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FAMILIES OF OPTIMAL MULTIPOINT METHODS FOR

SOLVING NONLINEAR EQUATIONS: A SURVEY

Miodrag S. Petković, Ljiljana D. Petković

Multipoint iterative root-solvers belong to the class of the most powerful
methods for solving nonlinear equations since they overcome theoretical lim-
its of one-point methods concerning the convergence order and computational
efficiency. Although the construction of these methods has occurred in the
1960s, their rapid development have started in the first decade of the 21-st
century. The most important class of multipoint methods are optimal meth-
ods which attain the convergence order 2n using n + 1 function evaluations
per iteration. In this paper we give a review of optimal multipoint meth-
ods of the order four (n = 2), eight (n = 3) and higher (n > 3), some of
which being proposed by the authors. All of them possess as high as possible
computational efficiency in the sense of the Kung-Traub hypothesis (1974).
Numerical examples are included to demonstrate a very fast convergence of
the presented optimal multipoint methods.

1. INTRODUCTION

Almost a half century ago, J. F. Traub proved [19, Theorem 5-3] that one-
point iterative methods for solving single nonlinear equations of the form f(x) = 0,
which require the evaluation of a given function f and the first p− 1 derivatives of
f, can reach the order of convergence at most p. For this reason, a great attention
was paid to multipoint iterative methods since they overcome theoretical limits of
one-point methods concerning the convergence order and computational efficiency.
Beside Traub’s research presented in his fundamental book [19], this class of
methods was also extensively studied in some papers published in the 1970s (see,
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e.g., [5]–[7], [9]). Surprisingly, the interest for multipoint methods has again grown
in the first decade of this century. However, some of the newly developed methods
were represented by new iterative formulae but without any improvement compared
to the existing methods, others were only rediscovered methods of the 1960s (see,
e.g., [13] for more details), and only a few new methods have brought a genuine
advance in the theory and practice of iterative processes.

The main goal and motivation in the construction of new methods is as high
as possible computational efficiency. In other words, it is desirable to attain as
high as possible convergence order with fixed number of function evaluations per
iteration. In the case of multipoint methods without memory, this demand is closely
connected with the optimal order considered in the Kung-Traub conjecture [9] from
1974:

Kung-Traub’s conjecture [9]. Multipoint iterative methods without memory,
requiring n+1 function evaluations per iteration, have the order of convergence at
most 2n.

Multipoint methods which satisfy the Kung-Traub conjecture (still unproved)
are usually called optimal methods; consequently, r = 2n is the optimal order. A
class of optimal n-point methods, reaching the order 2n with θ = n + 1 function
evaluations per iteration, will be denoted with Ψ2n (n ≥ 1).

The computational efficiency of an iterative method (IM) of the order r,
requiring θ function evaluations per iteration, is most frequently calculated by
Ostrowski-Traub’s efficiency index

E(IM) = r1/θ.

(see [12], [19]). Following the Kung-Traub conjecture, the optimal computational

efficiency would be E
(o)
n = 2n/(n+1). We note that this conjecture is supported by

two families of multipoint methods presented in [9] and the family of multipoint
methods proposed in [15] for arbitrary n. In particular, it is also confirmed in the
case of several two-point methods (see, e.g., [3]–[9], [14]), three-point methods
(e.g., [1], [2], [14], [18]) and the four-point method [11]. The aim of this paper
is to give a review of the main results concerned with optimal multipoint methods
for solving nonlinear equations, presented in some old and some very recent papers
and books. These results can serve not only as a review of contributions achieved
in the last fifty years but also as reference material for further investigation in this
topic.

The paper is organized as follows. First, in Section 2 we point to Traub’s
investigation in this area and the first multipoint method derived by Ostrowski in
1960. A wide class of optimal two-point methods of the fourth order and some
special cases are given in Section 3. A family of optimal three-point methods of
the order eight, where a number of function evaluations is reduced by applying
the Hermite interpolation polynomial of the third order, is considered in Section
4. Another optimal three-point methods are also presented in this section. Gen-
eral classes of optimal n-point methods for arbitrary n ≥ 3, derived by combining



Families of optimal multipoint methods for solving nonlinear equations: A survey 3

Newton’s method and an economization scheme based on the Hermite interpolation
polynomial, are the subject of Section 5. This section also presents two optimal
n-point families proposed byKung and Traub [9]. Section 6 contains some numer-
ical examples which demonstrate exceptional convergence speed of the presented
optimal multipoint methods.

2. SOME EARLY MULTIPOINT METHODS

Let f be a real sufficiently smooth analytic function, defined on an interval
If ⊂ R which contains a simple root α of f . Throughout this paper we will often
use the following quantities and abbreviations:

u(x) =
f(x)

f ′(x)
, ck = ck(α) =

f (k)(α)

k!f ′(α)
(k = 2, 3, . . .), f [y, x] =

f(y)− f(x)
y − x .

For simplicity, we will sometimes omit iteration indices in iterative formulae and
write x̂ = φ(x) instead of xk+1 = φ(xk).

The following theorem considers a generalized Newton’s method and gives a
simple way for constructing multipoint methods.

Theorem 1. (Traub [19, Th. 8.1]) Let α be a simple root of a function f and
let φ(x) define the iterative method of the order p. Then the composite iterative
function ψ(x) introduced by Newton’s method

(1) ψ(x) = φ(x)− f
(
φ(x)

)

f ′(x)
,

defines the iterative method of the order p+ 1.

Example 1. Let φ(x) be given by Newton’s method φ(x) = x− u(x). Then, according to
(1), the iterative function

(2) ψ(x) = x− u(x)−
f(x− u(x))

f ′(x)

defines the method of third order.

Consider an iterative function constructed by combining Newton’s method
and the secant method in the following manner:

y = x− f(x)

f ′(x)
, x̂ = y − f(y) y − x

f(y)− f(x) .

