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TWO SUBCLASSES OF 2-CONVEX POLYOMINOES:

PROPERTIES FOR RECONSTRUCTION

K. Tawbe

A polyomino P is called 2-convex if for every two cells there exists a monotone
path included in P with at most 2 changes of direction. This paper studies the
tomographical aspects of two subclasses of 2-convex polyominoes called η2L

and η′2L. In the first part, the uniqueness results of the two subclasses of HV -
convex polyominoes η and η′ are investigated using the switching components
(that is the elements of these subclasses that have the same projections). In
the second part, using the uniqueness results and the algorithm by Chrobak
and Dürr, two paths connecting the feet and a tomographical condition are
given to verify whether P is in η2L or η′2L.

1. INTRODUCTION

There are many notions of discrete convexity of polyominoes (namely HV -
convex [3], Q-convex [4], L-convex polyominoes [7]) and each one leads to inter-
esting studies. One natural notion of convexity on the discrete plane is the class
of HV -convex polyominoes, that is polyominoes with consecutive cells in rows and
columns. Following the works of Del Lungo, Nivat, Barcucci and Pinzani [3]
we are able to reconstruct polyominoes that are HV -convex according to their hor-
izontal and vertical projections. In addition to that, for an HV -convex polyomino
P every pair of cells of P can be reached using a path included in P with only two
kinds of unit steps (such a path is called monotone). A polyomino is called k-convex
if for every two cells we find a monotone path with at most k changes of direction.
Obviously a k-convex polyomino is an HV -convex polyomino. Thus, the families
of k-convex polyominoes for k ∈ N forms a hierarchy of HV -convex polyominoes.
When the value of k is equal to 1 we have the so called L-convex polyominoes, where
this terminology is motivated by the L-shape of the path that connects any two
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cells. This notion of L-convex polyominoes has been considered by several points of
view. Combinatorial aspects of L-convex polyominoes were analyzed in [5], giving
the enumeration according to the semi-perimeter and the area. In [6] it is given
an algorithm that reconstructs an L-convex polyomino from the set of its maximal
L-polyominoes. Similarly in [7] it is given another way to reconstruct an L-convex
polyomino from the size of some special paths, called bordered L-paths. In fact,
2-convex polymoninoes are more geometrically complex and there was no result for
their direct reconstruction. We could notice that Duchi, Rinaldi, and Schaef-
fer were able to enumerate this class in an interesting and technical article [9].
But the enumeration technique gives no idea for the tomographical reconstruction.

The first subclass that creates the link with 2-convex polyominoes is the class
of HV -centered polyominoes. In [14], it is showed that if P is an HV -centered
polyomino then P is 2-convex. Note that the tomographical properties of this
subclass have been studied in [8] and its reconstruction algorithm is well known.

Now in order to study the geometrical and tomographical properties of all 2-
convex polyominoes which are not L-convex and HV -centered, we choose to decom-
pose them into different subclasses regarding the position of their non-intersecting
feet, that is there does not exist a row (resp. a column) going from one foot to
another.

By regarding the position of the non-intersecting feet of convex polyominoes,
it is showed in [14] that if P is a convex (HV -convex) polyomino and if the N -foot
is situated to the left (resp. to the right) of the S-foot and the E-foot is situated to
the north (resp. to the south) of the W -foot then P is a 2-convex polyomino. To
reconstruct P in this subclass, it is sufficient to fix its feet and then applying the
algorithm of Chrobak and Dürr to reconstruct an HV -convex polyomino (see
[15]).

Another subclass of 2-convex polyominoes has been studied in [14] where
the N -foot is situated to the left (resp. to the right) of the S-foot and the E-
foot is situated to the south (resp. to the north) of the W -foot. This subclass is
called the two empty corners subclass, where the upper left corner and the lower
right corner of the polyomino are characterized by the property that these two
corners are empty i.e. there are no cells in these two corners. The geometrical
properties and the uniqueness for this subclass are well studied in [14], also they
are used to reconstruct directly all convex polyominoes belonging to this subclass
(see [15]). Directed 2-convex polyominoes have been studied in [14], and their
direct reconstruction is always possible using tomographical properties and the
fact that any directed convex polyomino P is unique.

To complete the study of all subclasses of 2-convex polyominoes, we introduce
in this paper another subclass called η2L (resp. η′2L) where the lower right corner
(resp. upper left corner) of all polyominoes belonging to it is empty. This subclass
has a complicated geometry and we are not yet able to reconstruct it directly. This
is why by investigating the switching components made of 1-cycle, 2-cycle and other
geometrical properties, we are able to give a necessary and sufficient condition in
order to verify whether reconstructed polyominoes are 2-convex in η2L (resp. η′2L).
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This paper is divided into 6 sections. After basics on polyominoes, section 3
gives the characterizations of two subclasses of 2-convex polyominoes. In section 4,
the possible configurations of polyominoes in the classes η and η′ are investigated
using switching components made of 1-cycle or 2-cycle. We also focus on the
unicity results for these classes of polyominoes. Section 5 gives the algorithm for
the reconstruction of these two classes and the necessary and sufficient condition
to obtain 2-convex polyominoes in η2L and η′2L. The last section is reserved for the
final comments.

