Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 3 (2009), 264–281.

doi:10.2298/AADM0902264N

STABILITY OF HOMOMORPHISMS AND (θ, ϕ) -DERIVATIONS

Abbas Najati, Themistocles M. Rassias

In this paper, we prove the generalized Hyers–Ulam stability of homomorphisms and (θ, ϕ) -derivations on a ring \mathcal{R} into a Banach \mathcal{R} -bimodule \mathcal{M} .

1. INTRODUCTION

The stability problem of functional equations originated from a question of ULAM [37] concerning the stability of group homomorphisms: Let $(G_1, *)$ be a group and let (G_2, \diamond, d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\epsilon > 0$, does there exist $\delta(\epsilon) > 0$ such that if a mapping $h: G_1 \to G_2$ satisfies the inequality

 $d(h(x * y), h(x) \diamond h(y)) < \delta$

for all $x, y \in G_1$, then there is a homomorphism $H: G_1 \to G_2$ with

$$d(h(x), H(x)) < \epsilon$$

for all $x \in G_1$?

In other words, we are looking for situations where homomorphisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a homomorphism near it. HYERS [12] gave a first affirmative answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces: Assume that $f : X \to Y$ satisfies

$$\|f(x+y) - f(x) - f(y)\| \le \varepsilon$$

for some $\varepsilon \geq 0$ and all $x, y \in X$. Then there exists a unique additive mapping $T: X \to Y$ such that

$$\|f(x) - T(x)\| \le \varepsilon$$

²⁰⁰⁰ Mathematics Subject Classification. Primary: 39B72; Secondary 47H09.

Keywords and Phrases. Generalized metric space, fixed point, stability, Banach algebra, semiprime ring, Jordan derivation, generalized Jordan derivation.

for all $x \in X$.

AOKI [2] and RASSIAS [31] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded.

Theorem 1.1. (TH. M. RASSIAS). Let $f : E \to E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

(1.1)
$$||f(x+y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p)$$

for all $x, y \in E$, where ε and p are constants with $\epsilon > 0$ and p < 1. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all $x \in E$ and $L: E \to E'$ is the unique additive mapping which satisfies

(1.2)
$$||f(x) - L(x)|| \le \frac{2\varepsilon}{2 - 2^p} ||x||^p$$

for all $x \in E$. If p < 0 then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The inequality (1.1) has provided a lot of influence in the development of what is now known as a generalized Hyers–Ulam stability of functional equations. In 1994, a generalization of the Th. M. Rassias' theorem was obtained by $G\check{A}VRUTA$ [8], who replaced the bound $\varepsilon(||x||^p + ||y||^p)$ by a general control function $\varphi(x, y)$. Since then the stability problems of various functional equations and mappings and their Pexiderized versions with more general domains and ranges have been investigated by a number of authors (see [21]–[29]). We also refer the readers to the books [7], [13], [16] and [32].

Let A be a real or complex algebra. A mapping $D: A \to A$ is said to be a (ring) derivation if

$$D(a+b) = D(a) + D(b), \qquad D(ab) = D(a)b + aD(b)$$

for all $a, b \in A$. If, in addition, $D(\lambda a) = \lambda D(a)$ for all $a \in A$ and all $\lambda \in \mathbb{F}$, then D is called a *linear derivation*, where \mathbb{F} denotes the scalar field of A. SINGER and WERMER [35] proved that if A is a commutative Banach algebra and $D : A \to A$ is a continuous linear derivation, then $D(A) \subseteq \operatorname{rad}(A)$. They also conjectured that the same result holds even D is a discontinuous linear derivation. THOMAS [36] proved the conjecture. As a direct consequence, we see that there are no non-zero linear derivations on a semi-simple commutative Banach algebra, which had been proved by JOHNSON [15]. On the other hand, it is not the case for ring derivations. HATORI and WADA [9] determined a representation of ring derivations on a semi-simple commutative Banach algebra (see also [33]) and they proved that only the zero operator is a ring derivation on a semi-simple commutative Banach algebra

with the maximal ideal space without isolated points. The stability of derivations between operator algebras was first obtained by ŠEMRL [34]. BADORA [3] and MIURA *et al.* [22] proved the generalized Hyers–Ulam stability of ring derivations on Banach algebras.

Let \mathcal{R} be an associative ring, \mathcal{N} be a \mathcal{R} -bimodule and let θ, ϕ be automorphisms of \mathcal{R} . An additive mapping $D : \mathcal{R} \to \mathcal{N}$ is called a *derivation* if D(ab) = D(a)b + aD(b) holds for all pairs $a, b \in \mathcal{R}$ and is called a Jordan derivation in case $D(a^2) = D(a)a + aD(a)$ is fulfilled for all $a \in \mathcal{R}$. Every derivation is a Jordan derivation. The converse is in general not true (see [6, 10]). The concept of generalized derivation has been introduced by BRESAR [4]. HVALA [11] and LEE [18] introduced a concept of (θ, ϕ) -derivation (see also [19]). An additive mapping $F: \mathcal{R} \to \mathcal{N}$ is called a (θ, ϕ) -derivation in case $F(ab) = F(a)\theta(b) + \phi(a)F(b)$ holds for all pairs $a, b \in \mathcal{R}$. An additive mapping $F : \mathcal{R} \to \mathcal{N}$ is called a (θ, ϕ) -Jordan derivation in case $F(a^2) = F(a)\theta(a) + \phi(a)F(a)$ holds for all $a \in \mathcal{R}$. An additive mapping $F : \mathcal{R} \to \mathcal{N}$ is called a generalized (θ, ϕ) -derivation in case $F(ab) = F(a)\theta(b) + \phi(a)D(b)$ holds for all pairs $a, b \in \mathcal{R}$, where $D : \mathcal{R} \to \mathcal{N}$ is a (θ, ϕ) -derivation. An additive mapping $F : \mathcal{R} \to \mathcal{N}$ is called a *generalized* (θ, ϕ) -Jordan derivation in case $F(a^2) = F(a)\theta(a) + \phi(a)D(a)$ holds for all $a \in \mathcal{R}$. where $D: \mathcal{R} \to \mathcal{N}$ is a (θ, ϕ) -Jordan derivation. It is clear that every generalized (θ, ϕ) -derivation is a generalized (θ, ϕ) -Jordan derivation.

