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STABILITY OF HOMOMORPHISMS AND

(θ, φ)-DERIVATIONS

Abbas Najati, Themistocles M. Rassias

In this paper, we prove the generalized Hyers–Ulam stability of homomor-
phisms and (θ, φ)-derivations on a ring R into a Banach R-bimodule M.

1. INTRODUCTION

The stability problem of functional equations originated from a question of
Ulam [37] concerning the stability of group homomorphisms: Let (G1, ∗) be a

group and let (G2, �, d) be a metric group with the metric d(· , ·). Given ε > 0, does

there exist δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x), H(x)) < ε

for all x ∈ G1?

In other words, we are looking for situations where homomorphisms are sta-
ble, i.e., if a mapping is almost a homomorphism, then there exists a homomor-
phism near it. Hyers [12] gave a first affirmative answer to the question of Ulam
for Banach spaces. Let X and Y be Banach spaces: Assume that f : X → Y

satisfies

‖f(x+ y) − f(x) − f(y)‖ ≤ ε

for some ε ≥ 0 and all x, y ∈ X. Then there exists a unique additive mapping

T : X → Y such that

‖f(x) − T (x)‖ ≤ ε
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for all x ∈ X .

Aoki [2] and Rassias [31] provided a generalization of the Hyers’ theorem
for additive and linear mappings, respectively, by allowing the Cauchy difference
to be unbounded.

Theorem 1.1. (Th. M. Rassias). Let f : E → E′ be a mapping from a normed

vector space E into a Banach space E′ subject to the inequality

(1.1) ‖f(x+ y) − f(x) − f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

(1.2) ‖f(x) − L(x)‖ ≤
2ε

2 − 2p
‖x‖p

for all x ∈ E. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.
Also, if for each x ∈ E the mapping t 7→ f(tx) is continuous in t ∈ R, then L is

linear.

The inequality (1.1) has provided a lot of influence in the development of
what is now known as a generalized Hyers–Ulam stability of functional equations.
In 1994, a generalization of the Th. M. Rassias’ theorem was obtained by Gǎvruta

[8], who replaced the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y).
Since then the stability problems of various functional equations and mappings
and their Pexiderized versions with more general domains and ranges have been
investigated by a number of authors (see [21]–[29]). We also refer the readers to
the books [7], [13], [16] and [32].

Let A be a real or complex algebra. A mapping D : A → A is said to be a
(ring) derivation if

D(a+ b) = D(a) +D(b), D(ab) = D(a)b + aD(b)

for all a, b ∈ A. If, in addition, D(λa) = λD(a) for all a ∈ A and all λ ∈ F, then
D is called a linear derivation, where F denotes the scalar field of A. Singer and
Wermer [35] proved that if A is a commutative Banach algebra and D : A → A

is a continuous linear derivation, then D(A) ⊆ rad(A). They also conjectured that
the same result holds even D is a discontinuous linear derivation. Thomas [36]
proved the conjecture. As a direct consequence, we see that there are no non-zero
linear derivations on a semi-simple commutative Banach algebra, which had been
proved by Johnson [15]. On the other hand, it is not the case for ring derivations.
Hatori and Wada [9] determined a representation of ring derivations on a semi-
simple commutative Banach algebra (see also [33]) and they proved that only the
zero operator is a ring derivation on a semi-simple commutative Banach algebra



266 Abbas Najati, Themistocles M. Rassias

with the maximal ideal space without isolated points. The stability of derivations
between operator algebras was first obtained by Šemrl [34]. Badora [3] and
Miura et al. [22] proved the generalized Hyers–Ulam stability of ring derivations
on Banach algebras.

Let R be an associative ring, N be a R-bimodule and let θ, φ be auto-
morphisms of R. An additive mapping D : R → N is called a derivation if
D(ab) = D(a)b + aD(b) holds for all pairs a, b ∈ R and is called a Jordan deriva-

tion in case D(a2) = D(a)a+ aD(a) is fulfilled for all a ∈ R. Every derivation is a
Jordan derivation. The converse is in general not true (see [6, 10]). The concept of
generalized derivation has been introduced by Bresar [4]. Hvala [11] and Lee

[18] introduced a concept of (θ, φ)-derivation (see also [19]). An additive map-
ping F : R → N is called a (θ, φ)-derivation in case F (ab) = F (a)θ(b) + φ(a)F (b)
holds for all pairs a, b ∈ R. An additive mapping F : R → N is called a (θ, φ)-
Jordan derivation in case F (a2) = F (a)θ(a) + φ(a)F (a) holds for all a ∈ R. An
additive mapping F : R → N is called a generalized (θ, φ)-derivation in case
F (ab) = F (a)θ(b) + φ(a)D(b) holds for all pairs a, b ∈ R, where D : R → N
is a (θ, φ)-derivation. An additive mapping F : R → N is called a generalized

(θ, φ)-Jordan derivation in case F (a2) = F (a)θ(a) + φ(a)D(a) holds for all a ∈ R,
where D : R → N is a (θ, φ)-Jordan derivation. It is clear that every generalized
(θ, φ)-derivation is a generalized (θ, φ)-Jordan derivation.