2. DEFINITION AND NOTATION

A planar discrete set is a finite subset of the integer lattice Z2 defined up to
translation. A discrete set can be represented either by a set of cells, i.e. unitary
squares of the cartesian plane, or by a binary matrix, where the 1’s determine the
cells of the set (see Fig. 1).

A polyomino P is a finite connected set of adjacent cells, defined up to trans-
lation, in the cartesian plane. A polyomino is said to be column-convex (resp.
row-convex ) if every column (resp. row) is connected (see [2, 13]).

Figure 1: A finite set of N× N, and its representation in terms of a binary matrix and a

set of cells.

Finally, a polyomino is said to be convex (or HV -convex) if it is both column and
row-convex (see Fig. 2). To each discrete set S, represented as a m × n binary
matrix, we associate two integer vectors H = (h1, . . . , hm) and V = (v1, . . . , vn)
such that, for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are numbers of cells of S (fields
of the matrix that contain 1) which lie on row i and column j, respectively. The
vectors H and V are called the horizontal and vertical projections of S, respectively
(see Fig. 3). Moreover if S has H and V as horizontal and vertical projections,
respectively, then we say that S satisfies (H,V). Using the usual matrix notations,
the element (i, j) denotes the entry in row i and column j. For any two cells A and B
in a polyomino, a path

∏
AB , from A to B, is a sequence (i1, j1), (i2, j2), . . . , (ir, jr)
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of adjacent disjoint cells be-
longing in P, with A = (i1, j1),
and B = (ir, jr). For each
1 ≤ k ≤ r − 1, we can say
that the two consecutive cells
(ik, jk), (ik+1, jk+1) form:

• an east step if ik+1 = ik
and jk+1 = jk + 1;

• a north step if ik+1 = ik−1
and jk+1 = jk;

• a west step if ik+1 = ik and
jk+1 = jk − 1;

• a south step if ik+1 = ik+1
and jk+1 = jk.

Finally, we define a path to be
monotone if it is entirely made
of only two of the four types of
steps defined above.

Figure 2: Column convex and convex

polyomino.

Figure 3: A polyomino P with

H = (2, 4, 5, 4, 5, 5, 3, 2) and

V = (2, 3, 6, 7, 6, 4, 2).

Proposition 1. [6] A polyomino P is HV -convex if and only if every pair of cells
is connected by a monotone path.

Let us consider a polyomino P. A path in P has a change of direction in the
cell (ik, jk), for 2 ≤ k ≤ r − 1, if ik 6= ik−1 ⇐⇒ jk+1 6= jk.

Definition 1. A HV -convex polyomino will be called k-convex if every pair of its
cells can be connected by a monotone path with at most k changes of direction.

In [6], it is proposed a hierarchy on convex polyominoes based on the number
of changes of direction in the paths connecting any two cells of a polyomino.
For k = 1, we have the first level of hierarchy, i.e. the class of 1-convex polyominoes,
also denoted L-convex polyominoes for the typical shape of each path having at
most one single change of direction. In the present studies we focus our attention
to the next level of the hierarchy, i.e. the class of 2-convex polyominoes, whose
tomographical properties turn to be more interesting and substantially harder to
be investigated than those of L-convex polyominoes (see Fig. 4).

3. GEOMETRICAL PROPERTIES

Let (H,V ) be two vectors of projections and let P be a convex polyomino, that
satisfies (H,V ).
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Figure 4: The convex polyomino on the left is 2-convex, while the one on the right is

L-convex. For each polyomino, two cells and a monotone path connecting them are

shown.

By a classical argument P is contained in a rectangle R of size m× n (called min-
imal bounding box). Let [min(S),max(S)] ([min(E),max(E)], [min(N),max(N)],
[min(W ),max(W )]) be the intersection of P ’s boundary on the lower (right, upper,
left) side of R (see [3]). By abuse of notation, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, we
call min(S) [resp. min(E), min(N), min(W )] the cell at the position (m,min(S))
[resp. (min(E), n), (1,min(N)), (min(W ), 1)] and max(S) [resp. max(E), max(N),
max(W )] the cell at the position (m,max(S)) [resp. (max(E), n), (1,max(N)),
(max(W ), 1)] (see Fig. 5).

Definition 2. The segment [min(S),max(S)]
is called the S-foot. Similarly, the segments
[min(E),max(E)], [min(N),max(N)] and
[min(W ),max(W )] are called E-foot, N -foot
and W -foot.