The aim of the present paper is to establish the stability problem of homomorphisms and generalized (θ, ϕ) -derivations by using the fixed point method (see [1, 5, 17, 21]).

Let E be a set. A function $d: E \times E \to [0, \infty]$ is called a *generalized metric* on E if d satisfies

- (i) d(x, y) = 0 if and only if x = y;
- (ii) d(x, y) = d(y, x) for all $x, y \in E$;
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in E$.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [20] Let (E, d) be a complete generalized metric space and let $J: E \to E$ be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in E$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all non-negative integers n or there exists a non-negative integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{ y \in E : d(J^{n_0}x, y) < \infty \};$

(4)
$$d(y, y^*) \le \frac{1}{1-L} d(y, Jy)$$
 for all $y \in Y$.

2. STABILITY OF HOMOMORPHISMS

In this section, we assume that \mathcal{R} is an associative ring, \mathcal{X} is a normed algebra, \mathcal{Y} is a Banach algebra, and $n \geq 3$ is a fixed integer.

Lemma 2.1. Let X and Y be linear spaces. A mapping $f : X \to Y$ (with f(0) = 0 if n = 3) satisfies

(2.1)
$$\sum_{j=1}^{n} f\left(-x_{j} + \sum_{\substack{1 \le i \le n \\ i \ne j}} x_{i}\right) = (n-2) \sum_{i=1}^{n} f(x_{i})$$

for all $x_1, \ldots, x_n \in X$, if and only if f is additive.

Proof. Let f satisfy (2.1). Letting $x_1 = \cdots = x_n = 0$ in (2.1), we get f(0) = 0. Letting $x_2 = \cdots = x_n = 0$ in (2.1), we infer that f is odd. So by letting $x_3 = \cdots = x_n = 0$ in (2.1) and using the oddness of f, we get that the mapping f is additive. The converse is obvious.

Theorem 2.2. Let $f : \mathcal{R} \to \mathcal{Y}$ be a mapping for which there exist functions $\varphi : \mathcal{R}^n \to [0, \infty)$ and $\psi : \mathcal{R}^2 \to [0, \infty)$ such that

(2.2)
$$\lim_{k \to \infty} \frac{1}{r^k} \varphi(r^k a_1, \dots, r^k a_n) = 0,$$

(2.3)
$$\lim_{k \to \infty} \frac{1}{r^k} \psi(r^k a, b) = \lim_{k \to \infty} \frac{1}{r^k} \psi(a, r^k b) = \lim_{k \to \infty} \frac{1}{r^k} \psi(r^k a, r^k b) = 0,$$

(2.4)
$$\left\|\sum_{j=1}^{n} f\left(-a_{j} + \sum_{\substack{1 \le i \le n \\ i \ne j}} a_{i}\right) - (n-2) \sum_{i=1}^{n} f(a_{i})\right\| \le \varphi(a_{1}, \dots, a_{n}),$$

(2.5)
$$||f(ab) - f(a)f(b)|| \le \psi(a, b)$$

for all $a, b, a_1, \ldots, a_n \in \mathbb{R}$, where r = n - 2 > 1. If there exists a constant L < 1 such that

$$\varphi(ra,\ldots,ra) \le rL\varphi(a,\ldots,a)$$

for all $a \in \mathcal{R}$, then there exists a unique homomorphism $H : \mathcal{R} \to \mathcal{Y}$ satisfying

(2.6)
$$||f(a) - H(a)|| \le \frac{1}{n(n-2)(1-L)}\varphi(a,\ldots,a)$$

(2.7)
$$H(a)[H(b) - f(b)] = [H(a) - f(a)]H(b) = 0$$

for all $a, b \in \mathcal{R}$.

Proof. Letting $a_1 = \cdots = a_n = a$ in (2.4), we get

(2.8)
$$\|f(ra) - rf(a)\| \le \frac{1}{n}\varphi(a,\ldots,a)$$

for all $a \in \mathcal{R}$. Let $E := \{ g : \mathcal{R} \to \mathcal{Y} \}$. We introduce a generalized metric on E as follows:

$$d_{\varphi}(g,h) := \inf\{ C \in [0,\infty] : \|g(a) - h(a)\| \le C\varphi(a,\ldots,a) \text{ for all } a \in \mathcal{R} \}.$$

It is easy to show that (E, d_{φ}) is a generalized complete metric space [5].