Here the derivative f ′(y) is replaced by the corresponding divided difference f [y, x] =
(f(y)− f(x))/(y − x). Hence we obtain the two-point method of third order

(3) x̂ = x− u(x) + u(x)f
(
x− u(x)

)

f
(
x− u(x)

)
− f(x) = x+

u(x)f(x)

f
(
x− u(x)

)
− f(x) .
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This two-point method may be visualized as the intersection with the x-axis of the
secant line through the points

(
x, f(x)

)
and

(
y, f(y)

)
, y = x − u(x), represented

by the dashed line in Figure 1, where x′ = x̂.
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Figure 1.

The both two-point methods (2) and (3) have a cubic convergence and require
three function evaluations. Therefore, they are not optimal in the sense of the
Kung-Traub conjecture. The first optimal two-point method was constructed by
Ostrowski [12], several years before Traub’s extensive investigation in this area.
Ostrowski derived his method replacing f ′(xk) by a linear combination of f(xk−1)
and f(xk) at every second step in this way,

(4) yk = xk −
f(xk)

f ′(xk)
, xk+1 = yk −

f(yk)(yk − xk)
2f(yk)− f(xk)

.

More precisely, this two-point method was derived using the interpolation by linear
fraction w(x) = (x+ b)/(cx+ d) (d− bc 6= 0) satisfying

w(xk) = f(xk), w(yk) = f(yk), w
′(xk) = f ′(xk),

see [12, Ch. 11].

Ostrowski’s method can be derived by a geometric approach using Fig. 1.

Let the point P
(
1

2
(y + x),

1

2
f(x)

)
bisect the segment determined by the points

(y, 0) and
(
x, f(x)

)
, where y = x − f(x)/f ′(x) is the Newton approximation. In

fact, this segment is a part of the tangent line at
(
x, f(x)

)
. A new approximation

x′′ is the intersection with the x-axis of the secant line through the points P and(
y, f(y)

)
(drawn by doted line in Fig. 1). From the similarity of the right-angle
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triangles (with hypotenuses PX and XY ), from Fig. 1 we observe that the ratios

1

2
f(x)

x′′ − 1

2
(y + x)

=
f(y)

x′′ − y

hold. Solving the last equation in x′′, we obtain Ostrowski’s method (4) setting
x′′ = xk+1, y = yk, x = xk. Traub [19, p. 184] gave the following error relation
(without the proof)

xk+1 − α
(xk − α)4

→ c2(α)
[
c 22 (α)− c3(α)

]
,

pointing to the fourth order of the method (4).

A generalization of Ostrowski’s method (4) was proposed by King [7] in the
form

(5) Kf (β;x) = x− u(x)− f
(
x− u(x)

)

f ′(x)
· f(x) + βf

(
x− u(x)

)

f(x) + (β − 2)f
(
x− u(x)

) ,

where β is a parameter. King’s method (5) is optimal and has the order four. It is
easy to show that Ostrowski’s method (4) is obtained from (5) for β = 0.

3. FAMILY OF OPTIMAL TWO-POINT METHODS

Consider a composite iterative two-point scheme

(6)





yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(yk)
,

(k = 0, 1, . . .)

assuming that an initial approximation x0 is reasonably good. The presented
scheme is simple and its rate of convergence is equal to four, which is a conse-
quence of the fact that Newton’s method is of the second order and the following
generalization of Traub’s theorem [19, Th. 2.4]:

Theorem 2. Let ϕ1(x), ϕ2(x), . . . , ϕs(x) be iterative functions with the orders
r1, r2, . . . , rs, respectively. Then the composition of iterative functions

ϕ(x) = ϕ1
(
ϕ2

(
· · ·

(
ϕs(x)

)
· · ·

))

defines the iterative method of the order r1r2 · · · rs.

However, the two-point method (6) requires four function evaluations per
iteration step so that it is not optimal in the sense of Kung-Traub’s conjecture. To
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reduce the number of evaluations and thus increase the computational efficiency,
we will use Chun’s approach [4] to approximate f ′(y) by

f ′(yk) ≈
f ′(xk)

g(tk)
, tk =

f(yk)

f(xk)
,

assuming that a real function g and its derivatives g′ and g′′ are continuous in the
neighborhood of 0. Now the two-step scheme (6) becomes

(7)





yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk − g(tk)
f(yk)

f ′(xk)
, tk =

f(yk)

f(xk)
,

(k = 0, 1, . . .).

The function g in (7) has to be determined so that the two-point method (7)
attains the optimal order four using only three function evaluations f(xk), f

′(xk)
and f(yk) = f(xk−u(xk)), which is the subject of the following theorem (see [14]).

Theorem 3. Let α ∈ If be a simple root of real single-valued function f : If → R

possessing a certain number of continuous derivatives in the neighborhood of α ∈ If ,
where If is an open interval. Let g be a function satisfying g(0) = 1, g

′(0) = 2 and
|g′′(0)| < ∞. If x0 is sufficiently close to α, then the order of convergence of the
family of two-step methods (7) is four and the error relation

(8) εk+1 =
[
c 32 (5− g′′(0)/2)− c2c3

]
ε 4k +O(ε

5
k )

holds.

Proof. Let ck = f (k)(α)/(k!f ′(α)) and let us introduce the errors

εk = xk − α, ηk = yk − α, εk+1 = xk+1 − α.

Using the Taylor series we find

f(xk) = f ′(α)
(
εk + c2ε

2
k + c3ε

3
k + c4ε

4
k +O(ε

5
k )

)

and

(9) f ′(xk) = f ′(α)
(
1 + 2c2εk + 3c3ε

2
k + 4c4ε

3
k +O(ε

4
k )

)
.