Definition 3. Let P be an HV -convex poly-
omino, we say that P is h-centered [resp. v-
centered], if its W -foot and E-foot [resp. N -foot
and S-foot] intersect, that is there at least one
row going from one foot to another (see Fig. 6),
(they are defined in [8]).

The following property links h-centered
polyominoes or v-centered polyominoes to 2-
convex polyominoes:

Figure 5: Min and max of the

four feet in the rectangle R.

Proposition 2. If P is an h-centered polyomino or a v-centered polyomino, then
it is a 2-convex polyomino.

Proof. Let us assume that P is h-centered. The W -foot and the E-foot intersect in
a row i. The row i is used to go from any point of P to any other point of P. Thus
there are at most two changes of direction. That is P is a 2-convex polyomino. If
P is v-centered a similar reasoning holds. �

For a bounding rectangle R and for a given polyomino P, let us define the
following sets:
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• WN =
{
(i, j) ∈ P | i < min(W ) and j < min(N)

}
,

• SE =
{
(i, j) ∈ P | i > max(E) and j > max(S)

}
,

• NE =
{
(i, j) ∈ P | i < min(E) and j > max(N)

}
,

• WS =
{
(i, j) ∈ P | i > max(W ) and j < min(S)

}
.

Figure 6: A v-centered

polyomino on the left and an

h-centered polyomino on the

right.

From now on, we suppose that P is not h-centered, v-centered and L-convex
polyomino. Let C be the class of convex polyominoes, thus we have four classes of
polyominoes regarding the position of the non-intersecting feet.

• η =
{
P ∈ C | max(N) < min(S) and max(W ) < min(E), and SE = ∅

}
(see Fig. 8).

• ψ =
{
P ∈ C | max(S) < min(N) and max(E) < min(W ), and NE =

∅
}
.

• η′ =
{
P ∈ C | max(N) < min(S) and max(W ) < min(E), and WN =

∅
}

(see Fig. 8).

• ψ′ =
{
P ∈ C | max(S) < min(N) and max(E) < min(W ), and WS =

∅
}
.

Let us define the horizontal transformation (symmetry) SH : (i, j) −→ (m−
i + 1, j) which transforms the polyomino P from the class η to the class ψ, η′ to
ψ′. Note that SH maps η to ψ and η′ to ψ′ and obviously by involution ψ to η and
ψ′ to η′. Indeed the transformation acts on the feet of the polyomino as it is shown
in the following table (see Fig. 7). Thus we only investigate the characterizations
of the classes η and η′. The proofs of the class η′ are similar to those of η.

We make the choice of studying two special cases called η where the lower
right corner of the polyomino is empty and η′ where the upper left corner of the
polyomino is empty (see Fig. 8). For each case, we give a characterization in order
to describe the 2-convex polyominoes in terms of monotone paths.
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The above sets with the classes η, ψ, η′,
and ψ′ allow us to define the following four
classes:

• η2L =
{
P ∈ C | max(N) < min(S)

and max(W ) < min(E), and SE =
∅
}
, where P is a 2-convex polyomino.

• ψ2L =
{
P ∈ C | max(S) < min(N)

and max(E) < min(W ), and NE =
∅
}
, where P is a 2-convex polyomino.

• η′2L =
{
P ∈ C | max(N) < min(S)

and max(W ) < min(E), and WN =
∅
}
, where P is a 2-convex polyomino.

Figure 7: The horizontal

transformation SH on the feet of P.

• ψ′2L =
{
P ∈ C | max(S) < min(N) and max(E) < min(W ), and WS = ∅

}
,

where P is a 2-convex polyomino.

Note that the horizontal symmetry SH maps η2L to ψ2L and η′2L to ψ′2L.

Figure 8: An element

of the class η on the

left and of the class η′

on the right.

The following characterization holds for convex polyominoes in the class η.

Theorem 1. Let P be a convex polyomino in the class η, P is 2-convex if and only
if there exist six paths:

(1) from min(N) to max(E),
(2) and from min(N) to max(S),
(3) and from min(W ) to max(E),
(4) and from min(W ) to max(S),
(5) and from a generic cell (i, j) ∈WN to max(E),
(6) and from a generic cell (i, j) ∈WN to max(S).

having at most two changes of direction.
Proof. =⇒ It is an immediate consequence of the definition of 2-convex poly-
omino.
⇐= Suppose that P is not 2-convex, then there exist two points (i0, j0), (i1, j1)
such that any path between them has more than two changes of direction. Let
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us suppose that the two points are situated on two distinct feet. We make the
proof for the feet N and E (the other cases are similar). Assume that (i0, j0)
is at the position (1,min(N) ≤ j0 ≤ max(N)) and (i1, j1) is at the position
(min(E) ≤ i1 ≤ max(E), n). We consider the following two cases.