Now we consider the mapping $\Lambda: E \to E$ defined by

$$(\Lambda g)(a) = \frac{1}{r}g(ra), \text{ for all } g \in E \text{ and } a \in \mathcal{R}.$$

Let $g, h \in E$ and let $C \in [0, \infty]$ be an arbitrary constant with $d_{\varphi}(g, h) \leq C$. From the definition of d_{φ} , we have

$$||g(a) - h(a)|| \le C\varphi(a, \dots, a)$$

for all $a \in \mathcal{R}$. By the assumption and last inequality, we have

$$\|(\Lambda g)(a) - (\Lambda h)(a)\| = \frac{1}{r} \|g(ra) - h(ra)\| \le \frac{C}{r} \varphi(ra, \dots, ra) \le CL\varphi(a, \dots, a)$$

for all $a \in \mathcal{R}$. So $d_{\varphi}(\Lambda g, \Lambda h) \leq Ld_{\varphi}(g, h)$ for any $g, h \in E$. It follows from (2.8) that $d_{\varphi}(\Lambda f, f) \leq \frac{1}{n(n-2)}$. Therefore according to Theorem 1.2, the sequence $\{\Lambda^k f\}$ converges to a fixed point H of Λ , i.e.,

$$H: \mathcal{R} \to \mathcal{Y}, \quad H(a) = \lim_{k \to \infty} (\Lambda^k f)(a) = \lim_{k \to \infty} \frac{1}{r^k} f(r^k a)$$

and H(ra) = rH(a) for all $a \in \mathcal{R}$. Also H is the unique fixed point of Λ in the set $E_{\varphi} = \{g \in E : d_{\varphi}(f,g) < \infty\}$ and

$$d_{\varphi}(H,f) \leq \frac{1}{1-L} d_{\varphi}(\Lambda f,f) \leq \frac{1}{n(n-2)(1-L)},$$

i.e., inequality (2.6) holds true for all $a \in \mathcal{R}$. It follows from the definition of H, (2.2) and (2.4) that

$$\sum_{j=1}^{n} H\left(-a_{j} + \sum_{\substack{1 \le i \le n \\ i \ne j}} a_{i}\right) = (n-2) \sum_{i=1}^{n} H(a_{i})$$

for all $a_1, \ldots, a_n \in \mathcal{R}$. Since H(0) = 0, by Lemma 2.1 the mapping H is additive. So it follows from the definition of H, (2.3) and (2.5) that

$$\|H(ab) - H(a)H(b)\| = \lim_{k \to \infty} \frac{1}{r^{2k}} \|f(r^{2k}ab) - f(r^ka)f(r^kb)\|$$
$$\leq \lim_{k \to \infty} \frac{1}{r^{2k}} \psi(r^ka, r^kb) = 0$$

for all $a, b \in \mathcal{R}$. So H is homomorphism. Similarly, we have from (2.3) and (2.5) that

(2.9)
$$H(ab) = H(a)f(b), \quad H(ab) = f(a)H(b)$$

for all $a, b \in \mathcal{R}$. Since H is homomorphism, we get (2.7) from (2.9).

Finally it remains to prove the uniqueness of H. Let $H_1 : \mathcal{R} \to \mathcal{Y}$ be another homomorphism satisfying (2.6). Since $d_{\varphi}(f, H_1) \leq \frac{1}{n(n-2)(1-L)}$ and H_1 is additive, we get $H_1 \in E_{\varphi}$ and $(\Lambda H_1)(a) = \frac{1}{r} H_1(ra) = H_1(a)$ for all $a \in \mathcal{R}$, i.e., H_1 is a fixed point of Λ . Since H is the unique fixed point of Λ in E_{φ} , we get $H_1 = H$. \Box

We need the following lemma in the proof of the next theorem.

Lemma 2.3 [30] Let X and Y be linear spaces and $f : X \to Y$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in X$ and all $\mu \in \mathbb{T}^1 := \{ \mu \in \mathbb{C} : |\mu| = 1 \}$. Then the mapping f is \mathbb{C} -linear.

Lemma 2.4. Let X and Y be linear spaces. A mapping $f: X \to Y$ satisfies

(2.10)
$$\sum_{j=1}^{n} f\left(-\mu x_{j} + \sum_{\substack{1 \le i \le n \\ i \ne j}} \mu x_{i}\right) = (n-2)\mu \sum_{i=1}^{n} f(x_{i})$$

for all $x_1, \ldots, x_n \in X$ and all $\mu \in \mathbb{T}^1$, if and only if f is \mathbb{C} -linear.

Proof. Let f satisfy (2.10). Letting $x_1 = \cdots = x_n = 0$ in (2.10), we get f(0) = 0. By Lemma 2.1, the mapping f is additive. Letting $x_2 = \cdots = x_n = 0$ in (2.10) and using the oddness of f, we get that $f(\mu x_1) = \mu f(x_1)$ for all $x_1 \in X$ and all $\mu \in \mathbb{T}^1$. So by Lemma 2.3, the mapping f is \mathbb{C} -linear. The converse is obvious. \Box

The following theorem is an alternative result of Theorem 2.2.

