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ON FUNCTIONS OF ARAKAWA AND KANEKO
AND MULTIPLE ZETA VALUES

Markus Kuba

We study two functions &x(s) and &k, ...k, (s) introduced by ARAKAWA and
KANEKO [Nagoya Math. J., 153 (1999), 189-209] and relate them with (finite)
multiple zeta values and multiple zeta star values using elementary methods.
In particular, we give an alternative proof of a result of Ohno [Y. OHNO: J.
Number Theory, 74 (1999), 39-43].

1. INTRODUCTION

Let Lig, .., (%) denote the multiple polylogarithm function defined by

z™m
Lig,,.. k. (2) = > IO P
ni>ng>->n,>1 Ny ng™ ... Nr

with ky € N\ {1} and k; e N={1,2,...}, 2 <i <r,and |z| < 1. For z =1 the
multiple polylogarithm function Li, ., (1) = ¢(k1, ..., k,) simplifies to a multiple
zeta value, sometimes also called multiple zeta function, where ((k1,...,k,) and
(n(k1,..., k) denote the (finite) multiple zeta value defined by

Clkry ey hyr) = Z TN N

ni>ng>:>n,>1

Cn(ky, .o k) = Z ks k0

N>ni>na>-->ng>1 101 2" - Tor
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with k1 € N\ {1}, and ko, ...,k € N for the infinite series and N, kq,..., k. € N
for the finite counterpart. ARAKAWA and KANEKO [3] introduced and studied the
functions &x(s) and &g, ... k. (), defined by

I _
fk(S) = 1_‘(8)/0 T le(l —e t)dt,

1 [ee] tsfl
- [ i 1—et)dt
Ehyvnr () F(s)/o o1 Lk (1= e70)dt,

respectively, being absolutely convergent for $(s) > 0. ARAKAWA and KANEKO
related &x(s) and &k, .., (s) for several choices of s € C and k1,...k € N to
multiple zeta values. OHNO [14] applied his generalization of the duality and sum
formulas for multiple zeta values to the result obtained by Arakawa and Taneko for
&k(n) in order to express £k (n) for positive integers n in terms of so-called multiple
zeta star values or non-strict multiple zeta values. ARAKAWA and TANEKO (3]
posed several questions concerning the function &, . .(s). In particular, they
asked for evaluations of &, . x.(s) to multiple zeta values, for kq,..., k. € N and
s € C. We answer this question for arbitrary ki, ..., k. € N and positive integers n
by providing evaluations of the function &, . ,.(n) to multiple zeta (star) values.
In particular, we reobtain Ohno’s result for £ (n), giving an alternative short and
self-contained proof.

For the evaluation of the general case &, .. x,.(n) we use a finite version (see
for example [9]) of the well known stuffle identity for multiple zeta values [7].
Subsequently, we will use a variant of (finite) multiple zeta values, called multiple
zeta star values or non-strict multiple zeta values (i (k1,...,k,), which recently
attracted some interest, [2, 14, 16, 15, 11, 13, 10, 17] where the summation indices
satisfy N >n; >ng > --- >n, > 1in contrast to N > ny >ng >--- >n, > 1, as
in the usual definition (1),

i 1
CN(ky,.o k) = Z ki, ko ke

N>ny>ng>->n,>1 010 2" - Tr

with N, kq1,..., k. € N. Note that multiple zeta star values are frequently used in
particle physics and are called harmonics sums in this context. Various properties
and algorithmic aspects of multiple zeta star values have been considered in [4,
6]. The multiple zeta star value can be converted into ordinary finite multiple zeta
values by considering all possible deletions of commas, e.g.

r 4y o r
(1) C;f(khakr)zz Z <N<Zki17 Z ki27"'a Z k1h>7

h=1 1<l;<tlo<--<Lp_1<T i1=1 io=41+1 in=Cp_1+1

note that the first term A = 1 should be interpreted as (y Z kil), subject to
i1=Lo+1
¢y = 0. The notation (¥ (k1,..., k) is chosen in analogy with AokI and OHNO [2]
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where infinite counterparts of (5 (k1,. .., k) have been treated. First we will study
the instructive case of £x(n), reproving the result of OHNO. The main results of
this work concerning the evaluation of &, . 1.(n) into multiple zeta (star) values
will be stated in Theorems 2, 3, 4.