1) If the path from min(N) to max(E) has one change of direction, i.e. there
exists an L-path between them, then by convexity there is an L-path between
(i0, j0) and (i1, j1), hence the contradiction.

2) If the path from min(N) to max(E) has two changes of direction, one can
observe the following cases:
2a) either the path goes through min(E) and then there exists an L-path between
max(N) and min(E), thus by convexity there exists a 2L-path from (i0, j0) to
(i1, j1), hence the contradiction.
2b) or the path goes through max(N) and then there exists an L-path between
max(N) and max(E), thus there exists a 2L-path from (i0, j0) to (i1, j1), hence
the contradiction (see Fig. 9).
The proofs for the other possible positions for the points (i0, j0) and (i1, j1) are
analogous and use the paths (2) to (6). �

Corollary 1. If P satisfies Theorem 1, then P is in the class η2L.

The following characterization hold for convex polyominoes in the class η′.

Theorem 2. Let P be a convex polyomino in the class η′, P is 2-convex if and
only if there exist six paths:

(1) from max(E) to min(N),
(2) and from max(S) to min(N),
(3) and from max(E) to min(W ),
(4) and from max(S) to min(W ),
(5) and from a generic cell (i, j) ∈ SE to min(N),
(6) and from a generic cell (i, j) ∈ SE to min(W ).

having at most two changes of direction (see Fig. 9).

Proof. Same arguments as in the class η. �

Corollary 2. If P satisfies Theorem 2, then P is in the class η′2L.
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Figure 9: An element of the class η2L on the left and of the class η′2L on the right.

4. SWITCHING COMPONENTS IN THE TWO CLASSES η AND η′

In this section, we give the possible configurations of the polyominoes in the classes
η and η′. The goal is to study the switching components of 2-convex polyominoes
and to give results of existence of switching and uniqueness in the two classes.

Let U(H,V ) be the class of discrete sets having H and V as projections.

Definition 4. We define the 1−switching (or 1−cycle) as an operator whose suc-
cessive application allows to
move from an element of
U(H,V ) to another element
of U(H,V ). This basic op-
erator, also called an ele-
mentary switching operator,
transforms each configuration
of cells of the kind depicted in
Fig. 10a into the one in Fig.
10b or vice versa.

In Fig. 10, X represe-
nts the position of a point not

Figure 10: The two kinds of switching components.

The switching operator transforms the switching

component of a) into the one of b) or vice versa.

belonging to the discrete set. The two configurations are called switching compo-
nents.

In order to maintain convexity when the switching operator is applied to the
switching component as in Fig. 10a the lower right 1 cannot have a 1 neither to
its right nor under it and the upper left 1 cannot have a 1 neither to its left nor on
top of it.
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Furthermore, always for convexity, all the elements in the rectangle having the
four elements of the switching component as vertices must be equal to 1. Analogous
properties must hold for the switching on Fig. 10b.

Proposition 3. A polyomino P of the class η cannot contain any 1-cycle.

Proof. Suppose that P has the switching component

1 0
0 1

Then the lower right 1 is on max(S) or max(E) since card(ES) = 0. Suppose that
the lower right 1 is on max(S) then the upper left 1 is on min(N) and we have
h1 = hm = 1 (vectors of projections), otherwise P is v-centered. Now applying the
switching operator on P, in P ′ which is the image of P by the switching operator,
we have that min(N) = max(N) > min(S) = max(S) and hence P ′ does not belong
to η. In fact the upper left 1 cannot be at a point in WN, otherwise P is v-centered.
Suppose that the lower right 1 is on max(E), then the upper left 1 is on min(W )
and we have v1 = vn = 1, otherwise P is h-centered. Now applying the switching
operator on P, in P ′ we have that min(W ) = max(W ) > min(E) = max(E) and
hence P ′ does not belong to η. In fact the upper left 1 cannot be at a point in WN,
otherwise P is h-centered.

Now suppose that P has the switching component

0 1
1 0

Then one can see that this switching component cannot occur on the feet since P
is not h-centered or v-centered and so the lower right 0 is in SE. By applying the
switching operator to P, we get that card(ES) = 1 and then P ′ does not belong to
η.
To summarize, P has no 1− cycle in η (see Fig. 11). �

Proposition 4. A polyomino P of the class η′ cannot contain any 1-cycle.

Proof. Same arguments as in the class η. �

Definition 5. The switching structures which are obtained by composing 2 ele-
mentary switchings such that the lower-rightmost point of the first one coincides
with the upper-leftmost point of the second one, will be called a 2-switching chain
(2−cycle).