The aim of the present paper is to establish the stability problem of homo-
morphisms and generalized (θ, φ)-derivations by using the fixed point method (see
[1, 5, 17, 21]).

Let E be a set. A function d : E × E → [0,∞] is called a generalized metric

on E if d satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [20] Let (E, d) be a complete generalized metric space and let

J : E → E be a strictly contractive mapping with Lipschitz constant L < 1. Then

for each given element x ∈ E, either

d(Jnx, Jn+1x) = ∞

for all non-negative integers n or there exists a non-negative integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = { y ∈ E : d(Jn0x, y) <∞};

(4) d(y, y∗) ≤
1

1 − L
d(y, Jy) for all y ∈ Y .
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2. STABILITY OF HOMOMORPHISMS

In this section, we assume that R is an associative ring, X is a normed algebra,
Y is a Banach algebra, and n ≥ 3 is a fixed integer.

Lemma 2.1. Let X and Y be linear spaces. A mapping f : X → Y (with f(0) = 0
if n = 3) satisfies

(2.1)

n
∑

j=1

f
(

− xj +
∑

1≤i≤n
i6=j

xi

)

= (n− 2)

n
∑

i=1

f(xi)

for all x1, . . . , xn ∈ X, if and only if f is additive.

Proof. Let f satisfy (2.1). Letting x1 = · · · = xn = 0 in (2.1), we get f(0) = 0.
Letting x2 = · · · = xn = 0 in (2.1), we infer that f is odd. So by letting x3 = · · · =
xn = 0 in (2.1) and using the oddness of f , we get that the mapping f is additive.
The converse is obvious. �

Theorem 2.2. Let f : R → Y be a mapping for which there exist functions

ϕ : Rn → [0,∞) and ψ : R2 → [0,∞) such that

(2.2) lim
k→∞

1

rk
ϕ(rka1, . . . , r

kan) = 0,

(2.3) lim
k→∞

1

rk
ψ(rka, b) = lim

k→∞

1

rk
ψ(a, rkb) = lim

k→∞

1

rk
ψ(rka, rkb) = 0,

(2.4)
∥

∥

∥

n
∑

j=1

f
(

− aj +
∑

1≤i≤n
i6=j

ai

)

− (n− 2)

n
∑

i=1

f(ai)
∥

∥

∥
≤ ϕ(a1, . . . , an),

(2.5) ‖f(ab)− f(a)f(b)‖ ≤ ψ(a, b)

for all a, b, a1, . . . , an ∈ R, where r = n − 2 > 1. If there exists a constant L < 1
such that

ϕ(ra, . . . , ra) ≤ rLϕ(a, . . . , a)

for all a ∈ R, then there exists a unique homomorphism H : R → Y satisfying

(2.6) ‖f(a) −H(a)‖ ≤
1

n(n− 2)(1 − L)
ϕ(a, . . . , a),

(2.7) H(a)[H(b) − f(b)] = [H(a) − f(a)]H(b) = 0

for all a, b ∈ R.

Proof. Letting a1 = · · · = an = a in (2.4), we get

(2.8) ‖f(ra) − rf(a)‖ ≤
1

n
ϕ(a, . . . , a)
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for all a ∈ R. Let E := { g : R → Y }. We introduce a generalized metric on E as
follows:

dϕ(g, h) := inf{C ∈ [0,∞] : ‖g(a) − h(a)‖ ≤ Cϕ(a, . . . , a) for all a ∈ R}.

It is easy to show that (E, dϕ) is a generalized complete metric space [5].

Now we consider the mapping Λ : E → E defined by

(Λg)(a) =
1

r
g(ra), for all g ∈ E and a ∈ R.

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with dϕ(g, h) ≤ C. From
the definition of dϕ, we have

‖g(a) − h(a)‖ ≤ Cϕ(a, . . . , a)

for all a ∈ R. By the assumption and last inequality, we have

‖(Λg)(a) − (Λh)(a)‖ =
1

r
‖g(ra) − h(ra)‖ ≤

C

r
ϕ(ra, . . . , ra) ≤ CLϕ(a, . . . , a)

for all a ∈ R. So dϕ(Λg,Λh) ≤ Ldϕ(g, h) for any g, h ∈ E. It follows from (2.8) that

dϕ(Λf, f) ≤
1

n(n − 2)
. Therefore according to Theorem 1.2, the sequence {Λkf}

converges to a fixed point H of Λ, i.e.,

H : R → Y, H(a) = lim
k→∞

(Λkf)(a) = lim
k→∞

1

rk
f(rka)

and H(ra) = rH(a) for all a ∈ R. Also H is the unique fixed point of Λ in the set
Eϕ = {g ∈ E : dϕ(f, g) <∞} and

dϕ(H, f) ≤
1

1 − L
dϕ(Λf, f) ≤

1

n(n− 2)(1 − L)
,

i.e., inequality (2.6) holds true for all a ∈ R. It follows from the definition of H ,
(2.2) and (2.4) that

n
∑

j=1

H
(

− aj +
∑

1≤i≤n
i6=j

ai

)

