 \times\left(n_{1}-1\right)} & 0 & J_{1 \times n_{2}} & 0 \\
0 & 0 & J_{n_{2} \times 1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) x\left(G_{1}\right)
\end{aligned}
$$

$$
=x^{T}\left(G_{1}\right)\left(\begin{array}{c}
0 \\
-y_{2} J_{\left(n_{1}-1\right) \times 1} \\
n_{2} y_{2}-\left(n_{1}-1\right) y_{1} \\
y_{2} J_{n_{2} \times 1} \\
0
\end{array}\right)=2\left(n_{2} y_{2}-n_{1} y_{1}+y_{1}\right) y_{2}>0
$$

which is a contradiction to (3). Thus $G-X_{0}$ has at most one odd component whose number of vertex is more than one.

Now, we show that G does not have the odd component with number of vertices greater than 1. By contradiction, suppose that $G=K_{s} \vee\left(\overline{K_{k-1}} \cup K_{n-s-k+1}\right)$, where $n \geq s+k$. Let $n_{1}=n-s-k+1$ and $G_{2}=K_{s+1} \vee\left(\overline{K_{k-1}} \cup K_{n_{1}-1}\right)$, by Lemma 2, $x\left(G_{2}\right)$ may be written as

$$
x\left(G_{2}\right)=(\underbrace{y_{0}, \ldots, y_{0}}_{s+1}, \underbrace{y_{1}, \ldots, y_{1}}_{n_{1}-1}, y_{2}, y_{3}, \ldots, y_{k})^{T} .
$$

Then, by minimality argument we have

$$
x^{T}\left(G_{2}\right) D\left(G_{2}\right) x\left(G_{2}\right)=\rho\left(G_{2}\right) \geq \rho(G) \geq x^{T}\left(G_{2}\right) D(G) x\left(G_{2}\right)
$$

i.e.,

$$
\begin{equation*}
x^{T}\left(G_{2}\right) D\left(G_{2}\right) x\left(G_{2}\right)-x^{T}\left(G_{2}\right) D(G) x\left(G_{2}\right) \geq 0 \tag{4}
\end{equation*}
$$

Note that

$$
D(G)=J+I_{n}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & J_{n_{1} \times k} \\
0 & J_{k \times n_{1}} & J_{k \times k}-I_{k}
\end{array}\right)
$$

Then we have

$$
x^{T}\left(G_{2}\right)\left(D(G)-D\left(G_{2}\right)\right) x\left(G_{2}\right)=x^{T}\left(G_{2}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & J_{1 \times k} \\
0 & 0 & 0 \\
0 & J_{k \times 1} & 0
\end{array}\right) x\left(G_{2}\right)>0
$$

which is a contradiction to (4), thus $G=K_{n-k} \vee \overline{K_{k}}=K_{m} \vee \overline{K_{n-m}}$.

5. GRAPHS WITH GIVEN CHROMATIC NUMBER

Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$, where $\sum_{i=1}^{r} n_{i}=n$ and $n_{i}>0$. By Lemma 2, entries of $x(G)$ have the same value, say y_{i}, for vertices in $V_{i}(i=1,2, \ldots, r)$, where V_{i} is a vertex partition and $\left|V_{i}\right|=n_{i}$.
Lemma 5. In the setup as above, $n_{i}>n_{j}$ if and only if $y_{i}>y_{j}$ and $n_{i}=n_{j}$ if and only if $y_{i}=y_{j}$.

Proof. Let $\rho=\rho(G)$. From Eq. (1), we have

$$
\begin{aligned}
& \sum_{k=1}^{r} n_{k} y_{k}+\left(n_{i}-2\right) y_{i}=\rho y_{i} \\
& \sum_{k=1}^{r} n_{k} y_{k}+\left(n_{j}-2\right) y_{j}=\rho y_{j}
\end{aligned}
$$

Then

$$
\frac{\sum_{k=1}^{r} n_{k} y_{k}}{y_{i}}+\left(n_{i}-2\right)=\frac{\sum_{k=1}^{r} n_{k} y_{k}}{y_{j}}+\left(n_{j}-2\right),
$$

i.e.,

$$
n_{i}-n_{j}=\sum_{k=1}^{r} n_{k} y_{k}\left(\frac{1}{y_{j}}-\frac{1}{y_{i}}\right),
$$

which implies that

$$
\begin{aligned}
& n_{i}>n_{j} \quad \Leftrightarrow \quad y_{i}>y_{j}, \\
& n_{i}=n_{j} \quad \Leftrightarrow \quad y_{i}=y_{j},
\end{aligned}
$$

as desired.
The chromatic number of a graph G is the smallest number of colors needed to color the vertices of G such that any two adjacent vertices have different colors. A subset of vertices assigned to the same color is called a color class, every such class forms an independent set. The Turán graph $T_{n, r}$ is a complete r-partite graph on n vertices for which the numbers of vertices of vertex classes are as equal as possible.

Theorem 3. Let G be an n-vertex connected graph with chromatic number r, where $2 \leq r \leq n-1$. If $G \neq T_{n, r}$, then $\rho(G)>\rho\left(T_{n, r}\right)$.