Note that the n-switching chain is defined in analogous way to 2-switching.
The switching in the Fig. 12 is a 2-switching chain represented by the sequence
of the six points (1, 2), (1, 4), (6, 4), (6, 6), (4, 6), (4, 2). Notice that two consecutive
points share a row or a column.
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Figure 11: (a): Two polyominoes in η, (b): The image by the switching operator which

is not in η.

Figure 12: The two kinds of 2-switching components and two polyominoes belonging to

the class U(H, V ), with H = (2, 4, 5, 4, 4, 2, 1) and V = (2, 3, 5, 5, 5, 2).

Proposition 5. A 2-convex polyomino cannot contain any n-switching chain, with
n ≥ 3.
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Proof. Let us proceed by contradiction assuming that there exists a 2-convex
polyominoes P containing a 3-switching chain, say (i1, j1), (i1, j2), . . . , (i4, j4),
(i4, j1). Let us further suppose that the cell (i1, j1) belongs to P, and so it is for
the cell (i3, j3). An easy check reveals that there does not exist in P a monotone
path connecting (i1, j1) and (i3, j3) and having two changes of direction at most,
against the assumption. The same conclusion is obtained if we try to connect the
cells (i1, j2) and (i2, j3) supposing that (i1, j1) does not belong to P. Obviously, the
same result holds for any n-switching chain, with n ≥ 3. �

Proposition 6. Let P be an HV -convex polyomino in the class η and assume that
max(E) is not at the position (m − 1, n) and that max(S) is not at the position
(m,n − 1). If P has one of the two 2-switching components, then P ′ which is the
image of P by the 2-switching operator does not belong to η, and so P has no 2-cycle
in this class.

Proof. Let P be an HV -convex in the class η with max(E) 6= (m − 1, n) and
max(S) 6= (m,n− 1). Suppose that P has the 2-switching component

0 1
1 1 0

0 1

Then the lower rightmost 1 of the 2-switching component cannot be in SE since
card(SE) = 0. Let the lower rightmost 1 be on max(S). By applying the 2-switching
operator on P, this yealds a polyomino P ′ with card(SE) 6= 0, hence P ′ does not
belong to η. Similar reasoning holds if the lower rightmost 1 is on max(E).
Now suppose that P has the 2-switching component

1 0
0 1 1

1 0

Then the lower rightmost 0 is at the point (max(E) + 1,max(S) + 1) and so by
applying the 2-switching operator on P we get a polyomino P ′ with card(SE) = 1,
hence P ′ does not belong to the class η (see Fig. 13). �

Proposition 7. Let P be an HV -convex polyomino in the class η. Suppose that P
contains a 2-cycle, then at least one of the two statements is true:

• max(E) is at the position (m− 1, n),

• max(S) is at the position (m,n− 1).

Moreover, the 2-cycle occur on the E or (and) S-feet (see Fig. 14).

Proof. It is an immediate result from Proposition 6 and the fact that

card(SE) = 0. �
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Figure 13: (a): A convex polyomino in η, (b): the image by the 2-switching operator is

not in η.

Figure 14: (a): 2-cycle in the class η.

Proposition 8. Let P be an HV -convex
polyomino in the class η′ and following
suppose that min(W ) is not at the position
(2, 1) and min(N) is not at the position
(1, 2). If P has one of the two 2-switching
components, then P ′ which is the image
of P by the 2-switching operator does not
belong to the class η′, and so P has no
2-cycle in this class.

Proof. Same arguments as in the class η. �

Proposition 9. Let P be an HV -convex polyomino in the class η′. Suppose that
P contains 2-cycle, then at least one of the two statements is true:

• min(W ) is at the position (2, 1),
• min(N) is at the position (1, 2).
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Moreover, the 2-cycle occurs on the W or (and) N -feet.
Now we will give a condition on an HV -convex belonging to the classes η and

η′ to avoid the k-cycle with k ≥ 3. This condition is important for the reconstruction
of 2-convex polyominoes since there is no k-cycle with k ≥ 3. So as we will see in
the next section, all HV -convex polyominoes reconstructed by the algorithm of
Chrobak and Dürr do not have any k-cycle, with k ≥ 3 in the class η and η′.

Theorem 3. Let P be an HV -convex polyomino. If P contains an L-path from
max(N) to min(E) and an L-path from max(W ) to min(S) then P does not contain
any k-cycle, with k ≥ 3.

Proof. To prove that there is no k-cycle in P, it is sufficient to take k = 3 and to
show that the two 3-switching components below:

0 1
1 1 0

0 1 1
1 0

and

1 0
0 1 1

1 1 0
0 1

do not exist. It is an immediate check on P with L-paths from max(N) to min(E)
and from max(W ) to min(S). �

5. CONDITIONS FOR RECONSTRUCTION

In this section we give some properties to verify whether P is 2-convex polyomino
in the class η2L (resp. η′2L). By using the algorithm of Chrobak and Dürr, we
impose the condition mentioned in Theorem 3 to avoid the presence of a k-cycle,
with k ≥ 3, then we reconstruct a convex polyomino in the class η (resp. η′). The
uniqueness results of the two classes η and η′ with the condition of the 2-cycle on
the feet allow us to give a necessary and sufficient condition in order to establish
whether P is a 2-convex polyomino.