2. AN ALTERNATIVE PROOF OF OHNO’S EVALUATION

OHNO evaluated the sum £(n) for k,n € N by an application of his gener-
alization of the duality and sum formulas for multiple zeta values to a result of
ARrRAKAWA and KANEKO [3]. He obtained the following result.

Theorem 1. (OHNO [14]) The function £ (n) is for arbitrary k,n € N given by

G)= S e = 1L, (1),

mi>my>>m,>1 0L M2 M

Note that one can convert the multiple star zeta value above into ordinary
multiple zeta values according to (1) (with respect to the corresponding relation
for infinite series), or can directly simplify the multiple zeta star value using (cycle)
sum formulas, see e.g. OHNO and WAKABAYASHI [16] or OHNO and OKUDA [15].

In the following we will give a short alternative and self-contained proof of
Theorem 1. In order to evaluate {x(n) for k,n € N we only use the two basic facts
stated below.

1 e 1
/ t"lemtdt = —, for f,n€eN,
0

m gn’
(2) LN (_1)571 . )
;(e)w=<n<‘1~~-,1>=<n<{1},.> for reN.

T

The second identity can be immediately deduced by repeated usage of the formula

(Z) = i (ﬁ:i) We proceed as follows.
=k

1 oo gn—l 1 o0 (1— e tym-1
= — — Lip(l—e Hdt= — et - dt.
) = i || g — e = [ e 2w

We expand (1 —e~t)™~! by the binomial theorem and interchange summation and
integration. According to (2) we obtain

&u(n) =) # il (mg_ 1) (F_(;); /Oot”*e*”l)tdt

m>1 £=0 0
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. m—1\ _ / m \{+1 . . .
Since < / ) = <€+ 1)77 we get according to (2) after an index shift

Theorem 1.

3. THE GENERAL CASE

We obtain the following result for &, .. .(n), generalizing Theorem 1.

Theorem 2. For arbitrary ki,...,k,,n € N the function &, .. .(n) is given by

S (D) oy 1 (B e
NIRRT LR
ni>1 ny

Proof. By definition we have

1/OotnlLi (1—e Hadt
T(n) Jo et—1 Fumohr
1

o _ ,—t\n1—1
- / thle—t Z (lei)dt'
0

L'(n) n’flngz .nkr

ni>ng>--->np>1

Proceeding as before we expand (1 — e~*)"1~! by the binomial theorem and inter-
change summation and integration. We get

§ : 1 nzl_l (_1)Z(n1ﬁ_1) - 1,—(e+1)t

= 4 n—1_—(/+

é‘kl,.‘qkr (n) - ki ko kr F(’I’L) /0 t (& dt
£=0

ny>ng>->n,.>1 Ny Ng™ ... Ny

According to (2) we obtain

n ({1n-1) 2 () (k2 o K
S = 30 T 2 e O

ny>ng>-->np>1 a1 ni;>1

Next we will evaluate &, .. k. (n) into multiple zeta values. In order to do so,
we are going to evaluate the product S = S, (n, ks, ..., k) of finite multiple zeta
(star) values, defined by

S = Sn1 (7’L, kQ, e ,kQ) = C;:l ({1}n—1)<n1—1(k27 ceey kr)

into sums of finite multiple zeta values of the forms (,,—1(f), and %, Cny—1(f), for
ny

somel </l <n—landf=(f,...,f;),withf; e N;1<i<jandl <j<n+r-2.
By (1) we can write ¢ ({1},—1) in terms of ordinary finite multiple zeta values

n—1
G () =D > Gy (G182 = by, yn = 0y — 1),
h

=1 1<l <ly<---<lp_1<n—1
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for example ¢ ({1}3) = Cny (3)+Cny (1,2)+Cn, (2, 1)+, (1,1, 1). We can convert fi-
nite multiple zeta values {x (a1, . . ., a,) into finite multiple zeta values (—1 (b1, ..., bs)
by
1
(n(ai,...,ar) =(n-a(ar, ... ar) + Wﬁvq(am ).
Consequently, we can express the product S = ; ({1}n-1)Cn,—1(k2,..., k) of
finite multiple zeta (star) values in the following way.

