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CHROMATICITY OF COMPLETE 4-PARTITE GRAPHS

WITH CERTAIN STAR OR MATCHING DELETED

G. C. Lau, Y. H. Peng

Let P (G, λ) be a chromatic polynomial of a graphG. Two graphsG andH are

said to be chromatically equivalent, denoted G ∼ H, if P (G, λ) = P (H,λ).

We write [G] = {H |H ∼ G}. If [G] = {G}, then G is said to be chromatically

unique. In this paper, we first characterize certain complete 4-partite graphs

G accordingly to the number of 5-independent partitions of G. Using these

results, we investigate the chromaticity of G with certain star or matching

deleted. As a by-product, we obtain new families of chromatically unique

complete 4-partite graphs with certain star or matching deleted.

1. INTRODUCTION

All graphs considered in this paper are finite and simple. For a graph G, we
denote by P (G;λ) (or P (G)), the chromatic polynomial of G. Two graphs G and
H are said to be chromatically equivalent (simply χ-equivalent), denoted G ∼ H if
P (G) = P (H). A graph G is said to be chromatically unique (simply χ-unique), if
H ∼ G implies that H ∼= G. A family G of graphs is said to be chromatically-closed
(simply χ-closed) if for any graph G ∈ G, P (H) = P (G) implies that H ∈ G. Many
families of χ-unique graphs are known (see [3, 4]).

For a graph G, let e(G), v(G), t(G) and χ(G) respectively be the number
of vertices, edges, triangles and chromatic number of G. By G, we denote the
complement of G. Let On be an edgeless graph with n vertices. Also let Q(G) and
K(G) be the number of induced subgraphs C4 and complete subgraphs K4 in G.
Let S be a set of s(≥ 1) edges of G. Denote by G − S the graph obtained from
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G by deleting all edges in S, and by 〈S〉 the graph induced by S. For t ≥ 2 and
1 ≤ p1 ≤ p2 ≤ · · · ≤ pt, let K(p1, p2, . . . , pt) be a complete t-partite graph with
partition sets Vi such that |Vi| = pi for i = 1, 2, . . . , t. In [5, 8, 9, 10], Lau and
Peng, and Zhao et al. proved that certain families of complete t-partite graphs
(t = 3, 4, 5) with a matching or a star deleted are χ-unique. In this paper, we first
characterize certain complete 4-partite graphs G accordingly to the number of 5-
independent partitions of G. Using these results, we investigate the chromaticity of
G with certain star or matching deleted. As a by-product, we obtain new families
of chromatically unique complete 4-partite graphs with certain star or matching
deleted.

2. PRELIMINARY RESULTS AND NOTATIONS

Let K−s(p1, p2, . . . , pt) denote the family {K(p1, p2, . . . , pt)−S |S ⊂ E(K(p1,

p2, . . . , pt)) and |S| = s}. For p1 ≥ s+ 1, we denote by K
−K(1,s)
i,j (p1, p2, . . . , pt) the

graph in K−s(p1, p2, . . . , pt) where the s edges in S induced a K(1, s) with center
in Vi and all the end-vertices in Vj , and by K−sK2

i,j (p1, p2, . . . , pt) the graph in

K−s(p1, p2, . . . , pt) where the s edges in S induced a matching with end-vertices in
Vi and Vj .

For a graph G and a positive integer k, a partition {A1, A2, . . . , Ak} of V (G)
is called a k-independent partition in G if each Ai is a non-empty independent set of
G. Let α(G, k) denote the number of k-independent partitions in G. If G is of order

n, then P (G,λ) =
n

∑

k=1

α(G, k)(λ)k where (λ)k = λ(λ − 1) · · · (λ − k + 1) (see [6]).

Therefore, α(G, k) = α(H, k) for each k = 1, 2, . . . , if G ∼ H.

For a graph G with n vertices, the polynomial σ(G, x) =
n

∑

k=1

α(G, k)xk is

called the σ-polynomial of G (see [1]). Clearly, P (G,λ) = P (H,λ) implies that
σ(G, x) = σ(H,x).

For disjoint graphs G and H, G + H denotes the disjoint union of G and
H; G ∨H denotes the graph whose vertex-set is V (G) ∪ V (H) and whose edge-set
is {xy|x ∈ V (G) and y ∈ V (H)} ∪ E(G) ∪ E(H). Throughout this paper, all the
t-partite graphs G under consideration are 2-connected with χ(G) = t. For terms
used but not defined here we refer to [7].

Lemma 2.1. (Koh and Teo [3]) Let G and H be two graphs with H ∼ G, then
v(G) = v(H), e(G) = e(H), t(G) = t(H) and χ(G) = χ(H). Moreover, α(G, k) =
α(H, k) for each k = 1, 2, . . . , and

−Q(G) + 2K(G) = −Q(H) + 2K(H).

Note that if χ(G) = 3, then G ∼ H implies that Q(G) = Q(H).

Lemma 2.2. (Brenti [1]) Let G and H be two disjoint graphs. Then

σ(G ∨H,x) = σ(G, x)σ(H,x).
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In particular,

σ(K(n1, n2, . . . , nt), x) =

t
∏

i=1

σ(Oni
, x).