5.1 HV -convex polyominoes
Assume that H, V denote strictly positive row and column sum vectors. We

also assume that
∑

i hi =
∑

j vj , since otherwise (H,V ) are not consistent.
The idea of Chrobak and Dürr [8] for the control of the HV -convexity is

in fact to impose convexity on the four corner regions outside of the polyomino.
An object A is called an upper-left corner region if (i + 1, j) ∈ A or (i, j + 1) ∈ A
implies (i, j) ∈ A. In an analogous fashion they can define other corner regions.
Let P̄ be the complement of P. The definition of HV -convex polyominoes directly
implies the following lemma.

Lemma 1. P is an HV -convex polyomino if and only if P̄ = A ∪ B ∪ C ∪ D,
where A,B,C,D are disjoint corner regions (upper-left, upper-right, lower-left and
lower-right, respectively) such that
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(i) (i− 1, j − 1) ∈ A implies (i, j) /∈ D, and
(ii) (i− 1, j + 1) ∈ B implies (i, j) 6∈ C.

Given an HV -convex polyomino P and two row indices 1 ≤ k, l ≤ m. P is anchored
at (k, l) if (k, 1), (l, n) ∈ P. The idea of Chrobak and Dürr is, given (H,V ), to
construct a 2SAT expression (a boolean expression in conjunctive normal form with
at most two literals in each clause) Fk,l(H,V ) with the property that Fk,l(H,V ) is
satisfiable if and only if there is an HV -convex polyomino realization P of (H,V )
that is anchored at (k, l). Fk,l(H,V ) consists of several sets of clauses, each set
expressing a certain property: ”Corners” (Cor), ”Disjointness” (Dis), ”Connectiv-
ity” (Con), ”Anchors” (Anc), ”Lower bound on column sums” (LBC) and ”Upper
bound on row sums” (UBR).

Cor =
∧

i,j

{
Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}
Dis =

∧
i,j

{
Xi,j ⇒ Ȳi,j : for symbols X,Y ∈ {A,B,C,D}, X 6= Y

}
Con =

∧
i,j

{
Ai,j ⇒ D̄i+1,j+1 Bi,j ⇒ C̄i+1,j−1

}
Anc =

{
Āk,1 ∧ B̄k,1 ∧ C̄k,1 ∧ D̄k,1 ∧ Āl,n ∧ B̄l,n ∧ C̄l,n ∧ D̄l,n

}
LBC =

∧
i,j

{
Ai,j ⇒ C̄i+vj ,j Ai,j ⇒ D̄i+vj ,j

Bi,j ⇒ C̄i+vj ,j Bi,j ⇒ D̄i+vj ,j

}
∧

∧
j

{
C̄vj ,j D̄vj ,j

}
UBR =

∧
j

{
∧i≤min{k,l}Āi,j ⇒ Bi,j+hi

∧k≤i≤lC̄i,j ⇒ Bi,j+hi

∧l≤i≤kĀi,j ⇒ Di,j+hi
∧max{k,l}≤iC̄i,j ⇒ Di,j+hi

}
Define Fk,l(H,V ) = Cor ∧ Dis ∧ Con ∧ Anc ∧ LBC ∧ UBR. All literals with

indices outside the set {1, . . . ,m} × {1, . . . , n} are assumed to have value 1.

Algorithm1
Input: H ∈ Nm, V ∈ Nn

W.l.o.g assume:∀i : hi ∈ [1, n],∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj and m ≤ n.
For k, l = 1, . . . ,m do begin
If Fk,l(H,V ) is satisfiable,
then output P = A ∪B ∪ C ∪D and halt.
end
output ”failure”.

Theorem 4. [8] Fk,l(H,V ) is satisfiable if and only if (H,V ) have a realization P
that is an HV -convex polyomino anchored at (k, l).

Each formula Fk,l(H,V ) has size O(mn) and can be implemented in time
O(mn). Since 2SAT can be solved in linear time [1, 10], Chrobak and Dürr give
the following result.

Theorem 5. [8] Algorithm 1 solves the reconstruction problem for HV -convex
polyominoes in time O

(
mnmin(m2, n2)

)
.