n—1
S=3 o Gnallilo =y =l = 1) G, 1 (R, k)
h=1 1<l;<la<--<Lp_1<n—1
3) 3
Z Z Cn171(£27"'7n_‘€h71 _1)Cn171(k27"'7k7“)

+
h

13
=1 1< <la<<by_y1<n—1 ny'
In order to further simplify S we will use finite versions of the stuffle identities,
see e.g. BORWEIN et al. [7] and COSTERMANS et al. [9]. In general, stuffle
identities provide evaluations of products of multiple zeta values ((k)((h) into

sums of multiple zeta values ((k)((h) = > ((f); here ¢(k) = ((k1, ..., ky)
festuffle(k,h)

and ((h) = {(h1,...,hs). For the simplification of S we use finite versions of the

stuffle identities, providing evaluations of products of finite multiple zeta values

(v (k)¢ (h) into sums of finite multiple zeta values (n (K)¢nv(h) = > (N (f).

festuffle(k,h)

Following [7] we define for two given strings k = (ki,...,k.) and h =
(h1,...,hs) the set stuffle(k,h) as the smallest set of strings over the alphabet
A, defined by

1 1 " 1
A:{klv--~7k7‘ah1a-~-7h8a“+ 7“7 7“( ’“) }

satisfying (k,h) = (k1,...,kr,h1,...,hs) € stuffle(k, h) and further if a string of
the form (U, ky,, hy,, V) € stuffle(k,h), then so are the strings (U, hy,, kn, V) €
stuffle(k,h) and (U, k,, + hp, V) € stuffle(k,h). Stuffle identities arise from the
definition of (finite) multiple zeta values in terms of sums; the term stuffle derives
from the manner in which the two upper strings are combined. Other closely
related identities are due to different representations of multiple zeta values (see
for example [7]). We will use the following result of COSTERMANS et al. [9].

Cn(k1,y .. k) and

Lemma 1. (Stuffle identity; finite version [9]) Let (nv(k) =
1<i<r1<j<s.

(n(h) = (n(h1,..., hs), with N,r,s € N and k;,h; € N,
Then,

)

(4) (vK)Cv(h) = > (n(f),

festuffle(k,h)

REMARK 1. A few examples of finite stuffle identities are given below, assuming that
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r,s,t, N € N.
Cn(r)Cn () = Cn(ryt) + vt +7) + (N (E, ),
Cn(r, s)Cn(t) = Cn(ryst) + Cn(r s+ t) + (b, s) +Cn(r+t,s) + Cn(t T, s).

REMARK 2. The finite stuffle identity can be shown using algebraic methods, see COSTER-
MANS et al. [9]; we also refer to the work of HOFFMAN [12]. Alternatively, an elementary
proof can be carried out using induction with respect to the total length |k| + |h| of ¢~ (k)
and (n(h). The stuffle identity and the stuffle algebra was studied algorithmically in [6].

Next we provide the evaluation of S into sums of finite multiple zeta values.

Lemma 2. The product S = Sy, (n,ka,... k2) = ¢ ({1} n—1)Cny—1(k2,..., k) of
multiple zeta (star) values can be evaluated into sums of finite multiple zeta values:

n—1
5= 3 S

h=1 1<l1<lo<---<lp_1<n—1 fEStuﬂzle(ZLl] ,k)

S SNED DI D DI}

h=1 1<l1<lo<--<lp_1<n—1 1 fEStufHe(ff],k)
with 8 = (01,05 — 01, ..on — by — 1), 082 = (bg, b5 — o, ..., — L,_1 — 1), and
k= (ka,... k).

Proof. For the simplification of S we apply the stuffle identity of Lemma 1 to all
values of the form cm_l(zi}])gm_l(k) and (nl_l(ef})gm_l(k), as occurring in the

representation of S in (3), and obtain the stated result. O
Now we can state the explicit evaluation of &, . k. (n).
Theorem 3. For k1,...,k.,n € N the function &, . k. (n) can be evaluated into

sums of multiple zeta values,

Ekr.k, (n) = Z_: > Sl +11)

h=11</l1<tlo<--<lp_1<n—1 fEstufﬂe(le],k)

+i > STl A1+ 46),

h=11<l1<tl2<-<lp_1<n—1 fEStufﬂe(Ele] ,k)

with 67 = (01,05 — 01, ... n— 1 — 1), (2 = (b, 05 — 05,...,n— l,_1 — 1), and
k= (ka,... k).