= (n− 2)

n
∑

i=1

H(ai)

for all a1, . . . , an ∈ R. Since H(0) = 0, by Lemma 2.1 the mapping H is additive.
So it follows from the definition of H , (2.3) and (2.5) that

‖H(ab) −H(a)H(b)‖ = lim
k→∞

1

r2k
‖f(r2kab) − f(rka)f(rkb)‖

≤ lim
k→∞

1

r2k
ψ(rka, rkb) = 0
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for all a, b ∈ R. So H is homomorphism. Similarly, we have from (2.3) and (2.5)
that

(2.9) H(ab) = H(a)f(b), H(ab) = f(a)H(b)

for all a, b ∈ R. Since H is homomorphism, we get (2.7) from (2.9).

Finally it remains to prove the uniqueness of H . Let H1 : R → Y be another

homomorphism satisfying (2.6). Since dϕ(f,H1) ≤
1

n(n − 2)(1 − L)
and H1 is addi-

tive, we get H1 ∈ Eϕ and (ΛH1)(a) =
1

r
H1(ra) = H1(a) for all a ∈ R, i.e., H1 is a

fixed point of Λ. Since H is the unique fixed point of Λ in Eϕ, we get H1 = H. �

We need the following lemma in the proof of the next theorem.

Lemma 2.3 [30] Let X and Y be linear spaces and f : X → Y be an additive

mapping such that f(µx) = µf(x) for all x ∈ X and all µ ∈ T1 := {µ ∈ C : |µ| =
1 }. Then the mapping f is C-linear.

Lemma 2.4. Let X and Y be linear spaces. A mapping f : X → Y satisfies

(2.10)

n
∑

j=1

f
(

− µxj +
∑

1≤i≤n
i6=j

µxi

)

= (n− 2)µ

n
∑

i=1

f(xi)

for all x1, . . . , xn ∈ X and all µ ∈ T1, if and only if f is C-linear.

Proof. Let f satisfy (2.10). Letting x1 = · · · = xn = 0 in (2.10), we get f(0) = 0.
By Lemma 2.1, the mapping f is additive. Letting x2 = · · · = xn = 0 in (2.10) and
using the oddness of f, we get that f(µx1) = µf(x1) for all x1 ∈ X and all µ ∈ T1.

So by Lemma 2.3, the mapping f is C-linear. The converse is obvious. �

The following theorem is an alternative result of Theorem 2.2.

Theorem 2.5. Let f : X → Y be a mapping for which there exist functions

ϕ : Xn → [0,∞) and ψ : X 2 → [0,∞) such that

lim
k→∞

rkϕ
( 1

rk
a1, . . . ,

1

rk
an

)

= 0,

lim
k→∞

rkψ
( 1

rk
a, b

)

= lim
k→∞

rkψ
(

a,
1

rk
b
)

= lim
k→∞

r2kψ
( 1

rk
a,

1

rk
b
)

= 0,

∥

∥

∥

n
∑

j=1

f
(

− µaj +
∑

1≤i≤n
i6=j

µai

)

− (n− 2)µ
n

∑

i=1

f(ai)
∥

∥

∥
≤ ϕ(a1, . . . , an),

‖f(ab)− f(a)f(b)‖ ≤ ψ(a, b)

for all a, b, a1, . . . , an ∈ X and all µ ∈ T1, where r = n − 2 > 1. If there exists a

constant L < 1 such that

rϕ
(1

r
a, . . . ,

1

r
a
)

≤ Lϕ(a, . . . , a)
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for all a ∈ X , then there exists a unique homomorphism H : X → Y satisfying

‖f(a) −H(a)‖ ≤
L

n(n− 2)(1 − L)
ϕ(a, . . . , a),

H(a)[H(b) − f(b)] = [H(a) − f(a)]H(b) = 0

for all a, b ∈ X .

Proof. It follows from the assumptions that ϕ(0, . . . , 0) = 0, and so f(0) = 0.
Letting µ = 1 and using the same method as in the proof of Theorem 2.2, we have

(2.11) ‖f(ra) − rf(a)‖ ≤
1

n
ϕ(a, . . . , a)

for all a ∈ R. Let E := { g : X → Y | g(0) = 0 }. We introduce the same definition
dϕ as in the proof of Theorem 2.2 such that (E, dϕ) becomes a generalized complete
metric space. Let Λ : E → E be the mapping defined by

(Λg)(a) = rg
(1

r
a
)

, for all g ∈ E and a ∈ X .