5.2 Clauses for the classes η and η′

Here we give the set of clauses that reconstruct a polyomino P in the class η
or η′.
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Pos =
{
C(min(E),1) ∧ C(m,max(N))∧A1,1∧Dm,n

}
Cor =

∧
i,j

{
Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

}
Dis =

∧
i,j

{
Xi,j ⇒ Ȳi,j : for symbols X,Y ∈ {A,B,C,D}, X 6= Y

}
Con =

∧
i,j

{
Ai,j ⇒ D̄i+1,j+1 Bi,j ⇒ C̄i+1,j−1

}

Anc =



Āmin(W ),1 ∧ Āmin(E),n ∧ B̄min(W ),1 ∧ B̄min(E),n∧
C̄min(W ),1 ∧ C̄min(E),n ∧ D̄min(W ),1 ∧ D̄min(E),n∧
Ā1,min(N) ∧ Ām,min(S) ∧ B̄1,min(N) ∧ B̄m,min(S)∧
C̄1,min(N) ∧ C̄m,min(S) ∧ D̄1,min(N) ∧ D̄m,min(S)∧
Āmax(W ),1 ∧ Āmax(E),n ∧ B̄max(W ),1 ∧ B̄max(E),n∧
C̄max(W ),1 ∧ C̄max(E),n ∧ D̄max(W ),1 ∧ D̄max(E),n∧
Ā1,max(N) ∧ Ām,max(S) ∧ B̄1,max(N) ∧ B̄m,max(S)∧
C̄1,max(N) ∧ C̄m,max(S) ∧ D̄1,max(N) ∧ D̄m,max(S)


LBC =

∧
i


∧j<min(N)Ai,j ⇒ C̄i+vj ,j ∧j>max(S)Bi,j ⇒ D̄i+vj ,j

∧max(N)<j<min(S)Bi,j ⇒ C̄i+vj ,j ∧min(S)≤j≤max(S)Bi,j ⇒ C̄i+vj ,j

∧min(N)≤j≤max(N)Ci+vj ,j ⇒ Āi,j

∧∧
j

{
C̄vj ,j D̄vj ,j

}
UBR =

∧
j


∧i<min(W )Āi,j ⇒ Bi,j+hi ∧i>max(E)C̄i,j ⇒ Di,j+hi

∧max(W )<i<min(E)C̄i,j ⇒ Bi,j+hi ∧min(E)≤i≤max(E)B̄i,j+hi ⇒ Ci,j

∧min(W )≤i≤max(W )Āi,j ⇒ Bi,j+hi


GEO1 =

{
Āmax(W ),min(S) ∧ B̄max(W ),min(S) ∧ C̄max(W ),min(S) ∧ D̄max(W ),min(S)∧
Āmin(E),max(N) ∧ B̄min(E),max(N) ∧ C̄min(E),max(N) ∧ D̄min(E),max(N)

}
REC =

{
Āmin(W )−1,min(N)−1 ∧Dmax(E)+1,max(S)+1

}
REC1 =

{
Amin(W )−1,min(N)−1 ∧ D̄max(E)+1,max(S)+1

}
In order to reconstruct an HV -convex polyomino in η with the above condi-

tions, we use the set of clauses:

η(H,V ) = Pos ∧ Cor ∧Dis ∧ Con ∧Anc ∧ LBC ∧UBR ∧GEO1 ∧ REC.

In order to reconstruct an HV -convex polyomino P in the class η′, we use the set
of clauses:

η′(H,V ) = Pos ∧ Cor ∧Dis ∧ Con ∧Anc ∧ LBC ∧UBR ∧GEO1 ∧ REC1.
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Algorithm2
Input: H ∈ Nm, V ∈ Nn

W.l.o.g assume:∀i : hi ∈ [1, n],∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj .
For min(W ),min(E) = 1, . . . ,m and
min(N),min(S) = 1, . . . , n do begin
If η(H,V ) or η′(H,V ) is satisfiable,
then output P = A ∪B ∪ C ∪D and halt.
end
output ”failure”.

Proof. We give the proof for the
class η which is a very simple modi-
fication of the algorithm of Chrobak
and Dürr (see Theorem 4). The
set Anc gives the feet of suitable size
by fixing 8 cells outside the corners
A,B,C,D. Thus these cells of the ex-
tremities of the feet are in the interior
of the polyomino. The set Pos imposes
the constraint of the relative positions
of feet in the class η (see Fig. 15).
The set GEO1 implies that the cells
at the position (max(W ),min(S)) and
(min(E),max(N)) belong to P and
thus, by convexity there exist L-paths
from max(W ) to min(S) and from
min(E) to max(N). GEO1 is imposed
in P to avoid the k-cycle with k ≥ 3.
The set REC implies that the cell
(min(W )−1,min(N)−1) belongs to P
while the cell (max(E)+1,max(S)+1)
does not belong to P (see Fig. 16).
Hence if the set of clauses η(H,V ) is
satisfiable, then we are able to recon-
struct a polyomino P in the class η.
�
In order to compute the complexity of
this algorithm, one can see that the
possible positions of the four feet is
(n−hm+1)(n−h1+1)(m−v1+1)(m−
vn + 1) ≤ n2m2 (see [3]). And so by
imposing the four feet in the interior of
the polyomino by using the algorithm
of Chrobak and Dürr, we obtain the
following result.