Proof. Let G be the graph with minimal spectral radius of $D(G)$ in the class of n-vertex connected graph with chromatic number r. Then $V(G)$ can be partitioned into r independent sets $V_{1}, V_{2}, \ldots, V_{r}$, where $\left|V_{i}\right|=n_{i}(i=1,2, \ldots, r)$ and $\sum_{i=1}^{r} n_{i}=$ n. By Lemma 1, $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$.

Suppose that G is not the Turán graph. Then there exist i, j such that $\left|n_{i}-n_{j}\right|>1$. Suppose without loss of generality that $n_{2}-1>n_{1}$. Let $G_{1}=$ $K_{n_{1}+1, n_{2}-1, n_{3}, \ldots, n_{s}}$ and by Lemma $2, x\left(G_{1}\right)$ may be written as

$$
x\left(G_{1}\right)=(\underbrace{y_{1}, \ldots, y_{1}}_{n_{1}+1}, \underbrace{y_{2}, \ldots, y_{2}}_{n_{2}-1}, \underbrace{y_{3}, \ldots, y_{3}}_{n_{3}} \ldots, \underbrace{y_{r}, \ldots, y_{r}}_{n_{r}})^{T} .
$$

Then, by minimality argument we have

$$
x^{T}\left(G_{1}\right) D\left(G_{1}\right) x\left(G_{1}\right)=\rho\left(G_{1}\right) \geq \rho(G) \geq x^{T}\left(G_{1}\right) D(G) x\left(G_{1}\right)
$$

i.e.,

$$
\begin{equation*}
x^{T}\left(G_{1}\right) D\left(G_{1}\right) x\left(G_{1}\right)-x^{T}\left(G_{1}\right) D(G) x\left(G_{1}\right) \geq 0 \tag{5}
\end{equation*}
$$

Note that

$$
D(G)=J-I_{n}+\left(\begin{array}{cccc}
J_{n_{1} \times n_{1}}-I_{n_{1}} & 0 & 0 & 0 \\
0 & J_{n_{2} \times n_{2}}-I_{n_{2}} & 0 & 0 \\
0 & 0 & J_{n_{3} \times n_{3}}-I_{n_{3}} & 0 \\
\cdots & \cdots & \cdots &
\end{array}\right)
$$

Then, by Lemma 5

$$
\begin{aligned}
x^{T}\left(G_{1}\right)(& \left.D(G)-D\left(G_{1}\right)\right) x\left(G_{1}\right) \\
& =x^{T}\left(G_{1}\right)\left(\begin{array}{cccc}
0 & -J_{n_{1} \times 1} & 0 & 0 \\
-J_{1 \times n_{1}} & 0 & J_{1 \times\left(n_{2}-1\right)} & 0 \\
0 & J_{\left(n_{2}-1\right) \times 1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) x\left(G_{1}\right) \\
& =x^{T}\left(G_{1}\right)\left(\begin{array}{c}
-y_{1} J_{n_{1} \times 1} \\
\left(n_{2}-1\right) y_{2}-n_{1} y_{1} \\
y_{2} J_{\left(n_{2}-1\right) \times 1} \\
0
\end{array}\right) \\
& =y_{1}\left[\left(n_{2}-1\right) y_{2}-n_{1} y_{1}\right]+\left(n_{2}-1\right) y_{2}\left(y_{2}-y_{1}\right)+y_{1}\left[\left(n_{2}-1\right) y_{2}-n_{1} y_{1}\right] \\
& =\left(n_{2}-1\right) y_{2}^{2}+\left(n_{2}-1\right) y_{1} y_{2}-2 n_{1} y_{1}^{2}>0,
\end{aligned}
$$

which is a contradiction to (5), and thus G is the Turán graph $T_{n, r}$.
Acknowledgement. We would like to thank the referees for helpful comments and suggestions.

REFERENCES

1. F. Buckley, F. Harary: Distance in Graphs. Addison-Wesley, Redwood, 1990.
2. I. Gutman, M. Medeleanu: On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane. Indian J. Chem. A, $\mathbf{3 7}$ (1998), 569-573.
3. B. Zhou: On the largest eigenvalue of the distance matrix of a tree. MATCH Commun. Math. Comput. Chem., 58 (2007), 657-662.
4. B. Zhou, N. Trinajstić: On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett., 447 (2007), 384-387.
5. B. Zhou, N. Trinajstić: Further results on the largest eigenvalues of the distance matrix and some distance-based matrices of connected (molecular) graphs. Internet Electron. J. Mol. Des., 6 (2007), 375-384.
6. K. C. Das: On the largest eigenvalue of the distance matrix of a bipartite graph. MATCH Commun. Math. Comput. Chem., 62 (2009), 667-672.
7. G. Indulal, I. Gutman: On the distance spectra of some graphs. Math. Commun., 13 (2008), 123-131.
8. C. Berge: Sur le couplage maximum d'un graphe. C. R. Acad. Sci. Paris Sér. I. Math 247 (1958), 258-259.
9. W. T. Tutte: The factorization of linear graphs. J. London Math. Soc., 22 (1947), 107-111.

Department of Mathematics,
South China Normal University, (Revised April 17, 2010)
Guangzhou 510631,
P. R. China

E-mail: zhongzhuliu@126.com

[^0]: 2000 Mathematics Subject Classification. 05C50.
 Keywords and Phrases. Distance matrix, spectral radius, vertex connectivity, matching number, chromatic number.