Proof. By Theorem 2 we have

)= 3 oo calla o k) g Sk, b,

kit1
n1>1 U3
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By Lemma 2 we obtain further

() = Y nk1+1<2 3 S G

h=11<l1<la<--<Llp_1<n— lestuﬂ'le(Z", )

+ z_: Z nilgl Z C"Ll_l(f))'

h=11<01 <bp<-<lp1<n=1 "1 pegiume(el? k)

Interchanging summations leads to the stated result. (I

REMARK 3. Although the result of Theorem 3 is very involved, in can be used to obtain
simple expressions for &, ... k,.(n) for small n and r:

k1 kz (2) = C(k1 42, k2) + C(k1 + 1,1, k2) + C(k1 + 1, k2 + 1) + (k1 + 1, k2, 1),
§k1,k2,k3(2) = C(kl + 17 27k27k3) + C(kl + 17 17 k27k3) + C(kl + 17k2 + 17 k3)
+ (k1 +1,ko, 1, k3) + C(k1 + 1, ko, ks + 1) + (k1 + 1, ko, k3, 1).

The results above can be used for the evaluation of &k, k,(2), Ek, ke ks (2) for particular
choices of ki, k2, k3 € N using previous evaluations of multiple zeta values with two, three
or four parameters in the literature [8]. Note that there exists evaluations of multiple zeta
values up to weight 22, see [5], which can be used for further simplification. Moreover,
many calculations can be carried out algorithmically by using computer algebra systems,
see [1] and the references therein.

4. AN EVALUATION INTO MULTIPLE ZETA STAR VALUES

In the case of k1,...,k, € N\ {1} and n € N the function &, . ,(n) can be
evaluated into products of multiple zeta values and multiple zeta star values.

Theorem 4. For ky,...,k. € N\ {1} and n € N we have

r

Ehyo e (1) =D (=1 kg, k)G (g ejoa o Koy by 4+ 1, {1}),

j=1

according to the conventions ((kyx1,...,k.) =1 in the case of j = and
C*(kl,km ey ]{12,/{51 + 1, {1}n—1) = C*(kl + 17 {l}n—l) in the case Of] =1.

Proof. By Theorem 2 we get

C:Ll ({l}n—l)gm—l(k% R kr)
>

Eit1
ny

ky,o k(1) =

ni>1

:ZCnl {kl}vil ”12—:1@ 1k37..., )
1+ .

ny>2 ™




52 Markus Kuba

Interchanging summation gives

i, (m) = 30 Stlbor k) g G, ()

ghe

j>1 n>j+1 M
. Goalks, .o k) o= G ({1}n-1)
= C(ka, - B)C (1~::1+17{1}nfl)—j§21 —r 3:1 NEE :
Gi—1(ks, ... k)G (k1 + 1, {1}n-1)
= (k2o k) C ke + 1 (L) = > > _
2 1 1 ]21 ]k'2

Similarly, we obtain

5/{:1,...,19,,.(71) = C(k2; ey kr>c*<kl + 17 {1}7171) - C(k?n EERE kT)C*(k2a kl + 1’ {1}”*1)
n Z Cj—l(k4a ey k7)<;(k2, kl + 1, {1}n—1)

7

i

Jj=1

This reasoning (repeated interchangement of summations) gives the stated result.
O

One can convert the multiple zeta star values appearing in Theorem 4 to
ordinary multiple zeta values using (1). This gives an alternative evaluation of
&ky,....k, (n) into multiple zeta values. We obtain the following result.

Corollary 1. For ky,..., k. € N\ {1} and n € N we have

T

Ehyroer (1) =D (=1 (R, K

j=1
n+j—1 4y Lo n4j—1
X § § <<§ mil? § mi27"'7 § mih)
h=1 1<l <la<-<lp_1<n+j—1 i1=1 ig=l1+1 in=Cn_1+1

withmy =kj,...,mj_1 =kaymyj=ki+1, andmg=1forj<g<n+j—1in

A 0o n+j—1
the sum C(> miy, > My, > my,).
i1=1 io=01+1 ih=Lp_1+1
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