Lemma 2.3. Let G be a connected t-partite graph. If H ∼ G, then there exists a

complete t-partite graph F = K(x1, x2, . . . , xt) such that H = F − S′ with |S′| =
s′ = e(F )− e(G).

Proof. Since V (G) has a t-independent partition, then V (H) also has a t-indepe-
ndent partition with independent sets V1, V2, . . . , Vt such that |Vi| = xi. Hence, H is
a t-partite graph and there exists a complete t-partite graph F = K(x1, x2, . . . , xt)
such that H = F − S′. Since H ∼ G, by Lemma 2.1, we have s′ = e(F )− e(G). ¤

LetH = K(x1, x2, x3, . . . , xt) andH
′ = K(x1, x2, . . . ,xi+1, . . . ,xj−1, . . . , xt).

If i < j and xj − xi ≥ 2, then H
′ is called an improvement of H.

Lemma 2.4. Suppose H ′ = K(x1, x2, . . . , xi + 1, . . . ,xj − 1, . . . ,xt) is an improve-

ment of H = K(x1, x2,x3, . . . ,xt), then α(H, t+ 1) >α(H
′, t+ 1).

Proof. Note that α(H ′, t + 1) =
t

∑

k=1

2xk−1+ 2xi−1 − 2xj−2 and α(H, t + 1) =

t
∑

k=1

2xk−1. Hence, α(H, t+ 1)− α(H ′, t+ 1) = 2xj−2− 2xi−1 ≥ 2xi−1 > 0. ¤

Suppose G = K(p1, p2, . . . , pt) and H = G − S for a set S of s edges of G.
Define αk(H) = α(H, k)− α(G, k) for k ≥ t+ 1.

Lemma 2.5. (Zhao [9]) Let G = K(p1, p2, . . . , pt) and H = G− S. If p1 ≥ s+ 1,
then

s ≤ αt+1(H) = α(H, t+ 1)− α(G, t+ 1) ≤ 2s − 1,

αt+1(H) = s if and only if the subgraph induced by any r ≥ 2 edges in S is not a

complete multipartite graph, and αt+1(H) = 2
s − 1 if and only if 〈S〉 = K(1, s).

Lemma 2.6. (Dong et al. [2]) Let p1, p2 and s be positive integers with 3 ≤ p1 ≤
p2, then

(i) K
−K(1,s)
1,2 (p1, p2) is χ-unique for 1 ≤ s ≤ p2 − 2,

(ii) K
−K(1,s)
2,1 (p1, p2) is χ-unique for 1 ≤ s ≤ p1 − 2, and

(iii) K−sK2(p1, p2) is χ-unique for 1 ≤ s ≤ p1 − 1.

The following lemma is easily proved by induction.

Lemma 2.7. Let si (1 ≤ i ≤ t) be positive integers. Then

t
∑

i=1

(

si

2

)

=

(

t
∑

i=1

si

2

)

−

t−1
∑

j=1

[

sj

t
∑

i=j+1

si

]

.
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For a graph G ∈ K−s(p1, p2, . . . , pt), we say an induced C4 subgraph of G is
of Type 1 (respectively Type 2, and Type 3) if the vertices of the induced C4 are
in exactly two (respectively three, and four) partite sets of V (G). An example of
induced C4 of Type 1, 2 and 3 is shown in Figure 1.

V3

V1 V2 V1

Type 2

V2

Type 3

V3

V1

V4

...................

......................
...
...
...
...
...
.V2

Type 1

Figure 1: Three types of induced C4

Suppose G is a graph in K−s(p1, p2, . . . , pt). Let Sij (1 ≤ i ≤ t, 1 ≤ j ≤ t)
be a subset of S such that each edge in Sij has an end-vertex in Vi and another
end-vertex in Vj with |Sij | = sij ≥ 0. By Lemma 2.7, we have

Lemma 2.8. Let F = K(p1, p2, p3, p4) be a complete 4-partite graph and let G =
F − S where S is a set of s edges in F. If S induces a matching in F, then

Q(G) = Q(F )−
∑

1≤i<j≤4

(pi − 1)(pj − 1)sij +

(

s

2

)

− s12(s13 + s14 + s23 + s24)

− s13(s14 + s23 + s34)− s14(s24 + s34)− s23(s24 + s34)− s24s34

+
∑

1≤i<j≤4

[

sij

∑

k 6∈{i,j}

(

pk

2

)

]

,

and

K(G) = K(F )−
∑

i < j, k < `

{i, j, k, `} = {1, 2, 3, 4}

sijpkp` + (s12s34 + s13s24 + s14s23).