Hence, applying again the Taylor series to 1/f ′(xk), we get

(10) ηk = εk −
f(xk)

f ′(xk)
= c2ε

2
k + (2c3 − 2c 22 )ε 3k + (4c 32 − 7c2c3 + 3c4)ε 4k +O(ε 5k ).

Furthermore, we have

(11) f(yk) = f ′(α)
(
ηk + c2η

2
k + c3η

3
k + c4η

4
k +O(η

5
k )

)
.
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Let us represent the function g by its Taylor’s polynomial of the second order
at the point t = 0,

(12) g(tk) = g(0) + g′(0)tk +
g′′(0)

2
t 2k , tk = f(yk)/f(xk).

Now, using (9)–(12), we obtain

εk+1 =xk+1 − α = ηk − g(tk)
f(yk)

f ′(xk)

=
[
−2c3

(
g(0)− 1

)
+ c 22

(
4g(0)− g′(0)− 2

)]
ε 3k +

[
−3c4

(
g(0)− 1

)
+ c2c3

(
−7 + 14g(0)− 4g′(0)

)

+ c 32
(
4− 13g(0) + 7g′(0)− g′′(0)/2

)]
ε 4k +O(ε

5
k ).

Substituting the conditions g(0) = 1 and g′(0) = 2 of the theorem in the last
expression of εk+1, we obtain

εk+1 =
[
c 32 (5− g′′(0)/2)− c2c3

]
ε 4k +O(ε

5
k ),

which is exactly the error relation (8). Hence we conclude that the order of the
family (7) is four. 2

Remark 1. From (8) we observe that the asymptotic error constant (AEC) of the method
(7) is

AEC(7) = lim
n→∞

εn+1

ε 4
n

= c 3
2

(
5− g′′(0)/2

)
− c2c3.

In the case of a particular method obtained by choosing a specific function g, we take

g′′(0) in AEC(7) to obtain the corresponding expression of AEC.

In what follows we consider some special cases of the family of two-point
methods (7). In addition to the new methods, it is shown that most of existing
optimal two-point methods appear as special cases of the presented family (7).
The chosen function g in the subsequent examples satisfies the conditions g(0) =
1, g′(0) = 2 and |g′′(0)| <∞, given in Theorem 3.

Method 1. For g given by

g(t) =
1 + βt

1 + (β − 2)t (β ∈ R )

we obtain King’s fourth order family of two-point methods given by (5). Let us
note that King’s family produces the following special cases:

Ostrowski’s method [12], β = 0:

(13) K(0;x) = x− u(x)− u(x)f(x− u(x))
f(x)− 2f(x− u(x)) ;
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Kou’s method [8], β = 1:

(14) K(1;x) = x− f(x)2 + [f(x− u(x))]2
f ′(x)[f(x)− f(x− u(x))] ;

Chun’s method [4], β = 2:

(15) K(2;x) = x− u(x)
{
1 +

f(x− u(x))
f(x)

+
2
[
f(x− u(x))

]2

f(x)2

}
.

Method 2. Choosing g in the form

g(t) =
(
1 +

2

m
t
)m

(m ∈ N ),

one obtains the fourth order method

(16) φm(x) = x− f(x− u(x))
f ′(x)

(
1 +

2

m
· f(x− u(x))

f(x)

)m

.

Taking m = 1 we get Chun’s method (15). The iterative method obtained from
(16) for m = 2

(17) φ2(x) = x− f(x− u(x))
f ′(x)

(
1 +

f(x− u(x))
f(x)

)2

is the new one.

Method 3. For g given by

g(t) =
1 + γt2

1− 2t ,

where γ is a real parameter, we obtain a new one parameter family of two-point
methods

(18) ψγ(x) = x− f(x− u(x))
f ′(x)f(x)

· f(x)
2 + γ

[
f(x− u(x))

]2

f(x)− 2f(x− u(x)) .

Setting γ = 0 in (18), one obtains Ostrowski’s method (13).

Method 4. The choice

g(t) =
1

1− 2t+ at2 (a ∈ R )

gives a new family of optimal two-point methods defined by the iterative function

(19) ηa(x) = x− u(x)− f(x− u(x))
f ′(x)

· 1

1− 2f(x− u(x))

f(x)
+ a

[
f(x− u(x))

f(x)

]2 .
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Ostrowski’s method (13) is obtained as a special case putting a = 0 in (19).

Method 5. Choosing

g(t) =
t2 + (c− 2)t− 1

ct− 1 (c ∈ R ),

we construct the iterative function ωc(x, y),

(20)





y = x− f(x)

f ′(x)
,

ωc(x, y) = y − f(y)

f ′(x)

[
1 +

f(y)
(
f(y)− 2f(x)

)

f(x)
(
cf(y))− f(x)

)
]
,

which defines a one parameter family of two-point methods xn+1 = ωc(xk, yk) of
the order four. Taking c = 1 in (20), we obtain Maheshvari’s method [10] as a
special case,

(21) M(x) = x− u(x)
{[

f(x− u(x))
]2

f(x)2
− f(x)

f(x− u(x))− f(x)

}
.

Method 6. The function

g(t) =
1

t

( 2

1 +
√
1− 4t

− 1
)

satisfies the conditions of Theorem 3 in a limit case when t→ 0 and produces the
fourth order method

(22) E(x) = x− 2u(x)

1 +

√
1− 4f(x− u(x))

f(x)

proposed in [16].

Remark 2. The efficiency index for optimal two-point methods is E
(o)
4 = 41/3 ≈ 1.587.

4. FAMILY OF OPTIMAL THREE-POINT METHODS

In this section we consider some classes of optimal three-point methods with
the optimal order eight requiring four function evaluations. First of them relies
on optimal two-point methods belonging to the class Ψ4. Some two-point methods
from the class Ψ4 are given in Section 3.

