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CONVERGENCE PROPERTIES OF THE q-DEFORMED

BINOMIAL DISTRIBUTION

Martin Zeiner

We consider the q-deformed binomial distribution introduced by S. C. Jing:

The q-deformed binomial distribution and its asymptotic behaviour, J. Phys.
A 27 (2) (1994), 493–499 and W. S. Chung et al: q-deformed probability
and binomial distribution, Internat. J. Theoret. Phys. 34 (11) (1995), 2165–
2170 and establish several convergence results involving the Euler and the
exponential distribution; some of them are q-analogues of classical results.

1. INTRODUCTION

The q-deformed binomial distribution QD(n, τ, q) was introduced by Jing

[10] in connection with the q-deformed boson oscillator and by Chung et al. [5].
Its probabilities are given by

P(XQD = x) =

[
n

x

]

q

τx(τ ; q)n−x, 0 ≤ x ≤ n, 0 ≤ τ ≤ 1, 0 < q < 1,(1)

where [
n

x

]

q

=
(q; q)n

(q; q)x(q; q)n−x
and (z; q)n =

n−1∏

i=0

(1− zqi)

are the q-binomial coefficient and the q-shifted Pochhammer symbol; an introduc-
tion to the q-calculus and basic hypergeometric series can be found in Gasper and
Rahman [6]. This distribution was studied by many authors and has applications
in physics as well as in approximation theory due to the q-Bernstein polynomials
and the q-Bernstein operator (see Section 2 for details).
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It is well known that for n→∞ (and fixed τ) the q-deformed binomial distri-
bution converges to an Euler distribution. This paper is devoted to the study of se-
quences of q-deformed binomially distributed random variables Xn ∼ QD(n, τn, q)
with parameter sequence (τn) depending on n (a similar analysis for Kemp’s q-
binomial distribution has been done by Gerhold and Zeiner [7]).

The present paper is organised as follows. In Section 2 we give all definitions
of q-calculus and q-distributions we need in the following and we sum up some
important properties of the q-deformed binomial distribution. Section 3 deals with
parameter sequences τn where τn tends to a limit c ∈ [0, 1), in particular with the
case of constant mean. The pertinent limit law in this case is the Heine distribution
and we establish a q-analogue of the convergence of the classical binomial distribu-
tion with constant mean to the Poisson distribution. In Section 4 we investigate
parameter sequences with limit 1. Depending on the growth rate of the parameter
sequence we obtain a degenerate, a truncated-exponential like or an exponential
limit law. Remarkably all these limits are independent of q.

2. NOTATION AND DEFINITIONS

Throughout the paper we use the notation of Gasper and Rahman [6].
Besides the definitions of the q-binomial coefficient and the q-shifted Pochhammer
symbol we need the q-number [x]q of x defined by

[x]q :=
1− qx
1− q ;

for q → 1 we have [x]q → x. Moreover, we will need two q-analogues of the
exponential function:

eq(z) =
1

(z; q)∞
, z ∈ C \ {q−i, i = 0, 1, 2, . . . }, |q| < 1,

and Eq(z) = (−z; q)∞. Here the limit relations eq((1−q)z)→ ez and Eq((1−q)z)→
ez hold, as q → 1.

The Euler distribution E(λ, q) with parameter λ is defined by

P(XE = x) =
λx

(q; q)x
(λ; q)∞ =

λx

(q; q)x
Eq(−λ).

This is a q-analogue of the Poisson distribution since E((1 − q)λ, q) → P (λ) for
q → 1. For properties and applications of this distribution we refer to Johnson,
Kemp and Kotz [12], Benkherouf and Bather [1], Biedenharn [2], Kemp

[13, 14, 16], Charalambides and Papadatos [4] and Ostrovska [19, 20].