Moreover,

max{Q(G)} = Q(F )− s(p1 − 1)(p2 − 1) +

(

s

2

)

+ s

(

(

p3
2

)

+

(

p4
2

)

)

and

min{K(G)} = K(F )− sp3p4

if and only if each edge in S joins vertices in the same two partite sets of smallest

size in F. In particular, max{Q(G) − 2K(G)} is attained if and only if each edge

in S joins vertices in the same two partite sets of the smallest size in F.
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Proof. Note that G has induced C4 of Type 1, Type 2 or Type 3. Let Q1(G) (re-
spectively, Q2(G) and Q3(G)) be the number of induced C4 of Type 1 (respectively,

Type 2 and Type 3) in G. Observe that S =
⋃

1≤i<j≤4

Sij with sij ≥ 0. Hence,

Q1(G) =
∑

1≤i<j≤4

(

pi

2

)(

pj

2

)

−
∑

1≤i<j≤4

(pi − 1)(pj − 1)sij +
∑

1≤i<j≤4

(

sij

2

)

= Q(F )−
∑

1≤i<j≤4

(pi − 1)(pj − 1)sij +

(

s

2

)

− s12(s13 + s14 + s23

+ s24 + s34)− s13(s14 + s23 + s24 + s34)− s14(s23 + s24 + s34)

− s23(s24 + s34)− s24s34.

We now find Q2(G). Since the number of 2-element subsets of Vk is
(pk

2

)

, we

have

Q2(G) =
∑

1≤i<j≤4

[

sij

∑

k 6∈ {i, j}

(

pk

2

)

]

.

It is obvious that Q3(G) = s12s34 + s13s24 + s14s23. Therefore,

Q(G) = Q(F )−
∑

1≤i<j≤4

(pi − 1)(pj − 1)sij +

(

s

2

)

− s12(s13 + s14 + s23

+ s24)− s13(s14 + s23 + s34)− s14(s24 + s34)− s23(s24 + s34)

− s24s34 +
∑

1≤i<j≤4

[

sij

∑

k 6∈ {i, j}

(

pk

2

)

]

.

Hence,

Q(G) ≤ Q(F )−
∑

1≤i<j≤4

(pi − 1)(pj − 1)sij +

(

s

2

)

+
∑

1≤i<j≤4

[

sij

∑

k 6∈ {i, j}

(

pk

2

)

]

with the equality holds if and only if S = Sij ∪Sk` for i < j, k < ` and {i, j, k, `} =
{1, 2, 3, 4}. Now, observe that (p1−1)(p2−1)s ≤ (pi−1)(pj−1)sij+(pk−1)(p`−1)sk`

and the equality holds if and only if S = Sij ∪ Sk` for i < j, k < ` and {i, j, k, `} =
{1, 2, 3, 4} when p1 = p2 = p3 = p4, or S = S12 otherwise. Hence, max{Q(G)} is
attained if and only if S is a set of a possibility discussed above.

We now find K(G). Observe that each K4 subgraph in F has at most two
edges in S. Let Km(G) be the number of K4 subgraphs in F that contains m edges
in S for m = 1, 2. Hence, K(G) = K(F )−K1(G)+K2(G). Let vivj denote an edge
in S such that vi ∈ Vi and vj ∈ Vj . Then, the number of K4 subgraphs in F that
contains vivj is pkp` where i < j, k < ` and {i, j, k, `} = {1, 2, 3, 4}. Hence,

K1(G) =
∑

i < j, k < `

{i, j, k, `} = {1, 2, 3, 4}

sijpkp`.
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Observe that there is a one-to-one correspondence between the set of Type
3 induced C4 in G and the set of K4 subgraphs in F that contain two edges in S.
Hence, K2(G) = Q3(G). It follows that

K(G) = K(F )−
∑

i < j, k < `

{i, j, k, `} = {1, 2, 3, 4}

sijpkp` + (s12s34 + s13s24 + s14s23).

Therefore,

K(G) ≥ K(F )−
∑

i < j, k < `

{i, j, k, `} = {1, 2, 3, 4}

sijpkp`

with the equality holds if and only if s′ = s12s34 + s13s24 + s14s23 = 0. Now,
observe that sp3p4 ≥ s12p3p4 + s13p2p4 + s14p2p3 + s23p1p4 + s24p1p3 + s34p1p2.
Hence, when s′ = 0, the equality holds if and only if S = Sij ∪ Sk` ∪ Smn where
(i, j) ∈ {(1, 2), (3, 4)}, (k, `) ∈ {(1, 3), (2, 4)} and (m,n) ∈ {(1, 4), (2, 3)} when
p1 = p2 = p3 = p4, or s = s12 otherwise. Hence, min{K(G)} is attained if and only
if S is a set of a possibility discussed above. Consequently, max{Q(G) − 2K(G)}
is attained if and only if each edge in S joins vertices in the same two partite sets
of the smallest size in F. This completes the proof. ¤

3. CHARACTERIZATION

In this section, we shall characterize certain complete 4-partite graphs G =
K(p1, p2, p3, p4) according to the number of 5-independent partitions of G where
p4 − p1 ≤ 5.