Let f be a real analytic function defined on an interval If ⊂ R and f ′ does
not vanish on If . Let us assume that a simple root α of f is isolated in the interval
If and let ϕf ∈ Ψ4 denote an iterative function from the class of optimal two-point
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iterative methods. Then the improved approximation x̂ to α can be found by the
following three-point iterative scheme:

(23)





(1) y = x− f(x)

f ′(x)
,

(2) z = ϕf (x, y), ϕf ∈ Ψ4,
(3) x̂ = z − f(z)

f ′(z)
.

We note that the first two steps define an optimal two-point method from the class
Ψ4 with the order r1 = 4 using the Newton method in the first step, while the third
step is Newton’s method of the order r2 = 2. The presented scheme is simple and,
according to Theorem 2, its rate of convergence is equal to r1 · r2 = 8.

However, the three-point method (23) requires five function evaluations per
iteration step so that it is not optimal in the sense of Kung-Traub’s conjecture. To
reduce the number of evaluations and increase the computational efficiency, we will
approximate f ′(z) using available data. Since we have four values f(x), f ′(x), f(y)
and f(z), it is convenient to approximate f by the Hermite interpolation polynomial
h of degree 3 in the nodes x, y, z and utilize the approximation f ′(z) ≈ h′(z) in
the third step of the iterative scheme (23). This idea was employed in [15] for a
general class of optimal multipoint methods, see Section 5.

The Hermite interpolation polynomial of third order for the given data has
the form

(24) h(t) = a0 + a1(t− x) + a2(t− x)2 + a3(t− x)3,

and its derivative is

(25) h′(t) = a1 + 2a2(t− x) + 3a3(t− x)2.

The unknown coefficients will be determined from the conditions:

h(x) = f(x), h(y) = f(y), h(z) = f(z), h′(x) = f ′(x).

Putting t = x into (24) and (25) we immediately get a0 = f(x) and a1 = f ′(x).
The next two coefficients a2 and a3 are obtained from the system of two linear
equations formed by using the remaining two conditions putting y and z into (24).
We get

(26) a2 =
(z − x)f [y, z]
(z − y)(y − x) −

(y − x)f [z, x]
(z − y)(z − x) − f

′(x)

(
1

z − x +
1

y − x

)
,

and

(27) a3 =
f [z, x]

(z − y)(z − x) −
f [y, x]

(z − y)(y − x) +
f ′(x)

(z − x)(y − x) .
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Replacing the obtained coefficients into (25) and putting t = z, we get the
explicit formula for h′(z),

(28) h′(z) = f [z, x]

(
2 +

z − x
z − y

)
− (z − x)2
(y − x)(z − y)f [y, x] + f

′(x)
z − y
y − x.

Remark 3. The derivative f ′(z) can be approximated using available data in different

ways. For example, Bi et al. [1] used an approximation of the second derivative f ′′ and

divided differences. Neta [11] applied inverse interpolation to derive optimal methods of

higher order.

We now use the relation (28) to approximate f ′(z) ≈ h′(z). Replacing f ′(z)
in (23) by the expression (28), we state the following class of three-point methods:
Given an initial approximation x0, the improved approximations xk (k = 1, 2, . . .)
are calculated by the three-step procedure

(29)





yk = xk −
f(xk)

f ′(xk)
,

zk = ϕf (xk, yk),

xk+1 = zk −
f(zk)

h′(zk)

(k = 0, 1, . . .).

The proposed class of root-solvers requires only four function evaluations
and possesses the eighth order of convergence, which is the subject of Theorem 5.
The proof of this theorem requires the estimation of quality of the approximation
f ′(x) ≈ h′(x).

Let Hm be the Hermite interpolation polynomial of the degree m satisfying

(30) H(k)m (tj) = f (k)(tj) (j = 0, . . . , s; k = 0, . . . , γj − 1),

where t0, t1, . . . , ts are interpolation nodes and γ0, γ1, . . . , γs are their respective
multiplicities. We will use the following well-known expression for the error of the
Hermite interpolation (see, e.g., [19, p. 244]).

Theorem 4. Let f and its derivatives f ′, . . . , f (m+1) be continuous in the interval
(a, b) determined by interpolation nodes t0, t1, . . . , ts. Then

(31) f(t)−Hm(t) =
f (m+1)(ξ)

(m+ 1)!

s∏

j=0

(t− tj)γj ,

where ξ ∈ (a, b) and γ0 + γ1 + · · ·+ γs = m+ 1.

Now we state the following convergence theorem.

Theorem 5. If an initial approximation x0 is sufficiently close to the root α of a
function f, then the convergence order of the class of three-point methods (29) is
equal to eight.
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Proof. For brevity, we omit the iteration index and consider the values x, y, z
in one iteration step, denoting the improved approximation with x̂ = xk+1. Let us
introduce the errors

ε = x− α, u = y − α, v = z − α,

where α is the root of f . Then the error in the new iterative step is ε̂ = x̂ − α.
Since the iterative function ϕf ∈ Ψ4 is of the fourth order, we have the estimation

(32) v = qε4 +O(ε5),

where q is the asymptotic error constant of the two-step method ϕf applied in (29).
It is easy to find that

(33) y − x = u− ε = O(ε), z − x = v − ε = O(ε), z − y = v − u = O(ε2).

Let us find the convergence order of the modified Newton method in the third
step in (29), where f ′(z) is replaced with h′(z) (given by (28)). To do that, compare
the corresponding iterative function

(34) g(z) := x̂ = z − f(z)

h′(z)

to the Newton iterative function N(z) = z − f(z)/f ′(z). Consider the special case
of (30) when m = 3, and γ0 = 2, γ1 = γ2 = 1 are the multiplicities of the nodes
t0 = x, t1 = y and t2 = z, respectively. Then, in regard to (31), the error of the
Hermitian interpolation is given by

(35) f(t)− h(t) = f (4)(ξ)

4!
(t− x)2(t− y)(t− z).