Our main object of interest is the q-deformed binomial distributionQD(n, τ, q)
defined in (1). This distribution is a q-analogue of the classical binomial distribu-
tion, since in the limit q → 1 the q-deformed binomial distribution with parameter
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(n, τ, q) reduces to the binomial distribution with parameters (n, τ). The limit
n → ∞ of random variables Xn ∼ QD(n, τ, q) leads to an Euler distribution with
parameter λ = τ . If we denote the probabilities (1) by pn(x, τ), then the following
recurrence relation holds (see Videnskii [21, Section 3]):

pn(x, τ) = τpn−1(x− 1, τ) + (1− τ)pn−1(x, qτ).(2)

For details and further properties we refer to Jing [10], Jing and Fan [11], Kemp

[15, 16], the encyclopedic book Johnson, Kemp and Kotz [12], and to Char-

alambides [3]. Chung et al. [5], Kupershmidt [17] and Il’inski [8] gave repre-
sentations of the q-deformed binomial distribution as a sum of dependent and not
identically distributed random variables.

As mentioned above the q-deformed binomial distribution and the Euler dis-
tribution appear in particular both in physics ([2, 5, 10, 11]) and in approximation
theory. The q-Bernstein polynomials of order n are defined by

Bn(f(t), q;x) =
n∑

r=0

f

(
[r]q
[n]q

)[
n

r

]

q

xr(x; q)n−r,

where f is a continuous function on the interval [0, 1]. There exists a vast literature
on these polynomials, closely related to the distributions under consideration are
e.g. [3, 9, 18, 19, 20, 21].

3. PARAMETER SEQUENCES WITH LIMIT < 1

In the present section we study sequences of random variables Xn which are
QD(n, τn, q)-distributed, where the parameters τn converge to a limit c ∈ [0, 1).
In particular we prove a q-analogue of the convergence of the classical binomial
distribution with constant mean to a Poisson distribution.

As noted above the sequence converges in the case of constant parameters
τn = τ to an Euler distribution with parameter τ . The following proposition is a
mild generalisation of the convergence to an Euler distribution mentioned in the
previous section and shows that the Euler distribution is the limit distribution for
every convergent parameter sequence τn with limit in [0, 1).

Proposition 3.1. Let Xn ∼ QD(n, τn, q). Then, for n→∞,

Xn → E(τ, q)

if τn → τ and 0 ≤ τ < 1.

Proof. Note that

P(Xn = x) =

[
n

x

]

q

τxn

n−x∏

i=0

(1− τnqi).
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The q-binomial coefficient tends to 1/(q; q)x. For the product apply the dominated
convergence theorem to its logarithm to see that it converges to Eq(−τ). ¤

We are now interested in special choices of the parameters τn such that the
limit X(q) of the sequence Xn(q) converges to a Poisson distribution for q → 1.
From the previous theorem we deduce immediately the following corollary.

Corollary 3.2. Let Xn ∼ QD(n, τn(q), q) with τn(q) → λ

n
for q → 1 and

τn(q) → τ(q) for n → ∞ with the additional property
τ(q)

1− q
→ λ in the limit

q → 1 (recall that we assume τ(q) < 1 in this section). Then the following diagram
is commutative:

QD(n, τn, q)
n→∞−−−−→ E(τ(q), q)

q→1

y
yq→1

B
(
n,
λ

n

)
−−−−→
n→∞

P (λ)

One very natural way to choose the parameters is to set τn =
λ

[n]q
.

Our next goal is to establish a convergence result, which is analogous to the
convergence of the classical binomial distribution with constant mean to a Poisson
distribution and reduces in the limit q → 1 to that theorem. For this purpose we
start with an elementary fact.

Lemma 3.3. Let fn(x), n ∈ N, be a sequence of continuous functions which
converges pointwise to a continuous limit f(x). Assume that for each n the function
fn(x) has a single root x̂n, and f(x) has a single root x̂, and that f(y)f(z) < 0 for
y < x̂ and z > x̂. Then x̂n → x̂.