Theorem 2.5. Let $f : \mathcal{X} \to \mathcal{Y}$ be a mapping for which there exist functions $\varphi : \mathcal{X}^n \to [0, \infty)$ and $\psi : \mathcal{X}^2 \to [0, \infty)$ such that

$$\lim_{k \to \infty} r^k \varphi \left(\frac{1}{r^k} a_1, \dots, \frac{1}{r^k} a_n \right) = 0,$$
$$\lim_{k \to \infty} r^k \psi \left(\frac{1}{r^k} a, b \right) = \lim_{k \to \infty} r^k \psi \left(a, \frac{1}{r^k} b \right) = \lim_{k \to \infty} r^{2k} \psi \left(\frac{1}{r^k} a, \frac{1}{r^k} b \right) = 0,$$
$$\left\| \sum_{j=1}^n f\left(-\mu a_j + \sum_{\substack{1 \le i \le n \\ i \ne j}} \mu a_i \right) - (n-2)\mu \sum_{i=1}^n f(a_i) \right\| \le \varphi(a_1, \dots, a_n),$$
$$\| f(ab) - f(a)f(b) \| \le \psi(a, b)$$

for all $a, b, a_1, \ldots, a_n \in \mathcal{X}$ and all $\mu \in \mathbb{T}^1$, where r = n - 2 > 1. If there exists a constant L < 1 such that

$$r\varphi\left(\frac{1}{r}a,\ldots,\frac{1}{r}a\right) \le L\varphi(a,\ldots,a)$$

for all $a \in \mathcal{X}$, then there exists a unique homomorphism $H : \mathcal{X} \to \mathcal{Y}$ satisfying

$$\|f(a) - H(a)\| \le \frac{L}{n(n-2)(1-L)} \varphi(a, \dots, a),$$

$$H(a)[H(b) - f(b)] = [H(a) - f(a)]H(b) = 0$$

for all $a, b \in \mathcal{X}$.

Proof. It follows from the assumptions that $\varphi(0, \ldots, 0) = 0$, and so f(0) = 0. Letting $\mu = 1$ and using the same method as in the proof of Theorem 2.2, we have

(2.11)
$$||f(ra) - rf(a)|| \le \frac{1}{n}\varphi(a,\ldots,a)$$

for all $a \in \mathcal{R}$. Let $E := \{ g : \mathcal{X} \to \mathcal{Y} \mid g(0) = 0 \}$. We introduce the same definition d_{φ} as in the proof of Theorem 2.2 such that (E, d_{φ}) becomes a generalized complete metric space. Let $\Lambda : E \to E$ be the mapping defined by

$$(\Lambda g)(a) = rg\left(\frac{1}{r}a\right), \text{ for all } g \in E \text{ and } a \in \mathcal{X}.$$

One can show that

$$d_{\varphi}(\Lambda g, \Lambda h) \le L d_{\varphi}(g, h)$$

for any $g, h \in E$. It follows from the assumption and (2.11) that $d_{\varphi}(\Lambda f, f) \leq \frac{L}{n(n-2)}$. Due to Theorem 1.2, the sequence $\{\Lambda^k f\}$ converges to a fixed point H of Λ , i.e., $H: \mathcal{X} \to \mathcal{Y}$,

$$H(a) = \lim_{k \to \infty} (\Lambda^k f)(a) = \lim_{n \to \infty} r^k f\left(\frac{1}{r^k}a\right), \quad H(ra) = rH(a)$$

for all $a \in \mathcal{X}$. Also

$$d_{\varphi}(H,f) \leq \frac{1}{1-L} d_{\varphi}(\Lambda f,f) \leq \frac{L}{n(n-2)(1-L)}$$

i.e., the inequality

$$||f(a) - H(a)|| \le \frac{L}{n(n-2)(1-L)} \varphi(a, \dots, a)$$

holds true for all $a \in \mathcal{X}$.

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the details. $\hfill \square$

Corollary 2.6. Let $p, q, \delta, \varepsilon$ be non-negative real numbers with 0 < p, q < 1. Suppose that $f : \mathcal{X} \to \mathcal{Y}$ is a mapping such that

$$\left\|\sum_{j=1}^{n} f\left(-\mu a_{j} + \sum_{\substack{1\leq i\leq n\\i\neq j}} \mu a_{i}\right) - (n-2)\mu \sum_{i=1}^{n} f(a_{i})\right\| \leq \delta + \varepsilon \sum_{i=1}^{n} \|a_{i}\|^{p},$$
$$\|f(ab) - f(a)f(b)\| \leq \delta + \varepsilon (\|a\|^{q} + \|b\|^{q})$$

for all $a, b, a_1, \ldots, a_n \in \mathcal{X}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique homomorphism $H : \mathcal{X} \to \mathcal{Y}$ satisfying

$$\|f(a) - H(a)\| \le \frac{\delta}{(r+2)(r-r^p)} + \frac{\varepsilon}{r-r^p} \|a\|^p,$$

$$H(a)[H(b) - f(b)] = [H(a) - f(a)]H(b) = 0$$

for all $a, b \in \mathcal{X}$, where r = n - 2 > 1.

Proof. The proof follows from Theorem 2.2 by taking

$$\varphi(a_1,\ldots,a_n) := \delta + \varepsilon \sum_{i=1}^n \|a_i\|^p, \quad \psi(a,b) := \delta + \varepsilon(\|a\|^q + \|b\|^q)$$

for all $a, b, a_1, \ldots, a_n \in \mathcal{X}$. Then we can choose $L = r^{p-1}$ and we get the desired results.