Differentiating (35) and taking t = z, in regard to (32) and (33) we obtain

f ′(z)− h′(z) = f (4)(ξ)

4!
(z − x)2(z − y) = f (4)(ξ)

4!
(v − ε)2(v − u) = O(ε4) = O(v),

whence

f ′(z) = h′(z)
(
1 +O(ε4)

)
= h′(z)

(
1 +O(v)

)
.

This relation yields

ε̂ = x̂−α = z− f(z)

h′(z)
−α = z− f(z)

f ′(z)
+f(z)O(v)−α = N(z)−α+O(v2) = O(v2),

since f(z) = O(z − α) = O(v) and N(z)− α = O(v2). Hence

(36) g(z)− α = x̂− α = O(v2),
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which means that the modified Newton method (14) also possesses the quadratic
convergence. Finally, according to (32) and (36), we get

ε̂ = x̂− α = O(v2) = O(ε8),

which completes the proof of Theorem 5. 2

Remark 4. By virtue of (32) and (36), from Theorem 2 it follows that the order of

convergence of the composite iteration g(ϕf (x, y)) is 2 · 4 = 8.

Remark 5. Since the convergence order is 23 = 8 and the number of function evaluations

is θ = 4 for the considered class of three-point methods Ψ8, we conclude that the Kung-

Traub conjecture is supported for n = 3.

Using the Taylor series and symbolic computation in the programming pack-
age Mathematica (Maple or Matlab are also convenient), we can determine the
asymptotic error constant of the three-point methods (29). The following abbrevi-
ations are used in the program given below.

ck= f (k)(α)/(k!f ′(α)), e= x− α, e1= x̂− α,
fx= f(x), fy= f(y), fz= f(z), f1x= f ′(x), f1a= f ′(α),

f1z= f ′(z) (calculated by (28)).

Program (written in Mathematica):

fx=f1a*(e+c2*e^2+c3*e^3+c4*e^4); f1x=D[fx,e];

u=e-Series[fx/f1x, {e,0,4}]; fy=f1a*(u+c2*u^2+c3*u^3 +c4*u^4);

v=q*e^4; fz=f1a*(v+c2*v^2+c3*v^3+c4*v^4);

fxy=(fx-fy)/(e-u); fxz=(fx-fz)/(e-v); fyz=(fy-fz)/(u-v);

f1z=fxz*(2+(v-e)/(v-u))-(v-e)^2/((u-e)*(v-u))*fxy+f1x*(v-u)/(u-e);

e1=v-fz/f1z//Simplify

Out[e1] = c2q(c4 + q)e
8 +O[e9]

Therefore, the asymptotic error constant (AEC) of the class of methods (29) is
given by

AEC(29) = c2q(c4 + q).

The AEC q should be determined for each particular two-point method ϕf applied
in the iterative scheme (29). For example, q = AEC(13) = c2(c

2
2 + 2βc

2
2 − c3) for

King’s two-point method (5) so that the AEC of the three-point method (29) in
this particular case is

AEC
(
(29)–(5)

)
= c 22 (c

2
2 + 2βc

2
2 − c3)(c 32 + 2βc 32 − c2c3 + c4).

Remark 6. Note that the output Out[e1] of the above program points to the eighth

order of convergence. In fact, this program determines the rate of convergence of the

three-point scheme (29) in an easy way, using symbolic computation.
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In what follows we will present in short two families of optimal three-point
methods, both based on King’s two-point method (5). Bi et al. [1] used this method
in the third step and constructed the family of optimal three-point methods





yk = xk −
f(xk)

f ′(xk)
,

zk = yk − h(µk)
f(yk)

f ′(xk)
,

xk+1 = zk −
f(xk) + βf(zk)

f(xk) + (β − 2)f(zk)
· f(zk)

f [zk, yk] + f [zk, xk, xk](zk − yk)
,

(37)

where h(t) is a real-valued function, µk = f(yk)/f(xk) and

f [z, x, x] =
f [z, x]− f ′(x)

z − x .

Another family of optimal three-point methods was recently proposed by
Thurkal and Petković [18]. King’s method makes the first two steps of the
following three-step scheme





y = x− f(x)

f ′(x)
,

z = y − f(y)

f ′(x)
· f(x) + bf(y)

f(x) + (b− 2)f(y) , (a, b ∈ R )

g(x) = z − f(z)

f ′(x)

[
ϕ
(f(y)
f(x)

)
+

f(z)

f(y)− af(z) +
4f(z)

f(x)

]
,

(38)

where ϕ is arbitrary real function satisfying the conditions

(39) ϕ(0) = 1, ϕ′(0) = 2, ϕ′′(0) = 10− 4b, ϕ′′′(0) = 12b2 − 72b+ 72,

and a and b are real parameters. The iterative method is defined by

(40) xk+1 = g(xk) (k = 0, 1, . . .),

starting with an initial approximation x0 to the root α of f. Some examples of the
choice of the function ϕ in (38) are given in Table 2.

All families (29), (37) and (38) have the order eight and need four function
evaluations. Therefore, their efficiency index is 81/4 ≈ 1.682, which is better than
the efficiency index 41/3 ≈ 1.587 of any two-point method of the fourth order
requiring three function evaluations (see Remark 2). We note that the efficiency
index of the Newton method is only 21/2 ≈ 1.414.
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5. GENERAL CLASSES OF OPTIMAL MULTIPOINT METHODS

At the beginning of this paper we have mentioned that Kung and Traub [9]
constructed two optimal n-point families of iterative methods for arbitrary n ≥ 3.
We present these families, called here K-T family for brevity, in the form given in
[9].