Proof. W.l.o.g. we may assume that f(z) > 0 for z > x̂. For given ε > 0 choose a
δ(ε) < min(f(x̂+ε),−f(x̂−ε)). Then there exists an N = N(δ(ε)) such that for all
n ≥ N we have |fn(x̂+ε)−f(x̂+ε)| < δ(ε). Therefore fn(x̂+ε) > 0. Moreover there
exists anM =M(δ(ε)) such that for all n ≥M we have |fn(x̂−ε)−f(x̂−ε)| < δ(ε).
Therefore fn(x̂ − ε) < 0. Hence, by continuity, for all n ≥ max(N,M) we have
|x̂− x̂n| < 2ε. ¤

The essential key to apply this lemma is the following representation of the
means µn(τ, q), which allows us to extract important properties of the means easily.

Lemma 3.4. The means µn(τ, q) have the representation

µn(τ, q) =

n∑

j=1

(q; q)j−1

[
n

j

]

q

τ j .

Proof. We proceed by induction. For n = 1 this is obviously true. Now suppose
that the statement is true for n − 1. In order to calculate µn(τ, q) we use the
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recurrence relation (2). Hence we have

µn(τ, q) =
n∑

x=1

xpn(x, τ) = τ
n∑

x=1

xpn−1(x− 1, τ) + (1− τ)
n−1∑

x=1

xpn−1(x, qτ).

Shifting the summation index in the first sum, splitting this sum and using the
induction hypothesis yields

µn(τ, q) = τ

n−1∑

j=1

(q; q)j−1

[
n− 1
j

]

q

τ j +

n∑

x=1

τpn−1(x− 1, τ)

+ (1− τ)
n−1∑

j=1

(q; q)j−1

[
n− 1
j

]

q

τ jqj .

The second sum reduces to τ . Collecting powers of τ gives

µn(τ, q) = τ

(
1 +

[
n− 1
1

]

q

)

+

n∑

j=2

(
(q; q)j−1

[
n− 1
j

]

q

+ (q; q)j−2

[
n− 1
j − 1

]

q

(1− qj−1)
)
τ j .

Consequently the desired result follows by the recurrence relation for the q-binomial
coefficients (see e.g. [6, (I.45)]). ¤

Remark 3.5. An alternative way to prove this lemma is to use Kemp’s [15, p. 300]

representation of the probability generating function, to differentiate and to manipulate

the sum.

Using the monotonicity of the q-binomial coefficients in n we immediately get
the following proposition.

Proposition 3.6. The means µn(τ, q) are strictly increasing in n (for τ > 0) and
τ .

Now we turn to the convergence result:

Theorem 3.7. Fix µ > 0 and choose the parameter τn = τn(q, µ) of the q-deformed
binomial distribution such that µn = µ. Then we have

(i) The sequence QD(n, τn, q) converges for n → ∞ to an Euler distribution

E(τ, q), where τ = lim
n→∞

τn.

(ii) For fixed n, QD(n, τn, q) tends to a binomial distribution B
(
n,
µ

n

)
in the limit

q → 1.

(iii) For q → 1, the Euler distribution E(τ, q) converges to a Poisson distribution
with parameter µ.
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So we obtain the following commutative diagram:

QD(n, τn(q), q)
n→∞−−−−→ E(τ(q), q)

q→1

y
yq→1

B
(
n,
µ

n

)
−−−−→
n→∞

P (µ)

Proof. First we check that for given µ, q and large n there exists a unique τn
with µn(τn, q) = µ. The function µn(τ, q) is continuous and strictly increasing in n
and τ by the previous theorem. Moreover, we have lim

τ→0
µn(τ, q) = 0. If we choose

τn such that τn → 1 then µn(τn, q) becomes arbitrarily large. Consequently there
is a unique solution of µn(τ, q) = µ. By Lemma 3.3 the sequence τn converges to a
limit τ where τ is the unique solution of µE(τ, q) = µ, where µE(τ, q) is the mean
of an Euler-distribution with parameters τ and q. This mean can be written as

µE(τ, q) =
∞∑

i=0

qiτ

1− qiτ ,

see [13] or take the limit n → ∞ (using the dominated convergence theorem) in
Lemma 3.4 and manipulate the sum (i.e. expand the denominator as a geometric
series and change the order of summation).