Corollary 2.7. Let p,q,ε be non-negative real numbers with p > 1 and q > 2. Suppose that $f: \mathcal{X} \to \mathcal{Y}$ is a mapping such that

$$\left\|\sum_{j=1}^{n} f\left(-\mu a_{j} + \sum_{\substack{1 \le i \le n \\ i \ne j}} \mu a_{i}\right) - (n-2)\mu \sum_{i=1}^{n} f(a_{i})\right\| \le \varepsilon \sum_{i=1}^{n} \|a_{i}\|^{p},$$
$$\|f(ab) - f(a)f(b)\| \le \varepsilon (\|a\|^{q} + \|b\|^{q})$$

for all $a, b, a_1, \ldots, a_n \in \mathcal{X}$ and all $\mu \in \mathbb{T}^1$. Then there exists a unique homomorphism $H : \mathcal{X} \to \mathcal{Y}$ satisfying

$$||f(a) - H(a)|| \le \frac{\varepsilon}{r^p - r} ||a||^p$$

for all $a \in \mathcal{X}$, where r = n - 2 > 1.

Proof. The proof follows from Theorem 2.5 by taking

$$\varphi(a_1,\ldots,a_n) := \varepsilon \sum_{i=1}^n \|a_i\|^p, \quad \psi(a,b) := \varepsilon(\|a\|^q + \|b\|^q)$$

for all $a, b, a_1, \ldots, a_n \in \mathcal{X}$. Then we can choose $L = r^{1-p}$ and we get the desired results.

3. STABILITY OF GENERALIZED (θ, ϕ) -DERIVATIONS

In this section, we assume that \mathcal{R} is a 2-divisible associative ring, \mathcal{M} is a Banach \mathcal{R} -bimodule, and θ, ϕ are automorphisms of \mathcal{R} . For convenience, we use the following abbreviation for given mappings $f, g: \mathcal{R} \to \mathcal{M}$,

$$D_{f,g}^{\theta,\phi}(a,b,c,d) := f(ab+c+d) - f(a)\theta(b) - \phi(a)g(b) - f(c) - f(d),$$

$$J_{f,g}^{\theta,\phi}(a,b,c) := f(a^2+b+c) - f(a)\theta(a) - \phi(a)g(a) - f(b) - f(c)$$

for all $a, b, c, d \in \mathcal{R}$. Now we prove the generalized Hyers–Ulam stability of generalized (θ, ϕ) -derivations and generalized (θ, ϕ) -Jordan derivations in Banach \mathcal{R} -bimodules.

Theorem 3.1. Let $f, g : \mathcal{R} \to \mathcal{M}$ be mappings for which there exist functions $\varphi, \psi : \mathcal{R}^3 \to [0, \infty)$ such that

(3.1)
$$\lim_{n \to \infty} 4^n \varphi\left(\frac{a}{2^n}, 0, 0\right) = \lim_{n \to \infty} 2^n \varphi\left(0, \frac{b}{2^n}, \frac{c}{2^n}\right) = 0,$$

 $(3.2) \|J_{f,g}^{\theta,\phi}(a,b,c)\| \le \varphi(a,b,c),$

(3.3)
$$\lim_{n \to \infty} 4^n \psi\left(\frac{a}{2^n}, 0, 0\right) = \lim_{n \to \infty} 2^n \psi\left(0, \frac{b}{2^n}, \frac{c}{2^n}\right) = 0,$$

(3.4)
$$\|J_{g,g}^{\theta,\phi}(a,b,c)\| \le \psi(a,b,c)$$

for all $a, b, c \in \mathcal{R}$. If there exist constants L, K < 1 such

$$2\varphi(0,a,a) \leq L\varphi(0,2a,2a), \qquad 2\psi(0,a,a) \leq K\psi(0,2a,2a)$$

for all $a \in \mathcal{R}$, then there exist a unique (θ, ϕ) -Jordan derivation $G : \mathcal{R} \to \mathcal{M}$ and a unique generalized (θ, ϕ) -Jordan derivation $F : \mathcal{R} \to \mathcal{M}$ satisfying

(3.5)
$$||f(a) - F(a)|| \le \frac{L}{2 - 2L} \varphi(0, a, a),$$

(3.6)
$$||g(a) - G(a)|| \le \frac{K}{2 - 2K} \psi(0, a, a)$$

for all $a \in \mathcal{R}$.

Proof. It follows from (3.1) and (3.3) that $\varphi(0, 0, 0) = 0 = \psi(0, 0, 0)$ and so we get from (3.2) and (3.4) that f(0) = g(0) = 0. Letting a = 0 and b = c in (3.2), we get

(3.7)
$$||f(2c) - 2f(c)|| \le \varphi(0, c, c)$$

for all $c \in \mathcal{R}$. Let $E := \{h : \mathcal{R} \to \mathcal{M} \mid h(0) = 0\}$. We introduce a generalized metric on E as follows:

$$d_{\varphi}(h,k) := \inf\{ C \in [0,\infty] : \|h(a) - k(a)\| \le C\varphi(0,a,a) \text{ for all } a \in \mathcal{R} \}.$$

It is easy to show that (E, d_{φ}) is a generalized complete metric space [5].