Lemma 3.1. Let G = K(p1, p2, p3, p4) be a complete 4-partite graph such that

p1 + p2 + p3 + p4 = 4p. Define θ(G) = (α(G, 5)− 2
p+1 + 4)/2p−2. Then

(i) θ(G) = 0 if and only if G = K(p, p, p, p);

(ii) θ(G) = 1 if and only if G = K(p− 1, p, p, p+ 1);

(iii) θ(G) = 2 if and only if G = K(p− 1, p− 1, p+ 1, p+ 1);

(iv) θ(G) = 2
1

2
if and only if G = K(p− 2, p, p+ 1, p+ 1);

(v) θ(G) = 4 if and only if G = K(p− 1, p− 1, p, p+ 2);

(vi) θ(G) = 4
1

4
if and only if G = K(p− 3, p+ 1, p+ 1, p+ 1);

(vii) θ(G) = 4
1

2
if and only if G = K(p− 2, p, p, p+ 2);

(viii) θ(G) = 5
1

2
if and only if G = K(p− 2, p− 1, p+ 1, p+ 2);
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(ix) θ(G) = 6
1

4
if and only if G = K(p− 3, p, p+ 1, p+ 2);

(x) θ(G) = 9 if and only if G = K(p− 2, p− 2, p+ 2, p+ 2);

(xi) θ(G) = 9
1

4
if and only if G = K(p− 3, p− 1, p+ 2, p+ 2);

(xii) θ(G) = 11 if and only if G = K(p− 1, p− 1, p− 1, p+ 3);

(xiii) θ(G) = 11
1

2
if and only if G = K(p− 2, p− 1, p, p+ 3);

(xiv) θ(G) = 13 if and only if G = K(p− 2, p− 2, p+ 1, p+ 3).

Proof. In order to complete the proof of the theorem, we first give a table about the
θ-value of various complete 4-partite graphs with 4p vertices as shown in Table 1.

Table 1: Some complete 4-partite graphs with 4p vertices and their θ-values

Gi (1 ≤ i ≤ 16) θ(Gi) Gi (17 ≤ i ≤ 31) θ(Gi)

G1 = K(p, p, p, p) 0 G17 = K(p− 4, p+ 1, p+ 1, p+ 2) 8
1

8

G2 = K(p− 1, p, p, p+ 1) 1 G18 = K(p− 4, p, p+ 2, p+ 2) 10
1

8

G3 = K(p− 1, p− 1, p+ 1, p+ 1) 2 G19 = K(p− 4, p, p+ 1, p+ 3) 14
1

8

G4 = K(p− 2, p, p+ 1, p+ 1) 2
1

2
G20 = K(p− 2, p− 1, p− 1, p+ 4) 26

1

2
G5 = K(p− 1, p− 1, p, p+ 2) 4 G21 = K(p− 2, p− 2, p, p+ 4) 27

G6 = K(p− 2, p, p, p+ 2) 4
1

2
G22 = K(p− 3, p− 1, p, p+ 4) 27

1

4

G7 = K(p− 2, p− 1, p+ 1, p+ 2) 5
1

2
G23 = K(p− 4, p, p, p+ 4) 28

1

8

G8 = K(p− 3, p+ 1, p+ 1, p+ 1) 4
1

4
G24 = K(p− 3, p− 2, p+ 2, p+ 3) 16

3

4

G9 = K(p− 3, p, p+ 1, p+ 2) 6
1

4
G25 = K(p− 4, p− 1, p+ 2, p+ 3) 17

1

8

G10 = K(p− 1, p− 1, p− 1, p+ 3) 11 G26 = K(p− 3, p− 2, p+ 1, p+ 4) 28
3

4

G11 = K(p− 2, p− 1, p, p+ 3) 11
1

2
G27 = K(p− 5, p+ 1, p+ 2, p+ 2) 12

1

16

G12 = K(p− 3, p, p, p+ 3) 12
1

4
G28 = K(p− 5, p, p+ 2, p+ 3) 18

1

16

G13 = K(p− 2, p− 2, p+ 2, p+ 2) 9 G29 = K(p− 6, p+ 2, p+ 2, p+ 2) 16
1

32

G14 = K(p− 3, p− 1, p+ 2, p+ 2) 9
1

4
G30 = K(p− 5, p+ 1, p+ 1, p+ 3) 16

1

16

G15 = K(p− 2, p− 2, p+ 1, p+ 3) 13 G31 = K(p− 6, p+ 1, p+ 2, p+ 3) 20
1

32

G16 = K(p− 3, p− 1, p+ 1, p+ 3) 13
1

4
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By the definition of improvement, we have the following.

(i) G1 is the improvement of G2 with θ(G2) = 1;

(ii) G2 is the improvement of G3, G4, G5 and G6 with θ(G3) = 2, θ(G4) = 2
1

2
,

θ(G5) = 4 and θ(G6) = 4
1

2
;

(iii) G3 is the improvement of G4, G5 and G7 with θ(G4) = 2
1

2
, θ(G5) = 4 and

θ(G7) = 5
1

2
;

(iv) G4 is the improvement of G6, G7, G8 and G9 with θ(G6) = 4
1

2
, θ(G7) = 5

1

2
,

θ(G8) = 4
1

4
and θ(G9) = 6

1

4
;

(v) G5 is the improvement of G6, G7, G10 and G11 with θ(G6) = 4
1

2
, θ(G7) = 5

1

2
,

θ(G10) = 11 and θ(G11) = 11
1

2
;

(vi) G6 is the improvement of G7, G9, G11 and G12 with θ(G7) = 5
1

2
, θ(G9) = 6

1

4
,

θ(G11) = 11
1

2
and θ(G12) = 12

1

4
;

(vii) G7 is the improvement of G9, G11, G13, G14, G15 and G16 with θ(G9) = 6
1

4
,

θ(G11) = 11
1

2
, θ(G13) = 9, θ(G14) = 9

1

4
, θ(G15) = 13 and θ(G16) = 13

1

4
;