Again by Lemma 3.3 we get that τn → µ/n. It remains to check that τ/(1−q)
converges to µ in the limit q → 1. But this is again a consequence of Lemma 3.3
since τ/(1 − q) is the unique solution of µE((1 − q)τ, q) = µ and µE((1 − q)τ, q)
tends to τ for q → 1. ¤

4. PARAMETER SEQUENCES WITH LIMIT 1

In this section we investigate sequences Xn of random variables, where Xn

is QD(n, τn, q)-distributed and the parameters τn converge to 1. The behaviour of
the sequences Xn depends on the growth rate of τn. Therefore we will distinguish
three cases: Firstly we examine the case τnn → 1, where it will turn out that the
limit distribution is degenerate. Then we study the case τnn → c with 0 < c < 1.
Here the limit law depends only on c and is a truncated exponential distribution.

Finally we turn to the case τ
f(n)
n → c where 0 < c < 1 and f(n) = o(n); this will

lead to an exponential distribution.

Consider sequences of random variables Xn ∼ QD(n, τn, q) with τn → 1 and
additionally τnn → 1 first. Then we have the following theorem:

Theorem 4.1. Let Xn ∼ QD(n, τn, q) with τn → 1 and τnn → 1. Then n − Xn

converges to the point measure at 0.

Proof. The probability that Yn = n−Xn is equal to 0 is given by

P(Yn = 0) = τnn
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which converges to 1 by assumption. ¤

Now let us investigate sequences Xn ∼ QD(n, τn, q), where τn → 1 and
τnn → c for a c ∈ (0, 1). Before we can establish the distribution of the limit of
such a sequence, we start with several lemmas, which allow us to compute the
asymptotic behaviour of certain sums of probabilities of QD(n, τn, q)-distributed
random variables and their means and variances.

The first lemma is an analogue to Lemma 3.4 and gives an alternative repre-
sentation of the variance:

Lemma 4.2. The second moment of Xn(τ, q) can be written as

n∑

x=1

x2
[
n

x

]

q

τx(τ ; q)n−x =
n∑

j=1

najτ
j

with

naj =

[
n

j

]

q

(q; q)j−1

(
1 + 2

j−1∑

i=1

1

1− qi

)
.

Proof. We prove this by induction. The case n = 1 is obvious. To compute E(X2n)
we use the recurrence (2) again and shift the summation index. This gives

Vn :=

n∑

x=1

x2pn(x, τ) = τ

n−1∑

x=0

(x2 + 2x+ 1)pn−1(x, τ) + (1− τ)
n∑

x=1

x2pn−1(x, qτ).

By splitting sums and by using Lemma 3.4 and the induction hypothesis we find

Vn = τ
n−1∑

j=1

n−1ajτ
j + 2τ

n−1∑

j=1

(q; q)j−1

[
n− 1
j

]

q

τ j + τ + (1− τ)
n−1∑

j=1

n−1ajq
jτ j .

Collecting powers of τ yields

Vn = τ

(
1 +

[
n− 1
1

]

q

)

+
n∑

j=2

(

n−1aj−1(1− qj−1) + 2
[
n− 1
j − 1

]

q

(q; q)j−2 + n−1ajq
j

)
τ j .

The first term gives
[
n
1

]

q
τ and the coefficient of τ j in the sum equals

[
n− 1
j − 1

]

q

(q; q)j−2

(
1 + 2

j−2∑

i=1

1

1− qi

)
[
1− qj−1

]
+ 2

[
n− 1
j − 1

]

q

(q; q)j−2

+

[
n− 1
j

]

q

(q; q)j−1

(
1 + 2

j−1∑

i=1

1

1− qi

)
qj ,
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which implies the statement by using the recurrence relation of the q-binomial
coefficients again. ¤

The next three lemmas are devoted to the asymptotic behaviour of sums of
powers of θn, where 0 < θn < 1 and θn → 1.