K-T (41): For any n, define iterative function pj(f) (j = 0, . . . , n) as follows:
p0(f)(x) = x and for n > 0,





p1(f)(x) = x+ γf(x), γ is a nonzero constant,
...

pj+1(f)(x) = Rj(0),

(41)

for j = 1, . . . , n−1, where Rj(y) is the inverse interpolatory polynomial of degree at
most j such that Rj(f(pλ(f)(x)) = pλ(f)(x) (λ = 0, . . . , j). The iterative method
is defined by xk+1 = pn(f)(xk) starting with an initial approximation x0. Let us
note that the family K-T (41) requires no evaluation of derivatives of f.

K-T (42): For any n, define iterative function qj(f) (j = 0, . . . , n) as follows:
q1(f)(x) = x for n > 1,





q2(f)(x) = x− f(x)/f ′(x),
...

qj+1(f)(x) = Sj(0),

(42)

for j = 2, . . . , n − 1, where Sj(y) is the inverse interpolatory polynomial of degree
at most j such that

Sj(f(x)) = x, S′j(f(x)) = 1/f
′(x), Sj(f(qλ(f)(x))) = qλ(x) (λ = 2, . . . , j).

The iterative method is defined by xk+1 = qn(f)(xk) starting with an initial ap-
proximation x0.

For a fixed n, the methods K-T (41) and K-T (42) can be easily constructed
using a recursive procedure on a computer, see [9]. In Section 6, Example 3, we
have taken n = 4 to obtain the three-point methods of the eighth order.

Now we present a class of optimal n-point methods for arbitrary n ≥ 3,
proposed recently in [15]. Let ψf ∈ Ψ4 and let us define a class of n-point methods

(1) φ1(x) = N(x) = x− f(x)

f ′(x)
,

(2) φ2(x) = ψf (x, φ1(x)),

(3) φ3(x) = N
(
φ2(x)

)
= φ2(x)−

f
(
φ2(x)

)

f ′
(
φ2(x)

) ,(43)

...
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(n− 1) φn−1(x) = N
(
φn−2(x)

)
= φn−2(x)−

f
(
φn−2(x)

)

f ′
(
φn−2(x)

) ,

(n) φn(x) = N(φn−1(x)) = φn−1(x)−
f
(
φn−1(x)

)

f ′
(
φn−1(x)

) ,

Sometimes, we will formally write x = φ0(x). For an initial approximation x = x0,
from (43) we obtain the family of iterative methods

xk+1 = φn(xk) (k = 0, 1, . . .).

Applying Theorem 2 we find that the n-point methods (43), written in the
composite form,

ϕn(x) = N
(
N
(
· · ·

(
N
(
ψf

(
x, φ1(x)

)))
· · ·

))
,

have the order of convergence r =

n−2 times︷ ︸︸ ︷
2 · 2 · · · 2 ·4 = 2n since the iterative function

ψf ∈ Ψ4 defines the iterative method of the fourth order. However, note that
the iterative scheme (43) requires 2(n − 2) + 3 = 2n − 1 function evaluations per
iterations, which is rather inefficient. Therefore, it is ultimately necessary to reduce
the number of function evaluations using a suitable approximation of all derivatives
f ′(ϕ2(x)), . . . , f

′(ϕn−1(x)) that appear in the steps (3)–(n).

For simplicity, we drop the argument of iterative functions ϕλ whenever it
does not make a confusion. To carry out the substitution procedure of the deriva-
tives f ′(ϕλ), we form the Hermite interpolation polynomial of the third order for
the index λ ∈ {2, . . . , n− 1},

(44) h(λ)(t) = a
(λ)
1 +a

(λ)
2

(
t−ϕλ−2

)
+a

(λ)
3

(
t−ϕλ−2

)2
+a

(λ)
4

(
t−ϕλ−2

)3
(φ0 = x),

satisfying the following conditions

h(λ)
(
ϕλ−2

)
= f

(
ϕλ−2

)
,(45)

h(λ)
(
ϕλ−1

)
= f

(
ϕλ−1

)
,(46)

h(λ)
(
ϕλ

)
= f

(
ϕλ

)
,(47)

and

(48) h′(λ)
(
ϕλ−2

)
= f ′

(
ϕλ−2

)
.

This approach was already applied in Section 4. The subscript index λ in the
denotation of the Hermite interpolation polynomial h should not be mixed with the
degree of h (which is always three). This index points to the use of the polynomial
h instead of the derivative f ′ at the point ϕλ in the (λ+ 1)-st step.

We have exactly four conditions (45)–(48) for determining four unknown co-

efficients a
(λ)
1 , a

(λ)
2 , a

(λ)
3 , a

(λ)
4 in (44). From the conditions (45) and (48) we imme-

diately find

(49) a
(λ)
1 = f(ϕλ−2), a

(λ)
2 = f ′(ϕλ−2).
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Putting ϕλ−1 and ϕλ in (44) and employing the already determined values of a
(λ)
1

and a
(λ)
2 (given by (49)), from (46) and (47) we form the system of two linear

equations and find its solutions a
(λ)
3 and a

(λ)
4 given by (26) and (27) (in different

notation).

Substituting the coefficients a
(λ)
1 , a

(λ)
2 (given by (49)) and a

(λ)
3 and a

(λ)
4 (found

from the mentioned linear system) in (44) we completely determine the Hermite
interpolation polynomial h(λ) which fits the function f. By differentiating (44) we
obtain

(50) h′(λ)(t) = a
(λ)
2 + 2a

(λ)
3

(
t− ϕλ−2

)
+ 3a

(λ)
4

(
t− ϕλ−2

)2
(ϕ0 = x).

Rewriting the expression (28) for specific points, we find

h′(λ)(ϕλ) = 2
(
f [ϕλ−2, ϕλ]− f [ϕλ−2, ϕλ−1]

)
+ f [ϕλ−1, ϕλ]

+
ϕλ−1 − ϕλ
ϕλ−1 − ϕλ−2

(
f [ϕλ−2, ϕλ−1]− f ′(ϕλ−2)

)
(51)

for λ ∈ {2, . . . , n− 1}, assuming that ϕ0(x) = x.