(viii) G8 is the improvement of G9 and G17 with θ(G9) = 6
1

4
and θ(G17) = 8

1

8
;

(ix) G9 is the improvement of G12, G14, G16, G17, G18 and G19 with θ(G12) =

12
1

4
, θ(G14) = 9

1

4
, θ(G16) = 13

1

4
, θ(G17) = 8

1

8
, θ(G18) = 10

1

8
and θ(G19) =

14
1

8
;

(x) G10 is the improvement of G11 and G20 with θ(G11) = 11
1

2
and θ(G20) =

26
1

2
;

(xi) G11 is the improvement of G12, G15, G16, G20, G21 and G22 with θ(G12) =

12
1

4
, θ(G15) = 13, θ(G16) = 13

1

4
, θ(G20) = 26

1

2
, θ(G21) = 27 and θ(G22) =

27
1

4
;

(xii) G12 is the improvement of G16, G19, G22 and G23 with θ(G16) = 13
1

4
,

θ(G19) = 14
1

8
, θ(G22) = 27

1

4
and θ(G23) = 28

1

8
;
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(xiii) G13 is the improvement of G14, G15 and G24 with θ(G14) = 9
1

4
, θ(G15) = 13

and θ(G24) = 16
3

4
;

(xiv) G14 is the improvement of G16, G18, G24 and G25 with θ(G16) = 13
1

4
,

θ(G18) = 10
1

8
, θ(G24) = 16

3

4
and θ(G25) = 17

1

8
;

(xv) G15 is the improvement of G16, G21, G24 and G26 with θ(G16) = 13
1

4
,

θ(G21) = 27, θ(G24) = 16
3

4
and θ(G26) = 28

3

4
;

(xvi) G18 is the improvement of G19, G25, G27 and G28 with θ(G19) = 14
1

8
,

θ(G25) = 17
1

8
, θ(G27) = 12

1

16
and θ(G28) = 18

1

16
;

(xvii) G27 is the improvement of G28, G29, G30 and G31 with θ(G28) = 18
1

16
,

θ(G29) = 16
1

32
, θ(G30) = 16

1

16
and θ(G31) = 20

1

32
.

Hence, by Lemma 2.4 and the above arguments, we know that (i) to (xiv)
hold. The proof is thus complete. ¤

Similar to the proof of Lemma 3.1, we obtain Lemmas 3.2 to 3.4.

Lemma 3.2. Let G be a complete 4-partite graph with 4p + 1 vertices. Define

θ(G) = (α(G, 5)− 2p−1 − 2p+1 + 4)/2p−2. Then

(i) θ(G) = 0 if and only if G = K(p, p, p, p+ 1);

(ii) θ(G) = 1 if and only if G = K(p− 1, p, p+ 1, p+ 1);

(iii) θ(G) = 2
1

2
if and only if G = K(p− 2, p+ 1, p+ 1, p+ 1);

(iv) θ(G) = 3 if and only if G = K(p− 1, p, p, p+ 2);

(v) θ(G) = 4 if and only if G = K(p− 1, p− 1, p+ 1, p+ 2);

(vi) θ(G) = 4
1

2
if and only if G = K(p− 2, p, p+ 1, p+ 2);

(vii) θ(G) = 6
1

4
if and only if G = K(p− 3, p+ 1, p+ 1, p+ 2);

(viii) θ(G) = 7
1

2
if and only if G = K(p− 2, p− 1, p+ 2, p+ 2);

(ix) θ(G) = 8
1

4
if and only if G = K(p− 3, p, p+ 2, p+ 2);

(x) θ(G) = 10 if and only if G = K(p− 1, p− 1, p, p+ 3);
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(xi) θ(G) = 10
1

2
if and only if G = K(p− 2, p, p, p+ 3);

(xii) θ(G) = 11
1

2
if and only if G = K(p− 2, p− 1, p+ 1, p+ 3);

(xiii) θ(G) = 15 if and only if G = K(p− 2, p− 2, p+ 2, p+ 3);

(xiv) θ(G) = 25 if and only if G = K(p− 1, p− 1, p− 1, p+ 4).

Lemma 3.3. Let G be a complete 4-partite graph with 4p + 2 vertices. Define

θ(G) = (α(G, 5)− 2p − 2p+1 + 4)/2p−2. Then

(i) θ(G) = 0 if and only if G = K(p, p, p+ 1, p+ 1);

(ii) θ(G) = 1 if and only if G = K(p− 1, p+ 1, p+ 1, p+ 1);

(iii) θ(G) = 2 if and only if G = K(p, p, p, p+ 2);

(iv) θ(G) = 3 if and only if G = K(p− 1, p, p+ 1, p+ 2);

(v) θ(G) = 4
1

2
if and only if G = K(p− 2, p+ 1, p+ 1, p+ 2);

(vi) θ(G) = 6 if and only if G = K(p− 1, p− 1, p+ 2, p+ 2);

(vii) θ(G) = 6
1

2
if and only if G = K(p− 2, p, p+ 2, p+ 2);

(viii) θ(G) = 8
1

4
if and only if G = K(p− 3, p+ 1, p+ 2, p+ 2);

(ix) θ(G) = 9 if and only if G = K(p− 1, p, p, p+ 3);

(x) θ(G) = 10 if and only if G = K(p− 1, p− 1, p+ 1, p+ 3);

(xi) θ(G) = 10
1

2
if and only if G = K(p− 2, p, p+ 1, p+ 3);

(xii) θ(G) = 13
1

2
if and only if G = K(p− 2, p− 1, p+ 2, p+ 3);

(xiii) θ(G) = 21 if and only if G = K(p− 2, p− 2, p+ 3, p+ 3);

(xiv) θ(G) = 24 if and only if G = K(p− 1, p− 1, p, p+ 4).