One can show that
dϕ(Λg,Λh) ≤ Ldϕ(g, h)

for any g, h ∈ E. It follows from the assumption and (2.11) that dϕ(Λf, f) ≤
L

n(n − 2)
. Due to Theorem 1.2, the sequence {Λkf} converges to a fixed point H

of Λ, i.e., H : X → Y,

H(a) = lim
k→∞

(Λkf)(a) = lim
n→∞

rkf
( 1

rk
a
)

, H(ra) = rH(a)

for all a ∈ X . Also

dϕ(H, f) ≤
1

1 − L
dϕ(Λf, f) ≤

L

n(n− 2)(1 − L)

i.e., the inequality

‖f(a) −H(a)‖ ≤
L

n(n− 2)(1 − L)
ϕ(a, . . . , a)

holds true for all a ∈ X .

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the
details. �

Corollary 2.6. Let p, q, δ, ε be non-negative real numbers with 0 < p, q < 1.
Suppose that f : X → Y is a mapping such that

∥

∥

∥

n
∑

j=1

f
(

− µaj +
∑

1≤i≤n
i6=j

µai

)

− (n− 2)µ
n

∑

i=1

f(ai)
∥

∥

∥
≤ δ + ε

n
∑

i=1

‖ai‖
p,

‖f(ab) − f(a)f(b)‖ ≤ δ + ε(‖a‖q + ‖b‖q)
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for all a, b, a1, . . . , an ∈ X and all µ ∈ T1. Then there exists a unique homomor-

phism H : X → Y satisfying

‖f(a) −H(a)‖ ≤
δ

(r + 2)(r − rp)
+

ε

r − rp
‖a‖p,

H(a)[H(b) − f(b)] = [H(a) − f(a)]H(b) = 0

for all a, b ∈ X , where r = n− 2 > 1.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(a1, . . . , an) := δ + ε

n
∑

i=1

‖ai‖
p, ψ(a, b) := δ + ε(‖a‖q + ‖b‖q)

for all a, b, a1, . . . , an ∈ X . Then we can choose L = rp−1 and we get the desired
results. �

Corollary 2.7. Let p, q, ε be non-negative real numbers with p > 1 and q > 2.
Suppose that f : X → Y is a mapping such that

∥

∥

∥

n
∑

j=1

f
(

− µaj +
∑

1≤i≤n
i6=j

µai

)

− (n− 2)µ

n
∑

i=1

f(ai)
∥

∥

∥
≤ ε

n
∑

i=1

‖ai‖
p,

‖f(ab)− f(a)f(b)‖ ≤ ε(‖a‖q + ‖b‖q)

for all a, b, a1, . . . , an ∈ X and all µ ∈ T1. Then there exists a unique homomor-

phism H : X → Y satisfying

‖f(a) −H(a)‖ ≤
ε

rp − r
‖a‖p

for all a ∈ X , where r = n− 2 > 1.

Proof. The proof follows from Theorem 2.5 by taking

ϕ(a1, . . . , an) := ε

n
∑

i=1

‖ai‖
p, ψ(a, b) := ε(‖a‖q + ‖b‖q)

for all a, b, a1, . . . , an ∈ X . Then we can choose L = r1−p and we get the desired
results. �

3. STABILITY OF GENERALIZED (θ, φ)-DERIVATIONS

In this section, we assume that R is a 2-divisible associative ring, M is a
Banach R-bimodule, and θ, φ are automorphisms of R. For convenience, we use
the following abbreviation for given mappings f, g : R → M,

D
θ,φ
f,g (a, b, c, d) := f(ab+ c+ d) − f(a)θ(b) − φ(a)g(b) − f(c) − f(d),

J
θ,φ
f,g (a, b, c) := f(a2 + b+ c) − f(a)θ(a) − φ(a)g(a) − f(b) − f(c)
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for all a, b, c, d ∈ R. Now we prove the generalized Hyers–Ulam stability of gen-
eralized (θ, φ)-derivations and generalized (θ, φ)-Jordan derivations in Banach R-
bimodules.

Theorem 3.1. Let f, g : R → M be mappings for which there exist functions

ϕ, ψ : R3 → [0,∞) such that

(3.1) lim
n→∞

4nϕ
( a

2n
, 0, 0

)

= lim
n→∞

2nϕ
(

0,
b

2n
,
c

2n

)

= 0,

(3.2) ‖Jθ,φf,g (a, b, c)‖ ≤ ϕ(a, b, c),

(3.3) lim
n→∞

4nψ
( a

2n
, 0, 0

)

= lim
n→∞

2nψ
(

0,
b

2n
,
c

2n

)

= 0,

(3.4) ‖Jθ,φg,g (a, b, c)‖ ≤ ψ(a, b, c)

for all a, b, c ∈ R. If there exist constants L,K < 1 such

2ϕ(0, a, a) ≤ Lϕ(0, 2a, 2a), 2ψ(0, a, a) ≤ Kψ(0, 2a, 2a)

for all a ∈ R, then there exist a unique (θ, φ)-Jordan derivation G : R → M and a

unique generalized (θ, φ)-Jordan derivation F : R → M satisfying

(3.5) ‖f(a) − F (a)‖ ≤
L

2 − 2L
ϕ(0, a, a),

(3.6) ‖g(a) −G(a)‖ ≤
K

2 − 2K
ψ(0, a, a)

for all a ∈ R.