Lemma 4.3. If f(n) → ∞ for n → ∞ and θn ≤ 1 such that θf(n)n → c with
0 < c < 1, then

∞∑

i=0

θin ∼
−f(n)
log c

, n→∞.

Proof. Since c < 1 almost all θn must be smaller than 1. Thus we assume w.l.o.g.
that θn < 1 and obtain

∞∑

i=0

θin =
1

1− θn
∼ − 1

log θn

using the substitution θn = 1 + xn in the elementary equivalence

log(1 + x) ∼ x, x→ 0.(3)

Since f(n) log θn ∼ log c, the statement follows. ¤

Lemma 4.4. For θn ≤ 1 and θn → 1, θ
f(n)
n → c with c ∈ (0, 1) and g(n)/f(n) ∼ β,

g(n) ≤ n we have
bg(n)c∑

i=0

θin ∼
cβ − 1
log c

f(n)

and
bg(n)c∑

i=0

[
n

i

]

q

θin ∼ eq(q)
cβ − 1
log c

f(n)

as n→∞.

Proof. We rewrite the first sum as

bg(n)c∑

i=0

θin =
1− θbg(n)c+1n

1− θn
.

The growth of the denominator is given in Lemma 4.3, and the numerator tends to

1− cβ , since θbg(n)cn = θ
g(n)−{g(n)}
n → cβ because of θn → 1.

To get the asymptotic of the second sum we write

bg(n)c∑

i=0

[
n

i

]

q

θin =

b
√
g(n)c∑

i=0

[
n

i

]

q

θin +

bg(n)−
√
g(n)c−1∑

b
√
g(n)c+1

[
n

i

]

q

θin +

bg(n)c∑

bg(n)−
√
g(n)c

[
n

i

]

q

θin.
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The first and the third sum on the right-hand side are O(
√
g(n)) and therefore

asymptotically negligible. The second sum is bounded by

(q; q)n
(q; q)

b
√
g(n)c+1

(q; q)
n−b
√
g(n)c−1

bg(n)−
√
g(n)c−1∑

b
√
g(n)c+1

θin ≤
bg(n)−

√
g(n)c−1∑

b
√
g(n)c+1

[
n

i

]

q

θin

≤ (q; q)n
(q; q)2

bn/2c

bg(n)−
√
g(n)c−1∑

b
√
g(n)c+1

θin.

By the first part of this lemma the lower and the upper bound has the asserted
asymptotic. ¤

Lemma 4.5. If θn ≤ 1 and θn → 1 with θnn → c for 0 < c < 1, then

n∑

i=0

iθin ∼
1− c+ c log c

log2 c
n2

and
n∑

i=0

[
n

i

]

q

iθin ∼ eq(q)
1− c+ c log c

log2 c
n2

as n→∞.

Proof. To estimate this sum we use Lemma 4.3 again and the identity

n∑

i=0

iti =
t(1− tn − ntn(1− t))

(1− t)2 .

Hence, setting t = θn,

n∑

i=0

iθin ∼ (1− c− nθnn(1− θn))
n2

log2 c
∼ (1− c+ c log c) n2

log2 c
.

Here we used that under the assumption θnn → c we have (1− θn)n→ − log c. This
can easily be seen from the equivalence (3). The asymptotic for the sum with the
q-binomial coefficient is obtained as in Lemma 4.4. ¤

Now we are ready to establish the essential key in proving the convergence
result: we give the asymptotic behaviour of sums of probabilities and the means
and variances of QD(n, τn, q)-distributed random variables.