Lemma 3.4. Let G be a complete 4-partite graph with 4p + 3 vertices. Define

θ(G) = (α(G, 5)− 2p−1 − 2p − 2p+1 + 4)/2p−1. Then

(i) θ(G) = 0 if and only if G = K(p, p+ 1, p+ 1, p+ 1);

(ii) θ(G) = 1 if and only if G = K(p, p, p+ 1, p+ 2);

(iii) θ(G) = 1
1

2
if and only if G = K(p− 1, p+ 1, p+ 1, p+ 2);
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(iv) θ(G) = 2
1

2
if and only if G = K(p− 1, p, p+ 2, p+ 2);

(v) θ(G) = 3
1

4
if and only if G = K(p− 2, p+ 1, p+ 2, p+ 2);

(vi) θ(G) = 4 if and only if G = K(p, p, p, p+ 3);

(vii) θ(G) = 4
1

2
if and only if G = K(p− 1, p, p+ 1, p+ 3);

(viii) θ(G) = 5
1

8
if and only if G = K(p− 3, p+ 2, p+ 2, p+ 2);

(ix) θ(G) = 5
1

4
if and only if G = K(p− 2, p+ 1, p+ 1, p+ 3);

(x) θ(G) = 6 if and only if G = K(p− 1, p− 1, p+ 2, p+ 3);

(xi) θ(G) = 6
1

4
if and only if G = K(p− 2, p, p+ 2, p+ 3);

(xii) θ(G) = 9
3

4
if and only if G = K(p− 2, p− 1, p+ 3, p+ 3);

(xiii) θ(G) = 11
1

2
if and only if G = K(p− 1, p, p, p+ 4);

(xiv) θ(G) = 12 if and only if G = K(p− 1, p− 1, p+ 1, p+ 4).

4. CHROMATICALLY CLOSED 4-PARTITE GRAPHS

In this section, we deduce the χ-closed families of graphs obtained from the
graphs in Lemma 3.1 to Lemma 3.4 with a set S of s edges deleted.

Lemma 4.1. The family of graphs K−s(p1, p2, p3, p4) where p1+p2+p3+p4 = 4p,
p4 − p1 ≤ 5 and p1 ≥ s+ 3 is χ-closed.

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), . . . , (xiv) by G1, G2, . . . , G14, respectively. Suppose H ∼
Gi − S. It suffices to show that H ∈ {Gi − S}. By Lemma 2.1, we know there
exists a complete 4-partite graph F = K(w, x, y, z) such that H = F − S ′ with
|S′| = s′ = e(F )− e(G) + s ≥ 0.

Case i. Let G = G1 with p ≥ s+ 2. In this case, H ∼ G− S ∈ K−s(p, p, p, p). By
Lemma 2.5,

α(G− S, 5) = α(G, 5) + α5(G− S) with s ≤ α5(G− S) ≤ 2s − 1,

α(F − S′, 5) = α(F, 5) + α5(F − S′) with 0 ≤ s′ ≤ α5(F − S′).

Hence,

α(F − S′, 5)− α(G− S, 5) = α(F, 5)− α(G, 5) + α5(F − S′)− α5(G− S).
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By definition, α(F, 5)−α(G, 5) = 2p−2(θ(F )− θ(G)). By Lemma 3.1, θ(F ) ≥
0. Suppose θ(F ) > 0, then

α(F − S′, 5)− α(G− S, 5) ≥ 2p−2 + α5(F − S′)− α5(G− S)

≥ 2s + α5(F − S′)− 2s + 1 ≥ 1,

contradicting α(F−S′, 5) = α(G−S, 5). Hence, θ(F ) = 0 and so F ∼= G and s = s′.
Therefore, H ∈ K−s(p, p, p, p).

Case ii. Let G = G2 with p ≥ s+2. In this case, H ∼ G−S ∈ K−s(p−1, p, p, p+1).
By Lemma 2.5,

α(G− S, 5) = α(G, 5) + α5(G− S) with s ≤ α5(G− S) ≤ 2s − 1,

α(F − S′, 5) = α(F, 5) + α5(F − S′) with 0 ≤ s′ ≤ α5(F − S′).

Hence,

α(F − S′, 5)− α(G− S, 5) = α(F, 5)− α(G, 5) + α5(F − S′)− α5(G− S).

By definition, α(F, 5)− α(G, 5) = 2p−2(θ(F )− θ(G)). Suppose θ(F ) 6= θ(G).
We consider two subcases.