Now we consider the mapping $\Lambda: E \to E$ defined by

$$(\Lambda h)(a) = 2h\left(\frac{a}{2}\right), \text{ for all } h \in E \text{ and } a \in \mathcal{R}$$

Let $h, k \in E$ and let $C \in [0, \infty]$ be an arbitrary constant with $d_{\varphi}(h, k) \leq C$. From the definition of d_{φ} , we have

$$||h(a) - k(a)|| \le C\varphi(0, a, a)$$

for all $a \in \mathcal{R}$. By the assumption and last inequality, we have

$$\|(\Lambda h)(a) - (\Lambda k)(a)\| = 2\left\|h\left(\frac{a}{2}\right) - k\left(\frac{a}{2}\right)\right\| \le 2C\varphi\left(0, \frac{a}{2}, \frac{a}{2}\right) \le CL\varphi(0, a, a)$$

for all $a \in \mathcal{R}$. So $d_{\varphi}(\Lambda h, \Lambda k) \leq Ld_{\varphi}(h, k)$ for any $h, k \in E$. It follows from the assumption and (3.7) that $d_{\varphi}(\Lambda f, f) \leq L/2$. Therefore according to Theorem 1.2, the sequence $\{\Lambda^n f\}$ converges to a fixed point F of Λ , i.e.,

$$F: \mathcal{R} \to \mathcal{M}, \quad F(a) = \lim_{n \to \infty} (\Lambda^n f)(a) = \lim_{n \to \infty} 2^n f\left(\frac{a}{2^n}\right)$$

and F(2a) = 2F(a) for all $a \in \mathcal{R}$. Also F is the unique fixed point of Λ in the set $E_{\varphi} = \{h \in E : d_{\varphi}(f, h) < \infty\}$ and

$$d_{\varphi}(F,f) \leq \frac{1}{1-L} d_{\varphi}(\Lambda f,f) \leq \frac{L}{2-2L},$$

i.e., inequality (3.5) holds true for all $a \in \mathcal{R}$. Similarly, we obtain that

 $d_{\psi}(\Lambda h,\Lambda k) \leq K d_{\psi}(h,k), \quad d_{\psi}(\Lambda g,g) \leq K/2.$

for any $h, k \in E$, where

$$d_{\psi}(h,k) := \inf\{ C \in [0,\infty] : \|h(a) - k(a)\| \le C\psi(0,a,a) \text{ for all } a \in \mathcal{R} \}.$$

So according to Theorem 1.2, the sequence $\{\Lambda^n g\}$ converges to a fixed point G of Λ , i.e.,

$$G: \mathcal{R} \to \mathcal{M}, \quad G(a) = \lim_{n \to \infty} (\Lambda^n g)(a) = \lim_{n \to \infty} 2^n g\left(\frac{a}{2^n}\right)$$

and G(2a) = 2G(a) for all $a \in \mathcal{R}$. Also G is the unique fixed point of Λ in the set $E_{\psi} = \{h \in E : d_{\psi}(g, h) < \infty\}$ and

$$d_{\psi}(G,g) \leq \frac{1}{1-K} d_{\psi}(\Lambda g,g) \leq \frac{K}{2-2K}$$

i.e., inequality (3.6) holds true for all $a \in \mathcal{R}$. It follows from the definitions of F, G, (3.1) and (3.2) that

$$\begin{split} \|J_{F,G}^{\theta,\phi}(a,0,0)\| &= \lim_{n \to \infty} 4^n \left\| J_{f,g}^{\theta,\phi}\left(\frac{a}{2^n},0,0\right) \right\| \le \lim_{n \to \infty} 4^n \varphi\left(\frac{a}{2^n},0,0\right) = 0, \\ \|J_{F,G}^{\theta,\phi}(0,b,c)\| &= \lim_{n \to \infty} 2^n \left\| J_{f,g}^{\theta,\phi}\left(0,\frac{b}{2^n},\frac{c}{2^n}\right) \right\| \le \lim_{n \to \infty} 2^n \varphi\left(0,\frac{b}{2^n},\frac{c}{2^n}\right) = 0 \end{split}$$

for all $a, b, c \in \mathcal{R}$. Hence

(3.8)
$$F(a^2) = F(a)\theta(a) + \phi(a)G(a), \quad F(b+c) = F(b) + F(c)$$

for all $a, b, c \in \mathcal{R}$. Similarly, it follows from the definition of G, (3.3) and (3.4) that

(3.9)
$$G(a^2) = G(a)\theta(a) + \phi(a)G(a), \quad G(b+c) = G(b) + G(c)$$

for all $a, b, c \in \mathcal{R}$. Hence G is a (θ, ϕ) -Jordan derivation. So we infer from (3.8) and (3.9) that F is a generalized (θ, ϕ) -Jordan derivation.

Finally it remains to prove the uniqueness of F and G. Let $F_1, G_1 : \mathcal{R} \to \mathcal{M}$ be another additive mappings satisfying (3.5) and (3.6), respectively. Since $d_{\varphi}(f, F_1) \leq \frac{L}{2-2L}$, $d_{\psi}(g, G_1) \leq \frac{K}{2-2K}$ and F_1, G_1 are additive, we get $F_1 \in E_{\varphi}$, $G_1 \in E_{\psi}$ and $(\Lambda F_1)(a) = 2F_1(a/2) = F_1(a)$, $(\Lambda G_1)(a) = 2G_1(a/2) = G_1(a)$ for all $a \in \mathcal{R}$, i.e., F_1, G_1 are fixed points of Λ . Since F and $G_1 = G$.