Lemma 4.6. Let Xn be QD(n, τn, q)-distributed and denote by µn(τn, q) and
σ2n(τn, q) the corresponding mean and variance. If τn → 1 and τnn → c with
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0 < c < 1 and f(n) ∼ βn, f(n) < n, then

bf(n)c∑

x=0

τxn

[
n

x

]

q

(τn; q)n−x ∼ 1− cβ ,

µn(τn, q) ∼
c− 1
log c

n,

σ2n(τn, q) ∼
1 + 2c log c− c2

(log c)2
n2,

as n→∞.
Proof. We start with the first assertion. Since f(n) < n we can write

Sn :=

bf(n)c∑

x=0

τxn

[
n

x

]

q

(τn; q)n−x = (1− τn)
bf(n)c∑

x=0

τxn

[
n

x

]

q

n−x−1∏

i=1

(1− τnqi).

The summands are bounded by eq(q)
2, hence

Sn ∼ (1− τn)
bf(n)c−b

√
nc∑

x=b
√
nc

τxn

[
n

x

]

q

n−x−1∏

i=1

(1− τnqi) =: Ŝn.

Estimating the product and using again the boundedness of the summands yields

Ŝn ≤ (1− τn)(τn; q)n−bf(n)c+b√nc−1
bf(n)c−b

√
nc∑

x=b
√
nc

τxn

[
n

x

]

q

∼ (1− τn)(τn; q)n−bf(n)c+b√nc−1
n∑

1

τxn

[
n

x

]

q

=:
ˆ̂
Sn.

As in the proof of Proposition 3.1 and with use of Lemma 4.4 (with g(n) := f(n)
and f(n) := n) we obtain

ˆ̂
Sn ∼ (1− τn)

1

eq(q)
eq(q)

cβ − 1
log c

n ∼ 1− cβ .

In an analogous way we find a lower bound of Ŝn that is asymptotically equivalent
to 1− cβ .

Now we prove the second proposition of the lemma: Use Lemma 3.4, easy
estimates of the q-Pochhammer symbol and the asymptotics given in Lemma 4.4
to obtain

µn(τn, q) ≤
b
√
nc∑

j=1

(q; q)n
(q; q)2

dn/2e

+ (q; q)b
√
nc

n∑

j=b
√
nc

[
n

j

]

q

τ jn ∼
1

eq(q)
eq(q)

c− 1
log c

n
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and

µn(τn, q) ≥ (q; q)n
n∑

j=1

[
n

j

]

q

τ jn ∼
c− 1
log c

n.

Similarly we proceed for the second moments of Xn(τn, q) and estimate with use
of Lemma 4.5

E(X2n) ≥
n∑

j=1

(q; q)j−1 (1 + 2(j − 1))
[
n

j

]

q

τ jn

≥ 2(q; q)n
n∑

j=1

(j − 1)
[
n

j

]

q

τ jn ∼ 2
1− c+ c log c
(log c)2

n2.

To bound the second moment from above we split the sum into two parts

E(X2n) ≤
b
√
nc∑

j=1

(q; q)n
(q; q)2

dn/2e

(
1 +

2n

1− q

)

+

n∑

j=b
√
nc

(q; q)j−1

(
1 + 2

j−1∑

i=1

1

1− qj−i

)[
n

j

]

q

τ jn.

The first sum is o(n2), and splitting the inner sum in the second term we obtain

E(X2n) = o(n2) +

n∑

j=b
√
nc

(q; q)j−1


1 + 2

j−1∑

i=b
√
jc

1

1− qj−i



[
n

j

]

q

τ jn

+

n∑

j=b
√
nc

(q; q)j−1


1 + 2

b
√
jc∑

i=1

1

1− qj−i



[
n

j

]

q

τ jn.

Here the first sum is o(n2) again and easy estimates of the second term yield

E(X2n) ≤ o(n2) + 2(q; q)b
√
nc

n∑

j=b
√
nc

j
1

1− qj−b
√
jc−1

[
n

j

]

q

τ jn

≤ o(n2) + 2(q; q)b
√
nc

1

1− qn−
√
n−1

n∑

j=1

j

[
n

j

]

q

τ jn

∼ 21− c+ c log c
(log c)2

n2.