Subcase a. θ(F ) < θ(G). By Lemma 3.1, F = G1 and so H = G1−S
′ ∈ {G1−S

′}.
However, G− S 6∈ {G1 − S′} since {G1 − S′} is χ-closed, a contradiction.

Subcase b. θ(F ) > θ(G). By Lemma 3.1, α(F, 5)− α(G, 5) ≥ 2p−2. So,

α(F − S′, 5)− α(G− S, 5) ≥ 2p−2 + α5(F − S′)− α5(G− S)

≥ 2s + α5(F − S′)− 2s + 1 ≥ 1,

contradicting α(F − S′, 5) = α(G − S, 5). Hence, θ(F ) − θ(G) = 0 and so F = G
and s = s′. Therefore, H ∈ K−s(p− 1, p, p, p+ 1).

Using Table 1, we can prove (iii) to (xiv) in a similar way. This completes
the proof. ¤

Similarly, we can prove Lemmas 4.2 to 4.4.

Lemma 4.2. The family of graphs K−s(p1, p2, p3, p4) where p1 + p2 + p3 + p4
= 4p+ 1, p4 − p1 ≤ 5 and p1 ≥ s+ 4 is χ-closed.

Lemma 4.3. The family of graphs K−s(p1, p2, p3, p4) where p1 + p2 + p3 + p4
= 4p+ 2, p4 − p1 ≤ 5 and p1 ≥ s+ 5 is χ-closed.

Lemma 4.4. The family of graphs K−s(p1, p2, p3, p4) where p1 + p2 + p3 + p4
= 4p+ 3, p4 − p1 ≤ 5 and p1 ≥ s+ 2 is χ-closed.
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5. CHROMATICALLY UNIQUE 4-PARTITE GRAPHS

The following two Lemmas give several families of chromatically unique com-
plete 4-partite graphs having 4p vertices with a set S of s edges deleted where the
deleted edges induce a star K(1, s) and a matching sK2, respectively.

Lemma 5.1. The graphs K
−K(1,s)
i,j (p1, p2, p3, p4) where p1 + p2 + p3 + p4 = 4p,

p4 − p1 ≤ 5 and p1 ≥ s+ 3 are χ-unique for 1 ≤ i 6= j ≤ 4.

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), . . . , (xiv) by G1, G2, . . . , G14, respectively. The proofs for each
graph obtained from Gi (i = 1, 2, . . . , 14) are similar, so we only give the detailed
proof for the graphs obtained from G2 below.

By Lemma 2.5 and 4.1, we know that K
−K(1,s)
i,j (p−1, p, p, p+1) = {K

−K(1,s)
i,j

(p − 1, p, p, p + 1) | (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}} is χ-closed for
p ≥ s+ 2. Note that

t
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= t(G2)− 2p− 1 for (i, j) ∈ {(1, 2), (2, 1)},

t
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= t(G2)− 2p for (i, j) ∈ {(1, 4), (4, 1)},

t
(

K
−K(1,s)
2,3 (p− 1, p, p, p+ 1)

)

= t(G2)− 2p,

t
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= t(G2)− 2p+ 1 for (i, j) ∈ {(2, 4), (4, 2)}.

By Lemmas 2.2 and 2.6, we conclude that σ
(

K
−K(1,s)
i,j (p−1, p, p, p+1)

)

6= σ
(

K
−K(1,s)
j,i

(p−1, p, p, p+1)
)

for each (i, j) ∈ {(1, 2), (1, 4), (2, 4)}.We now show that K
−K(1,s)
2,3

(p− 1, p, p, p+ 1) 6∼ K
−K(1,s)
i,j (p− 1, p, p, p+ 1) for (i, j) ∈ {(1, 4), (4, 1)}. We have

Q
(

K
−K(1,s)
2,3 (p− 1, p, p, p+ 1)

)

= Q(G2)− (p− 1)
2 +

(

s

2

)

+

(

p− 1

2

)

+

(

p+ 1

2

)

,

Q
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= Q(G2)− p(p− 2) +

(

s

2

)

+ 2

(

p

2

)

for (i, j) ∈ {(1, 4), (4, 1)},

with

Q
(

K
−K(1,s)
2,3 (p− 1, p, p, p+ 1)

)

−Q
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= 0,

and that

K
(

K
−K(1,s)
2,3 (p− 1, p, p, p+ 1)

)

= K(G2)− s(p− 1)(p+ 1),

K
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= K(G2)− sp2 for (i, j) ∈ {(1, 4), (4, 1)},

with

K
(

K
−K(1,s)
2,3 (p− 1, p, p, p+ 1)

)

−K
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

= s.
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This means 2K
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

−Q
(

K
−K(1,s)
i,j (p− 1, p, p, p+ 1)

)

6= 2K
(

K
−K(1,s)
2,3 (p − 1, p, p, p + 1)

)

− Q
(

K
−K(1,s)
2,3 (p − 1, p, p, p + 1)

)

, contradicting

Lemma 2.1. Hence, K
−K(1,s)
i,j (p − 1, p, p, p + 1) where p ≥ s + 2 is χ-unique for

1 ≤ i 6= j ≤ 4. The proof is thus complete. ¤

Lemma 5.2. The graphs K−sK2

1,2 (p1, p2, p3, p4) where p1+p2+p3+p4 = 4p, p4−p1 ≤
5 and p1 ≥ s+ 3 are χ-unique.