Starting from the iterative scheme (43), we substitute derivatives f ′(ϕ2),
. . . , f ′(ϕn−1) appearing in the steps (3)–(n) by h

′
(2)(ϕ2), . . . , h

′
(n−1)(ϕn−1), which

are calculated by (51). This constructive way gives the following class of n-point
iterative methods

(1) φ1(x) = N(x) = x− f(x)

f ′(x)
,

(2) φ2(x) = ψf (x),

(3) φ3(x) = Ñ
(
φ2(x)

)
:= φ2(x)−

f
(
φ2(x)

)

h′(2)
(
φ2(x)

) ,

...(52)

(n− 1) ϕn−1(x) = Ñn−2

(
ϕn−2(x)

)
:= ϕn−2(x)−

f
(
ϕn−2(x)

)

h′(n−2)
(
ϕn−2(x)

) ,

(n) ϕn(x) = Ñn−1

(
ϕn−1(x)

)
:= ϕn−1(x)−

f
(
ϕn−1(x)

)

h′(n−1)
(
ϕn−1(x)

) .

For an initial approximation x = x0, from (52) we obtain the family of n-point
iterative methods

(53) xk+1 = φn(xk) = Ñn−1

(
Ñn−2

(
· · ·

(
Ñ2

(
ψf (xk)

))
· · ·

))
(k = 0, 1, . . .).

Remark 7. In the above scheme the modified Newton method defined by

Ñλ

(
ϕλ
)
:= ϕλ −

f
(
ϕλ
)

h′(λ)

(
ϕλ
) (λ = 2, . . . , n− 1)
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is involved. It was proved in [15] that this method has also the quadratic convergence.

In addition, note that the computational cost of the evaluation of h′(λ)(ϕλ) is very cheap

since we deal with the quadratic polynomial h′(λ) (given by (50)).

The convergence order of general class of multipoint methods (52) was con-
sidered in the following theorem, stated in [15].

Theorem 6. The class of n-point iterative methods (52) has the order of conver-
gence r = 2n.

The proof of this theorem goes by induction and using Theorem 4, see [15].
In essence, it is similar to the proof of Theorem 5.

Remark 8. Since the modified Newton methods Ñ2, . . . , Ñn−1 in the iterative scheme
(52) are of the second order (see Remark 7), we can apply Theorem 2 to the class of
n-point methods (52), written in the composite form

xk+1 = ϕn(xk) = Ñn−1

(
Ñn−2

(
· · ·

(
Ñ2

(
ψf
(
xk, φ1(xk)

)))
· · ·

))
,

to obtain the order of convergence r =

n−2 times︷ ︸︸ ︷
2 · 2 · · · 2 ·4 = 2n.

Remark 9. We speak about the class of n-point methods (52) since the choice of various

iterative functions ψf ∈ Ψ4 gives a variety of n-point methods.

Remark 10. It is worth mentioning that the class of n-point iterative methods (52)

requires 3 + (n − 2) = n + 1 function evaluations per iteration. Indeed, all derivatives

h′(2), . . . , h
′
(n−1) in (52) are evaluated using the already calculated values and do not require

any additional function calculations.

Therefore, according to Theorem 6 and Remark 10, it follows that the pre-
sented general class of n-point methods (52) is optimal and has the optimal compu-

tational efficiency E
(o)
n = 2n/(n+1), that is, ϕn ∈ Ψ2n (n ≥ 3). This result supports

the Kung-Traub conjecture. For example, for n = 3, 4 and 5 we evaluate the
computational efficiency

E
(o)
3 = 23/4 ≈ 1.682, E

(o)
4 = 24/5 ≈ 1.741, E

(o)
5 = 25/6 ≈ 1.782.

Obviously, the sequence
{
E
(o)
n

}
is monotonically increasing and tends to 2.

6. NUMERICAL EXAMPLES

In this section we present the convergence behavior of some optimal mul-
tipoint methods considered in the previous sections. For demonstration, among
many numerical examples we selected four examples implemented in the program-
ming package Mathematica by the use of multi-precision arithmetic. The tables
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of results also contain the computational order of convergence, evaluated by the
following formula (see [20])

(54) r̃ ≈ log |(xk+1 − α)/(xk − α)|
log |(xk − α)/(xk−1 − α)|

.

Example 2. We applied two-step methods (7) considered in Section 3 to the test function

f(x) = ln (x2 + x+ 2)− x+ 1

for finding its root which lies in the interval [2, 5]. The exact root is α = 4.1525907 . . .

and we chose the initial approximation x0 = 3. The absolute values of the errors of

approximations xk in the first three iterations are displayed in Table 1, where A(−t)

means A× 10−t.

Table 1

f(x) = ln (x2 + x+ 2)− x+ 1, α = 4.1525907 . . . , x0 = 3

Two-point methods |x1 − α| |x2 − α| |x3 − α| r̃ (54)

(13) 2.51(−3) 2.46(−14) 2.27(−58) 4.0000

(14) 5.63(−3) 1.06(−12) 1.34(−51) 3.9997

(15) 9.50(−3) 1.21(−11) 3.21(−47) 3.9996

(17) 7.34(−3) 3.68(−12) 2.35(−49) 3.9995

(18), γ = 1 7.66(−4) 1.37(−16) 1.41(−67) 3.9998

(19), a = 1 3.91(−3) 1.95(−13) 1.21(−54) 3.9998

(20), c = 1 7.53(−3) 4.16(−12) 3.84(−49) 3.9994

(21) 1.35(−3) 1.33(−15) 1.25(−63) 4.0001

Example 3. The three-point methods (38) (four variants), (41), (42) and (37) (four
variants) were applied to find the root α = −1 of the function

f(x) = e−x
2+x+2 − cos(x+ 1) + x3 + 1,

starting from x0 = −0.7. The absolute errors |xk−α| in the first three iterations are given

in Table 2.