Proof. It follows from (3.1) and (3.3) that ϕ(0, 0, 0) = 0 = ψ(0, 0, 0) and so we get
from (3.2) and (3.4) that f(0) = g(0) = 0. Letting a = 0 and b = c in (3.2), we get

(3.7) ‖f(2c) − 2f(c)‖ ≤ ϕ(0, c, c)

for all c ∈ R. Let E := { h : R → M | h(0) = 0 }. We introduce a generalized
metric on E as follows:

dϕ(h, k) := inf{C ∈ [0,∞] : ‖h(a) − k(a)‖ ≤ Cϕ(0, a, a) for all a ∈ R}.

It is easy to show that (E, dϕ) is a generalized complete metric space [5].

Now we consider the mapping Λ : E → E defined by

(Λh)(a) = 2h
(a

2

)

, for all h ∈ E and a ∈ R.

Let h, k ∈ E and let C ∈ [0,∞] be an arbitrary constant with dϕ(h, k) ≤ C. From
the definition of dϕ, we have

‖h(a) − k(a)‖ ≤ Cϕ(0, a, a)
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for all a ∈ R. By the assumption and last inequality, we have

‖(Λh)(a) − (Λk)(a)‖ = 2
∥

∥

∥
h
(a

2

)

− k
(a

2

)∥

∥

∥
≤ 2Cϕ

(

0,
a

2
,
a

2

)

≤ CLϕ(0, a, a)

for all a ∈ R. So dϕ(Λh,Λk) ≤ Ldϕ(h, k) for any h, k ∈ E. It follows from the
assumption and (3.7) that dϕ(Λf, f) ≤ L/2. Therefore according to Theorem 1.2,
the sequence {Λnf} converges to a fixed point F of Λ, i.e.,

F : R → M, F (a) = lim
n→∞

(Λnf)(a) = lim
n→∞

2nf
( a

2n

)

and F (2a) = 2F (a) for all a ∈ R. Also F is the unique fixed point of Λ in the set
Eϕ = {h ∈ E : dϕ(f, h) <∞} and

dϕ(F, f) ≤
1

1 − L
dϕ(Λf, f) ≤

L

2 − 2L
,

i.e., inequality (3.5) holds true for all a ∈ R. Similarly, we obtain that

dψ(Λh,Λk) ≤ Kdψ(h, k), dψ(Λg, g) ≤ K/2.

for any h, k ∈ E, where

dψ(h, k) := inf{C ∈ [0,∞] : ‖h(a) − k(a)‖ ≤ Cψ(0, a, a) for all a ∈ R}.

So according to Theorem 1.2, the sequence {Λng} converges to a fixed point G of
Λ, i.e.,

G : R → M, G(a) = lim
n→∞

(Λng)(a) = lim
n→∞

2ng
( a

2n

)

and G(2a) = 2G(a) for all a ∈ R. Also G is the unique fixed point of Λ in the set
Eψ = {h ∈ E : dψ(g, h) <∞} and

dψ(G, g) ≤
1

1 −K
dψ(Λg, g) ≤

K

2 − 2K
,

i.e., inequality (3.6) holds true for all a ∈ R. It follows from the definitions of F,G,
(3.1) and (3.2) that

‖Jθ,φF,G(a, 0, 0)‖ = lim
n→∞

4n
∥

∥

∥
J
θ,φ
f,g

( a

2n
, 0, 0

)∥

∥

∥
≤ lim
n→∞

4nϕ
( a

2n
, 0, 0

)

= 0,

‖Jθ,φF,G(0, b, c)‖ = lim
n→∞

2n
∥

∥

∥
J
θ,φ
f,g

(

0,
b

2n
,
c

2n

)∥

∥

∥
≤ lim
n→∞

2nϕ
(

0,
b

2n
,
c

2n

)

= 0

for all a, b, c ∈ R. Hence

(3.8) F (a2) = F (a)θ(a) + φ(a)G(a), F (b + c) = F (b) + F (c)

for all a, b, c ∈ R. Similarly, it follows from the definition of G, (3.3) and (3.4) that

(3.9) G(a2) = G(a)θ(a) + φ(a)G(a), G(b + c) = G(b) +G(c)



274 Abbas Najati, Themistocles M. Rassias

for all a, b, c ∈ R. Hence G is a (θ, φ)-Jordan derivation. So we infer from (3.8) and
(3.9) that F is a generalized (θ, φ)-Jordan derivation.