Thus

E(X2n(τn, q)) ∼ 2
1− c+ c log c
(log c)2

n2.
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Hence

σ2n(τn, q) = E(X2n(τn, q))− µn(τ, q)2 ∼
(
2
1− c+ c log c
(log c)2

−
(
c− 1
log c

)2)
n2

∼ 1 + 2c log c− c
2

(log c)2
n2,

which completes the proof. ¤

After this analysis of the means and variances it is now easy to obtain the
limiting distribution of the sequence Xn.

Theorem 4.7. Let Yn ∼ QD(n, q, τn) with τn → 1 and τnn → c with 0 < c < 1.
Then the sequence of the normalised random variables Xn = (Yn−µn)/σn converges
to a limit X with

P(X ≤ x) = 1− ec−1e−
√
1+2c log c−c2x

for

x ∈
[
− 1− c√

1 + 2c log c− c2
,

c− log c− 1√
1 + 2c log c− c2

)

and

P(X ≤ x) = 1 for x =
c− log c− 1√
1 + 2c log c− c2

.

Proof. The support of X is given by

[
lim
n→∞

−µn(τn, q)
σn(τn, q)

, lim
n→∞

n− µn(τn, q)
σn(τn, q)

]
.

Using Lemma 4.6 the stated support follows immediately.

Computing the distribution function of X yields with use of Lemma 4.6

P(Xn ≤ x) =
∑

0≤y≤σnx+µn

τyn

[
n

y

]

q

(τn; q)n−y ∼ 1− cα

with

α =

√
1 + 2c log c− c2
− log c x+

c− 1
log c

for

x <
c− log c− 1√
1 + 2c log c− c2

.

Simplifying cα yields the theorem. ¤

Now we turn to the third case, which treats sequences of random variables

Xn ∼ QD(n, τn, q) where τn → 1 and τ
f(n)
n → c for a c ∈ (0, 1) and f(n) = o(n).
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This case is very similar to the previous one, and so we start with an analogue of
Lemma 4.5

Lemma 4.8. Let f(n)→∞, f(n) = o(n), θ
f(n)
n → c with 0 < c < 1. Then

n∑

i=0

iθin ∼
f(n)2

log2 c
and

n∑

i=0

i

[
n

i

]

q

θin ∼ eq(q)
f(n)2

log2 c

as n→∞.

Proof. Follow the proof of Lemma 4.5 and observe that nθnn(1 − θn) tends to
zero. ¤

Following the proof of Lemma 4.6 and using Lemma 4.8 instead of Lemma
4.5 we obtain

Lemma 4.9. If τn → 1 and τ
f(n)
n → c with 0 < c < 1 and f(n) = o(n),

g(n) ∼ βf(n), then

bg(n)c∑

x=0

τxn

[
n

x

]

q

(τn; q)n−x ∼ 1− cβ ,

µn(τn, q) ∼
−f(n)
log c

,

σ2n(τn, q) ∼
f(n)2

(log c)2
,

as n→∞.

As an immediate consequence we get the distribution of the limit of Xn,
which is an exponential distribution and is again independent of q.

Theorem 4.10. Let Yn ∼ QD(n, q, τn) with τn → 1 and τ
f(n)
n → c with 0 < c < 1

and f(n) = o(n). Then the sequence of the normalised random variables Xn =
(Yn − µn)/σn converges to a normalised exponential distribution with parameter 1,
i.e.

P(X ≤ x) = 1− e−x−1, x ≥ −1.

Proof. Lemma 4.9 yields immediately that the support of the limit distribution is
[−1,∞). Computing the distribution function gives

P(X ≤ x) =
∑

0≤y≤σnx+µn

τyn

[
n

y

]

q

(τn; q)n−y ∼ 1− c
x+1
− log c = 1− e−x−1. ¤

Comparing this result with Theorem 3.7 we see that this corresponds to
taking the limit c→ 0.
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