Theorem 3.2 Let $f, g : \mathcal{R} \to \mathcal{M}$ be mappings with f(0) = g(0) = 0 for which there exist functions $\Phi, \Psi : \mathcal{R}^3 \to [0, \infty)$ such that

(3.10)
$$\lim_{n \to \infty} \frac{1}{4^n} \Phi(2^n a, 0, 0) = \lim_{n \to \infty} \frac{1}{2^n} \Phi(0, 2^n b, 2^n c) = 0,$$

(3.11)
$$||J_{f,g}^{\theta,\phi}(a,b,c)|| \le \Phi(a,b,c),$$

(3.12)
$$\lim_{n \to \infty} \frac{1}{4^n} \Psi(2^n a, 0, 0) = \lim_{n \to \infty} \frac{1}{2^n} \Psi(0, 2^n b, 2^n c) = 0,$$

(3.13)
$$||J_{g,g}^{\theta,\phi}(a,b,c)|| \le \Psi(a,b,c)$$

for all $a, b, c \in \mathcal{R}$. If there exist constants L, K < 1 such

$$\Phi(0,2a,2a) \leq 2L\Phi(0,a,a), \quad \Psi(0,2a,2a) \leq 2K\Psi(0,a,a)$$

for all $a \in \mathcal{R}$, then there exist a unique (θ, ϕ) -Jordan derivation $G : \mathcal{R} \to \mathcal{M}$ and a unique generalized (θ, ϕ) -Jordan derivation $F : \mathcal{R} \to \mathcal{M}$ satisfying

(3.14)
$$||f(a) - F(a)|| \le \frac{1}{2 - 2L} \Phi(0, a, a).$$

(3.15)
$$||g(a) - G(a)|| \le \frac{1}{2 - 2K} \Psi(0, a, a)$$

for all $a \in \mathcal{R}$.

Proof. Using the same method as in the proof of Theorem 3.1, we have

(3.16)
$$\left\|\frac{1}{2}f(2c) - f(c)\right\| \le \frac{1}{2}\Phi(0,c,c), \quad \left\|\frac{1}{2}g(2c) - g(c)\right\| \le \frac{1}{2}\Psi(0,c,c)$$

for all $c \in \mathcal{R}$. We introduce the same definitions for E, d_{Φ} and d_{Ψ} as in the proof of Theorem 3.1 such that (E, d_{Φ}) and (E, d_{Ψ}) become generalized complete metric spaces. Let $\Lambda : E \to E$ be the mapping defined by

$$(\Lambda h)(a) = \frac{1}{2}h(2a), \text{ for all } h \in E \text{ and } a \in \mathcal{R}.$$

One can show that

$$d_{\Phi}(\Lambda h, \Lambda k) \le L d_{\Phi}(h, k), \quad d_{\Psi}(\Lambda h, \Lambda k) \le K d_{\Psi}(h, k)$$

for any $h, k \in E$. It follows from (3.16) that $d_{\Phi}(\Lambda f, f) \leq \frac{1}{2}$ and $d_{\Psi}(\Lambda g, g) \leq \frac{1}{2}$. Due to Theorem 1.2, the sequences $\{\Lambda^n f\}$ and $\{\Lambda^n g\}$ converge to fixed points F and G of Λ , i.e., $F, G : \mathcal{R} \to \mathcal{M}$,

$$F(a) = \lim_{n \to \infty} (\Lambda^n f)(a) = \lim_{n \to \infty} \frac{1}{2^n} f(2^n a), \quad G(a) = \lim_{n \to \infty} (\Lambda^n g)(a) = \lim_{n \to \infty} \frac{1}{2^n} g(2^n a),$$

F(2a) = 2F(a) and G(2a) = 2G(a) for all $a \in \mathcal{R}$. Also

$$d_{\Phi}(F,f) \le \frac{1}{1-L} d_{\Phi}(\Lambda f,f) \le \frac{1}{2-2L}, \\ d_{\Psi}(G,g) \le \frac{1}{1-K} d_{\Psi}(\Lambda g,g) \le \frac{1}{2-2K},$$

i.e., the inequalities (3.14) and (3.15) hold true for all $a \in \mathcal{R}$.

The rest of the proof is similar to the proof of Theorem 3.1 and we omit the details. $\hfill \square$

Corollary 3.3. Let $\varepsilon, \delta, p, q$ be non-negative real numbers with 0 < p, q < 1 or p, q > 2. If \mathcal{R} is a normed ring and $f, g : \mathcal{R} \to \mathcal{M}$ are mappings satisfy the inequalities

$$\|J_{f,g}^{\theta,\phi}(a,b,c)\| \le \varepsilon (\|a\|^p + \|b\|^p + \|c\|^p), \quad \|J_{g,g}^{\theta,\phi}(a,b,c)\| \le \delta (\|a\|^q + \|b\|^q + \|c\|^q)$$

for all $a, b, c \in \mathcal{R}$, then there exist a unique (θ, ϕ) -Jordan derivation $G : \mathcal{R} \to \mathcal{M}$ and a unique generalized (θ, ϕ) -Jordan derivation $F : \mathcal{R} \to \mathcal{M}$ satisfying

$$||f(a) - F(a)|| \le \frac{2\varepsilon}{|2 - 2^p|} ||a||^p, \quad ||g(a) - G(a)|| \le \frac{2\delta}{|2 - 2^q|} ||a||^q$$

for all $a \in \mathcal{R}$.

Proof. Let

$$L := \begin{cases} 2^{p-1}, & 0 2. \end{cases} \qquad K := \begin{cases} 2^{q-1}, & 0 < q < 1; \\ 2^{1-q}, & q > 2. \end{cases}$$

So the result follows from Theorems 3.1 and 3.2.