Table 2

f(x) = e−x
2+x+2 − cos(x+ 1) + x3 + 1, α = −1, x0 = −0.7.

Three-point methods |x1 − α| |x2 − α| |x3 − α| r̃ (54)

(38), ϕ(t) = 12t3 + 5t2 + 2t+ 1 1.65(−7) 4.74(−58) 2.15(−462) 8.00019

(38), ϕ(t) =
5− 2t+ t2

5− 12t
9.15(−7) 2.89(−52) 2.87(−416) 7.99997

(38), ϕ(t) =
(
1 +

t

1− 2t

)2

8.84(−7) 2.06(−52) 1.76(−417) 8.00017

(38), ϕ(t) =
1

1− 2t− t2
9.21(−7) 3.11(−52) 5.20(−416) 9.00010

K-T (41), γ = 0.01 2.82(−7) 2.18(−55) 2.81(−440) 7.99990

K-T (42) 2.45(−7) 5.73(−56) 5.07(−445) 8.00010

(37), h(t) = 1 +
4t

2− 5t
, β = 3 7.86(−7) 4.47(−52) 4.86(−414) 8.00006

(37), h(t) = 1 + 2t+ 5t2 + t3, β = 3 1.19(−6) 1.69(−50) 2.92(−401) 7.99957

(37), h(t) =
1

1− 2t− t2 + t3
, β = 3 8.83(−7) 1.19(−51) 1.32(−410) 7.99981

(37), h(t) = (1− 3t)−2/3, β = 3 7.12(−7) 1.95(−52) 6.17(−417) 8.00000
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Example 4. We applied the three-point methods (N,ψf , Ñ2) of the form (52) (n = 3) to
the function

f(x) = ex sin 5x− 2

to find sufficiently close approximation to the root of f in the interval [1, 1.6]. We chose

x0 = 1.2 as the initial approximation. The sought zero on this interval with 20 accurate

decimal digits is α = 1.36397318026371268918 . . . . The results of the first three iterations

are given in Table 3.

Table 3

f(x) = ex sin 5x− 2, α = 1.3639731 . . . , x0 = 1.2.

Three-point methods |x1 − α| |x2 − α| |x3 − α| r̃ (54)
{
Ostrowski’s IM (4), Ñ2

}
1.30(−5) 1.86(−39) 3.25(−310) 8.0001

{
King’s IM (5)β=−1, Ñ2

}
7.01(−6) 1.20(−41) 9.05(−328) 7.9997

{
King’s IM (5)β=1, Ñ2

}
2.33(−5) 2.18(−37) 1.29(−293) 7.9999

{
Euler-like’s IM (21), Ñ2

}
1.03(−5) 2.68(−40) 5.74(−317) 7.9998

{
Maheshwari’s IM (22), Ñ2

}
3.22(−5) 3.04(−36) 1.92(−284) 7.9999

Example 5. The four-point methods (N,ψf , Ñ2, Ñ3) of the form (52) (n = 4) of the
sixteenth order were applied to the function

f(x) = (x− 2)(x10 + x+ 1)e−x−1.

The initial approximation x0 = 2.1 and the same two-point methods were taken. The

absolute errors of approximations are given in Table 4.

Table 4

f(x) = (x− 2)(x10 + x+ 1)e−x−1, α = 2, x0 = 2.1.
Four-point methods |x1 − α| |x2 − α| |x3 − α| r̃ (54)
{
Ostrowski’s IM (4), Ñ2, Ñ3

}
5.41(−10) 6.13(−141) 6.99(−2236) 15.9986

{
King’s IM (5)β=−1, Ñ2, Ñ3

}
1.14(−8) 2.74(−118) 3.32(−1872) 16.0001

{
King’s IM (5)β=1, Ñ2, Ñ3

}
2.97(−9) 1.85(−110) 9.51(−1746) 16.0000

{
Euler-like’s IM (21), Ñ2, Ñ3

}
3.01(−9) 1.46(−129) 5.85(−2055) 16.0031

{
Maheshwari’s IM (22), Ñ2, Ñ3

}
4.66(−8) 8.26(−107) 8.49(−1687) 15.9997

From the results displayed in Tables 1–4 and a number of numerical experi-
ments, it can be concluded that the convergence of the tested multipoint methods is
remarkably fast. Although two iterative steps are quite satisfactory in solving most
practical problems when the initial approximation is reasonably good. We have
displayed results of the third iteration to demonstrate remarkably fast convergence
of the tested methods. Since the approximations of great accuracy are obtained
using only a few function evaluations per iteration, it is clear that these methods
possess a very high computational efficiency. Actually, the convergence behavior
of the considered multipoint methods strongly depends of the structure of tested
functions and the accuracy of initial approximations.
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From the last columns of Tables 1–4 we also observe that the computational
order of convergence r̃ and the theoretical results for all considered methods per-
fectly match. However, this is the case when initial approximations are reasonably
close to the roots. Discussing this subject we should note that the choice of good
initial approximations is of great importance in the application of iterative meth-
ods, including multipoint methods. We note that an efficient method for finding
initial approximations of great accuracy was recently proposed in [17], see also [21]
and [22].

7. CONCLUSIONS

The primary aim of this survey paper is to present general classes of very
efficient multipoint methods and to check the Kung-Traub conjecture for various
values of n ≥ 2. We end this paper with a natural question of practical interest:
does the construction of faster and faster multipoint methods always have a justi-
fication? Certainly not if sufficiently good initial approximations are not provided.
In those cases it is not possible, in practice, to attain the expected convergence
speed (determined in a theoretical analysis), at least at the beginning of iterative
process. It is always more profitable to put an effort into the determination of
sufficiently close initial approximations to the roots, instead of applying very fast
root-solvers with bad starting approximations.
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