Figure 15: Position and anchors of the feet

in the class η. Black cells represent the fixed

feet.

Figure 16: GEO1 and REC in the class η
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Theorem 6. Algorithm 2 solves the reconstruction problem for HV -convex poly-
ominoes in η or η′ in time O(n3m3).

Definition 6. If P and P
′

are
two polyominoes, we say that P

′

occurs in P if there exists a sub-
set of cells of P that represents
P

′
(see Fig. 17).

Now we are able to give
a sufficient and necessary condi-
tion to obtain a 2-convex poly-
omino in the class η2L, using the
fact that even if we have 2-cycle

Figure 17: Two occurrences of P
′

in P.

in the class η, it acts on the feet and hence the unicity of the HV -convex for a
fixed feet is guaranteed. Let R1 be the maximal rectangle in P such that the lowest
rightmost cell is max(E) and the upper rightmost cell is min(E). Similarly, we
define the maximal rectangle R2 in P such that the lowest rightmost cell is max(S)
and the lowest leftmost cell is min(S).
Let P1 be the polyomino which is included in P and having the upper leftmost cell
of R1 as its lowest rightmost cell. Similarly, we define the polyomino P2 which is
included in P and having the upper leftmost cell of R2 as its lowest rightmost cell
(see Fig. 18, 19).

Theorem 7. Let P be an HV -convex in the class η. P is 2-convex polyomino if
and only if the polyominoes P1 and P2 are L-convex polyominoes (see Fig. 18, 19).

Proof. =⇒ Let us proceed by contradiction by assuming that at least P1 is not an
L-convex polyomino, so it is at least a 2-convex. In R1, we have an L-path from
max(E) to its upper leftmost cell which is the lower rightmost cell of the polyomino
P1. Now if P1 is not an L-convex then there exists a cell (i, j) ∈ P1 such that there
is no path from (i, j) to the lower right most cell in P1 having at most one change
of direction, hence no 2L-path from (i, j) ∈ P1 to max(E) and P is not 2-convex,
hence the contradiction.

⇐= We have that P1 and P2 are L-convex polyominoes. One can see that
the two rectangles R1 and R2 are also L-convex polyominoes and then we have a
monotone path from max(E) to all other cells in P1 with at most two changes of
direction. Similarly, we have a monotone path from max(S) to all other cells in P2

with at most two changes of direction. Note that the cells which belong to P1 and
not to P2 (resp. ∈ P2 and not ∈ P1) can be reached by an L-path from max(S)
(resp. max(E)). Hence P is a 2-convex polyomino. �
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Corollary 3. Let P be an HV -convex polyomino in the class η. If P satisfies
Theorem 7 then P is in the class η2L.

Similarly, in the class η′ we call
R1 the maximal rectangle in P with
the upper leftmost cell is min(W ) and
the lower leftmost cell is max(W ).
We define the maximal rectangle R2

in P with the upper leftmost cell is
min(N) and the upper rightmost cell
is max(N). Let P1 be the polyomino
which is included in P and having the
lower rightmost cell of R1 as its upper
leftmost cell. Similarly, we define the
polyomino P2 which is included in P
and having the lower rightmost cell of
R2 as its upper leftmost cell.

Theorem 8. Let P be an HV -convex
in the class η′. P is 2-convex poly-
omino if and only if the polyominoes
P1 and P2 are L-convex polyominoes.

Proof. Same arguments as in the class
η. �

Corollary 4. Let P be an HV -convex
polyomino in the class η′. If P satisfies
Theorem 8 then P is in the class η′2L.

To avoid repetitions, once can
see that the same characterizations
and properties hold for the classes ψ,
ψ′, ψ2L, and ψ′2L on the basis of the
properties of the transformation SH .

Figure 18: The rectangle R1 and the

polyomino P1.

Figure 19: The rectangle R2 and the

polyomino P2.

6. FINAL COMMENTS

The algorithm presented in this article is a verification method for the 2-
convexity in two subclasses of 2-convex polyominoes. It is based on some geo-
metrical and tomographical properties with some modifications in the algorithm
presented by Chrobak and Dürr. Note that we are studying the last subclass
of 2-convex polyominoes called the non-empty corners subclass where there is at
least one cell in SE and WN. The presented method can be extended to verify
whether we have a 2-convex polyomino in the non-empty corners subclass, but it
becomes heavy especially when the number of cells in one of the two sets SE and
WN increases.
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