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), . . . , (xiv) by G1, G2, . . . , G14, respectively. For a graph
K(w, x, y, z), let S = {ε1, ε2, . . . , εs} be a set of s edges in E(K(w, x, y, z)) and
let t(εi) denote the number of triangles containing εi in K(w, x, y, z). The proofs
for each graph obtained from Gi (i = 1, 2, . . . , 14) are similar, so we only give the
proofs for the graphs obtained from G2 and G3 as follows.

Suppose H ∼ G = K−sK2

1,2 (p− 1, p, p, p+1) for p ≥ s+2. By Lemma 4.1 and
Lemma 2.1, H ∈ K−s(p − 1, p, p, p + 1) and α5(H) = α5(G) = s. Let H = F − S
where F = K(p− 1, p, p, p+ 1). Clearly, t(εi) ≤ 2p+ 1 for each εi ∈ S. So,

(1) t(H) ≥ t(F )− s(2p+ 1)

with equality holds only if t(εi) = 2p + 1 for all εi ∈ S. Since t(H) = t(G) =
t(F )− s(2p+ 1), equality in (1) holds with t(εi) = 2p+ 1 for all εi ∈ S. Therefore,
each edge in S has an end-vertex in V1 and another end-vertex in V2 or in V3.
Moreover, S must induce a matching in F. Otherwise, equality in (1) does not hold

or α5(H) > s. By Lemma 2.8, Q(G) − 2K(G) = Q(F ) − s(p − 2)(p − 1) +
(s
2

)

+s

[

(

p
2

)

+
(

p+ 1
2

)

]

−2[K(F )− sp(p+1)] ≥ Q(H)−2K(H) and the equality holds

if and only if s = s1j (2 ≤ j ≤ 3). Hence, 〈S〉 ∼= sK2 and H ∼= G.

Now, suppose H ∼ G = K−sK2

1,2 (p − 1, p − 1, p + 1, p + 1) for p ≥ s + 3.
By Lemma 4.1 and Lemma 2.1, H ∈ K−s(p − 1, p − 1, p + 1, p + 1) and α5(H)
= α5(G) = s. Let H = F − S where F = K(p − 1, p − 1, p + 1, p + 1). Clearly,
t(εi) ≤ 2p+ 2 for each εi ∈ S. So,

(2) t(H) ≥ t(F )− s(2p+ 2)

with equality holds only if t(εi) = 2p + 2 for all εi ∈ S. Since t(H) = t(G) =
t(F )− s(2p+ 2), equality in (2) holds with t(εi) = 2p+ 2 for all εi ∈ S. Therefore,
each edge in S has an end-vertex in V1, and another end-vertex in V2. Moreover,
S must induce a matching in F. Otherwise, α5(H) > s. Hence, 〈S〉 ∼= sK2 and
H ∼= G. The proof is thus complete. ¤

Similarly to the proofs of Lemmas 5.1 and 5.2, we can prove the following six
lemmas.

Lemma 5.3. The graphs K
−K(1,s)
i,j (p1, p2, p3, p4) where p1+ p2+ p3+ p4 = 4p+1,

p4 − p1 ≤ 5 and p1 ≥ s+ 4 are χ-unique for 1 ≤ i 6= j ≤ 4.
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Lemma 5.4. The graphs K−sK2

1,2 (p1, p2, p3, p4) where p1 + p2 + p3 + p4 = 4p + 1,
p4 − p1 ≤ 5 and p1 ≥ s+ 4 are χ-unique.

Lemma 5.5. The graphs K
−K(1,s)
i,j (p1, p2, p3, p4) where p1+ p2+ p3+ p4 = 4p+2,

p4 − p1 ≤ 5 and p1 ≥ s+ 5 are χ-unique for 1 ≤ i 6= j ≤ 4.

Lemma 5.6. The graphs K−sK2

1,2 (p1, p2, p3, p4) where p1 + p2 + p3 + p4 = 4p + 2,
p4 − p1 ≤ 5 and p1 ≥ s+ 5 are χ-unique.

Lemma 5.7. The graphs K
−K(1,s)
i,j (p1, p2, p3, p4) where p1+ p2+ p3+ p4 = 4p+3,

p4 − p1 ≤ 5 and p1 ≥ s+ 2 are χ-unique for 1 ≤ i 6= j ≤ 4.

Lemma 5.8. The graphs K−sK2

1,2 (p1, p2, p3, p4) where p1 + p2 + p3 + p4 = 4p + 3,
p4 − p1 ≤ 5 and p1 ≥ s+ 2 are χ-unique.

We thus have our main theorem as follows.

Theorem 5.1. The graphs K
−K(1,s)
i,j (p1, p2, p3, p4) where 1 ≤ i 6= j ≤ 4, and

K−sK2

1,2 (p1, p2, p3, p4) are χ-unique for integers p4 − p1 ≤ 5 and p1 ≥ s+ 5.

Note that our results significantly improve the condition of Theorems 6.5.2
to 6.5.4 in [9] especially when s is “sufficiently” large.
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