Finally it remains to prove the uniqueness of F and G. Let F1, G1 : R →
M be another additive mappings satisfying (3.5) and (3.6), respectively. Since

dϕ(f, F1) ≤
L

2 − 2L
, dψ(g,G1) ≤

K

2 − 2K
and F1, G1 are additive, we get F1 ∈

Eϕ, G1 ∈ Eψ and (ΛF1)(a) = 2F1(a/2) = F1(a), (ΛG1)(a) = 2G1(a/2) = G1(a)
for all a ∈ R, i.e., F1, G1 are fixed points of Λ. Since F and G are the unique fixed
points of Λ in Eϕ and Eψ , respectively, we get F1 = F and G1 = G. �

Theorem 3.2 Let f, g : R → M be mappings with f(0) = g(0) = 0 for which there

exist functions Φ,Ψ : R3 → [0,∞) such that

(3.10) lim
n→∞

1

4n
Φ(2na, 0, 0) = lim

n→∞

1

2n
Φ(0, 2nb, 2nc) = 0,

(3.11) ‖Jθ,φf,g (a, b, c)‖ ≤ Φ(a, b, c),

(3.12) lim
n→∞

1

4n
Ψ(2na, 0, 0) = lim

n→∞

1

2n
Ψ(0, 2nb, 2nc) = 0,

(3.13) ‖Jθ,φg,g (a, b, c)‖ ≤ Ψ(a, b, c)

for all a, b, c ∈ R. If there exist constants L,K < 1 such

Φ(0, 2a, 2a) ≤ 2LΦ(0, a, a), Ψ(0, 2a, 2a) ≤ 2KΨ(0, a, a)

for all a ∈ R, then there exist a unique (θ, φ)-Jordan derivation G : R → M and a

unique generalized (θ, φ)-Jordan derivation F : R → M satisfying

(3.14) ‖f(a) − F (a)‖ ≤
1

2 − 2L
Φ(0, a, a),

(3.15) ‖g(a) −G(a)‖ ≤
1

2 − 2K
Ψ(0, a, a)

for all a ∈ R.

Proof. Using the same method as in the proof of Theorem 3.1, we have

(3.16)
∥

∥

∥

1

2
f(2c) − f(c)

∥

∥

∥
≤

1

2
Φ(0, c, c),

∥

∥

∥

1

2
g(2c) − g(c)

∥

∥

∥
≤

1

2
Ψ(0, c, c)

for all c ∈ R. We introduce the same definitions for E, dΦ and dΨ as in the proof
of Theorem 3.1 such that (E, dΦ) and (E, dΨ) become generalized complete metric
spaces. Let Λ : E → E be the mapping defined by

(Λh)(a) =
1

2
h(2a), for all h ∈ E and a ∈ R.

One can show that

dΦ(Λh,Λk) ≤ LdΦ(h, k), dΨ(Λh,Λk) ≤ KdΨ(h, k)
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for any h, k ∈ E. It follows from (3.16) that dΦ(Λf, f) ≤
1

2
and dΨ(Λg, g) ≤

1

2
.

Due to Theorem 1.2, the sequences {Λnf} and {Λng} converge to fixed points F
and G of Λ, i.e., F,G : R → M,

F (a) = lim
n→∞

(Λnf)(a) = lim
n→∞

1

2n
f(2na), G(a) = lim

n→∞
(Λng)(a) = lim

n→∞

1

2n
g(2na),

F (2a) = 2F (a) and G(2a) = 2G(a) for all a ∈ R. Also

dΦ(F, f) ≤
1

1 − L
dΦ(Λf, f) ≤

1

2 − 2L
,

dΨ(G, g) ≤
1

1 −K
dΨ(Λg, g) ≤

1

2 − 2K
,

i.e., the inequalities (3.14) and (3.15) hold true for all a ∈ R.

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the
details. �

Corollary 3.3. Let ε, δ, p, q be non-negative real numbers with 0 < p, q < 1 or

p, q > 2. If R is a normed ring and f, g : R → M are mappings satisfy the

inequalities

‖Jθ,φf,g (a, b, c)‖ ≤ ε(‖a‖p + ‖b‖p + ‖c‖p), ‖Jθ,φg,g (a, b, c)‖ ≤ δ(‖a‖q + ‖b‖q + ‖c‖q)

for all a, b, c ∈ R, then there exist a unique (θ, φ)-Jordan derivation G : R → M
and a unique generalized (θ, φ)-Jordan derivation F : R → M satisfying

‖f(a) − F (a)‖ ≤
2ε

|2 − 2p|
‖a‖p, ‖g(a) −G(a)‖ ≤

2δ

|2 − 2q|
‖a‖q

for all a ∈ R.

Proof. Let

L :=

{

2p−1, 0 < p < 1;
21−p, p > 2.

K :=

{

2q−1, 0 < q < 1;
21−q, q > 2.

So the result follows from Theorems 3.1 and 3.2. �

Corollary 3.4. Let ε and δ be non-negative real numbers and let f, g : R → M be

mappings satisfying f(0) = g(0) = 0 and the inequalities

‖Jθ,φf,g (a, b, c)‖ ≤ ε, ‖Jθ,φg,g (a, b, c)‖ ≤ δ

for all a, b, c ∈ R. Then there exist a unique (θ, φ)-Jordan derivation G : R → M
and a unique generalized (θ, φ)-Jordan derivation F : R → M satisfying

‖f(a) − F (a)‖ ≤ ε, ‖g(a) −G(a)‖ ≤ δ

for all a ∈ R.
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Proof. The proof follows from Theorem 3.2 by taking

Φ(a, b, c) := ε, Ψ(a, b, c) := δ

for all a, b, c ∈ R. Then we can choose L = K = 1/2 and we get the desired
results. �

Theorem 3.5. Let f, g : R → M be mappings with f(0) = g(0) = 0 for which

there exists a function Φ : R4 → [0,∞) satisfying

(3.17) lim
n→∞

1

2n
Φ(2na, 2nb, 2nc, 2nd) = lim

n→∞

1

2n
Φ(2na, b, 0, 0)

= lim
n→∞

1

2n
Φ(a, 2nb, 0, 0) = 0,

(3.18) ‖Dθ,φ
f,g (a, b, c, d)‖ ≤ Φ(a, b, c, d)

for all a, b, c, d ∈ R. If R has the identity e, M is unit linked and there exists a

constant L < 1 such

Φ(0, 0, 2a, 2a) ≤ 2LΦ(0, 0, a, a)

for all a ∈ R, then g is a (θ, φ)-derivation and f is a generalized (θ, φ)-derivation.

Moreover, f = aθ + g, where a = lim
n→∞

1

2n

f(2ne).

Proof. Letting a = b = 0 and c = d in (3.18), we get

‖f(2c)− 2f(c)‖ ≤ Φ(0, 0, c, c)

for all c ∈ R. Using the same method as in the proof of Theorem 3.2, we infer that
the limit

(3.19) F (a) := lim
n→∞

1

2n
f(2na)

exists for all a ∈ R and the mapping F : R → M is additive. Letting c = d = 0
and replacing a and b by 2ne and 2nb, respectively, in (3.18), we get

‖f(4nb) − f(2ne)θ(2nb) − φ(2ne)g(2nb)‖ ≤ Φ(2ne, 2nb, 0, 0)

for all b ∈ R and all n ∈ N. Since φ(e) = e, we have

(3.20)
∥

∥

∥

1

4n
f(4nb) −

1

2n
f(2ne)θ(b) −

1

2n
g(2nb)

∥

∥

∥
≤

1

4n
Φ(2ne, 2nb, 0, 0)

for all b ∈ R and all n ∈ N. It follows from (3.17), (3.19) and (3.20) that the limit

G(b) := lim
n→∞

1

2n
g(2nb)
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exists and G(b) = F (b) − F (e)θ(b) for all b ∈ R. Hence G is additive. It follows
from the definitions of F,G, (3.17) and (3.18) that

‖F (ab) − F (a)θ(b) − φ(a)G(b)‖

= lim
n→∞

1

4n
‖f(4nab) − f(2na)θ(2nb) − φ(2na)g(2nb)‖

≤ lim
n→∞

1

4n
Φ(2na, 2nb, 0, 0) = 0

for all a, b ∈ R. Therefore

(3.21) F (ab) = F (a)θ(b) + φ(a)G(b)

for all a, b ∈ R. Further, by (3.21) we have

G(ab) = F (ab) − F (e)θ(ab) = F (a)θ(b) + φ(a)G(b) − F (e)θ(a)θ(b)

= [F (a) − F (e)θ(a)]θ(b) + φ(a)G(b) = G(a)θ(b) + φ(a)G(b)

for all a, b ∈ R. ThusG is a (θ, φ)-derivation and (3.21) shows that F is a generalized
(θ, φ)-derivation.

By (3.17), (3.18) and the definitions of F,G, we have

(3.22) F (ab) − F (a)θ(b) = φ(a)g(b),

(3.23) F (ab) − φ(a)G(b) = f(a)θ(b)

for all a, b ∈ R. Since G(e) = 0 and θ(e) = φ(e) = e, letting a = e in (3.22) and
b = e in (3.23), we get g(b) = F (b)−F (e)θ(b) = G(b) and F (a) = f(a), respectively,
for all a, b ∈ R. So g is a (θ, φ)-derivation and f is a generalized (θ, φ)-derivation.
Moreover, f = F (e)θ + g. �

Corollary 3.6. Let ε, δ, p be non-negative real numbers with 0 < p < 1. If R is a

normed ring with the identity e, M is unit linked and f, g : R → M are mappings

with f(0) = g(0) = 0 and satisfy the inequality

‖Dθ,φ
f,g (a, b, c, d)‖ ≤ δ + ε(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p),

for all a, b, c, d ∈ R, then g is a (θ, φ)-derivation and f is a generalized (θ, φ)-

derivation. Moreover, f = aθ + g, where a = lim
n→∞

1

2n

f(2ne).

Theorem 3.7. Let f, g : R → M be mappings for which there exist functions

ϕ, ψ : R2 → [0,∞) such that

(3.24) lim
n→∞

1

n
ϕ(na, b) = lim

n→∞

1

n
ϕ(a, nb) = 0,

(3.25) lim
n→∞

1

n
ψ(na, b) = lim

n→∞

1

n
ψ(a, nb) = 0,
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(3.26) ‖f(ab)− f(a)θ(b) − φ(a)g(b)‖ ≤ ϕ(a, b),

(3.27) ‖g(ab) − g(a)θ(b) − φ(a)g(b)‖ ≤ ψ(a, b)

for all a, b ∈ R. If R is normed with the identity e and M is unit linked, then

(3.28) g(ab) = g(a)θ(b) + φ(a)g(b), f(ab) = f(a)θ(b) + φ(a)g(b)

for all a, b ∈ R.

Proof. By (3.24) and (3.27), we get

(3.29)
lim
n→∞

1

n
[g(nab) − g(na)θ(b)] = φ(a)g(b),

lim
n→∞

1

n
[g(nab) − φ(a)g(nb)] = g(a)θ(b)

for all a, b ∈ R. Using the Badora’s method [3] on the inequality (3.27), we have

‖g(ab)− g(a)θ(b) − φ(a)g(b)‖

≤
∥

∥

∥
g(ab) −

1

n
g(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
φ(a)g(nb) − g(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
g(na)θ(b) − φ(a)g(b)

∥

∥

∥

+
1

n
‖φ(a)g(nb) − φ(ab)g(ne) + g(na)θ(b) − g(nab)‖

≤
∥

∥

∥
g(ab) −

1

n
g(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
φ(a)g(nb) − g(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
g(na)θ(b) − φ(a)g(b)

∥

∥

∥

+
1

n
‖φ(a)‖ ‖g(nb)− g(b)θ(ne) − φ(b)g(ne)‖

+
1

n
‖g(nab)− g(na)θ(b) − φ(na)g(b)‖

≤
∥

∥

∥
g(ab) −

1

n
g(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
φ(a)g(nb) − g(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
g(nab) −

1

n
g(na)θ(b) − φ(a)g(b)

∥

∥

∥

+
1

n
‖φ(a)‖ψ(b, ne) +

1

n
ψ(na, b)

for all a, b ∈ R. Applying (3.25) and (3.29), we observe that the right side of the
last inequality tends to 0 when n tends to infinity. Therefore

(3.30) g(ab) = g(a)θ(b) + φ(a)g(b)
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for all a, b ∈ R.

Similarly, by (3.24) and (3.26), we have

(3.31)
lim
n→∞

1

n
[f(nab) − f(na)θ(b)] = φ(a)g(b),

lim
n→∞

1

n
[f(nab) − φ(a)g(nb)] = f(a)θ(b)

for all a, b ∈ R. Let a, b ∈ R and n ∈ N be fixed. Since g satisfies (3.30), we have
g(nb) = g(bne) = ng(b) + φ(b)g(ne). Using (3.26), we have

‖f(ab)− f(a)θ(b) − φ(a)g(b)‖

≤
∥

∥

∥
f(ab) −

1

n
f(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
φ(a)g(nb) − f(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
f(na)θ(b) − φ(a)g(b)

∥

∥

∥

+
1

n
‖φ(a)g(nb) − φ(ab)g(ne) + f(na)θ(b) − f(nab)‖

=
∥

∥

∥
f(ab) −

1

n
f(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
φ(a)g(nb) − f(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
f(na)θ(b) − φ(a)g(b)

∥

∥

∥

+
1

n
‖nφ(a)g(b) + f(na)θ(b) − f(nab)‖

≤
∥

∥

∥
f(ab) −

1

n
f(nabe) +

1

n
φ(ab)g(ne)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
φ(a)g(nb) − f(a)θ(b)

∥

∥

∥

+
∥

∥

∥

1

n
f(nab) −

1

n
f(na)θ(b) − φ(a)g(b)

∥

∥

∥
+

1

n
ϕ(na, b).

Applying (3.24) and (3.31), we observe that the right side of the last inequality
tends to 0 when n tends to infinity. Therefore

f(ab) = f(a)θ(b) + φ(a)g(b). �

Corollary 3.8. Let ε, δ, p, q be non-negative real numbers with 0 < p, q < 1. If

R is a normed ring with the identity e, M is unit linked and f, g : R → M are

mappings satisfy the inequalities

‖f(ab) − f(a)θ(b) − φ(a)g(b)‖ ≤ δ + ε(‖a‖p + ‖b‖q),

‖g(ab) − g(a)θ(b) − φ(a)g(b)‖ ≤ δ + ε(‖a‖p + ‖b‖q)

for all a, b ∈ R, then f and g satisfy (3.28) for all a, b ∈ R.
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