Corollary 3.4. Let ε and δ be non-negative real numbers and let $f, g : \mathbb{R} \to \mathcal{M}$ be mappings satisfying f(0) = g(0) = 0 and the inequalities

$$\|J_{f,g}^{\theta,\phi}(a,b,c)\| \le \varepsilon, \quad \|J_{g,g}^{\theta,\phi}(a,b,c)\| \le \delta$$

for all $a, b, c \in \mathcal{R}$. Then there exist a unique (θ, ϕ) -Jordan derivation $G : \mathcal{R} \to \mathcal{M}$ and a unique generalized (θ, ϕ) -Jordan derivation $F : \mathcal{R} \to \mathcal{M}$ satisfying

$$||f(a) - F(a)|| \le \varepsilon, \quad ||g(a) - G(a)|| \le \delta$$

for all $a \in \mathcal{R}$.

Proof. The proof follows from Theorem 3.2 by taking

$$\Phi(a,b,c):=\varepsilon,\quad \Psi(a,b,c):=\delta$$

for all $a, b, c \in \mathcal{R}$. Then we can choose L = K = 1/2 and we get the desired results.

Theorem 3.5. Let $f, g : \mathcal{R} \to \mathcal{M}$ be mappings with f(0) = g(0) = 0 for which there exists a function $\Phi : \mathcal{R}^4 \to [0, \infty)$ satisfying

(3.17)
$$\lim_{n \to \infty} \frac{1}{2^n} \Phi(2^n a, 2^n b, 2^n c, 2^n d) = \lim_{n \to \infty} \frac{1}{2^n} \Phi(2^n a, b, 0, 0)$$
$$= \lim_{n \to \infty} \frac{1}{2^n} \Phi(a, 2^n b, 0, 0) = 0,$$
(3.18)
$$\|D_{\ell, a}^{\theta, \phi}(a, b, c, d)\| \le \Phi(a, b, c, d)$$

for all
$$a, b, c, d \in \mathcal{R}$$
. If \mathcal{R} has the identity e, \mathcal{M} is unit linked and there exists a

 $constant L < 1 \ such$

$$\Phi(0, 0, 2a, 2a) \le 2L\Phi(0, 0, a, a)$$

for all $a \in \mathcal{R}$, then g is a (θ, ϕ) -derivation and f is a generalized (θ, ϕ) -derivation. Moreover, $f = a\theta + g$, where $a = \lim_{n \to \infty} \frac{1}{2^n} f(2^n e)$.

Proof. Letting a = b = 0 and c = d in (3.18), we get

$$||f(2c) - 2f(c)|| \le \Phi(0, 0, c, c)$$

for all $c \in \mathcal{R}$. Using the same method as in the proof of Theorem 3.2, we infer that the limit

(3.19)
$$F(a) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n a)$$

exists for all $a \in \mathcal{R}$ and the mapping $F : \mathcal{R} \to \mathcal{M}$ is additive. Letting c = d = 0and replacing a and b by $2^n e$ and $2^n b$, respectively, in (3.18), we get

$$|f(4^{n}b) - f(2^{n}e)\theta(2^{n}b) - \phi(2^{n}e)g(2^{n}b)|| \le \Phi(2^{n}e, 2^{n}b, 0, 0)$$

for all $b \in \mathcal{R}$ and all $n \in \mathbb{N}$. Since $\phi(e) = e$, we have

(3.20)
$$\left\|\frac{1}{4^n}f(4^nb) - \frac{1}{2^n}f(2^ne)\theta(b) - \frac{1}{2^n}g(2^nb)\right\| \le \frac{1}{4^n}\Phi(2^ne,2^nb,0,0)$$

for all $b \in \mathcal{R}$ and all $n \in \mathbb{N}$. It follows from (3.17), (3.19) and (3.20) that the limit

$$G(b) := \lim_{n \to \infty} \frac{1}{2^n} g(2^n b)$$

exists and $G(b) = F(b) - F(e)\theta(b)$ for all $b \in \mathcal{R}$. Hence G is additive. It follows from the definitions of F, G, (3.17) and (3.18) that

$$\begin{split} \|F(ab) - F(a)\theta(b) - \phi(a)G(b)\| \\ &= \lim_{n \to \infty} \frac{1}{4^n} \|f(4^n ab) - f(2^n a)\theta(2^n b) - \phi(2^n a)g(2^n b)\| \\ &\leq \lim_{n \to \infty} \frac{1}{4^n} \Phi(2^n a, 2^n b, 0, 0) = 0 \end{split}$$

for all $a, b \in \mathcal{R}$. Therefore

(3.21)
$$F(ab) = F(a)\theta(b) + \phi(a)G(b)$$

for all $a, b \in \mathcal{R}$. Further, by (3.21) we have

$$G(ab) = F(ab) - F(e)\theta(ab) = F(a)\theta(b) + \phi(a)G(b) - F(e)\theta(a)\theta(b)$$
$$= [F(a) - F(e)\theta(a)]\theta(b) + \phi(a)G(b) = G(a)\theta(b) + \phi(a)G(b)$$

for all $a, b \in \mathcal{R}$. Thus G is a (θ, ϕ) -derivation and (3.21) shows that F is a generalized (θ, ϕ) -derivation.

By (3.17), (3.18) and the definitions of F, G, we have

(3.22)
$$F(ab) - F(a)\theta(b) = \phi(a)g(b),$$

(3.23)
$$F(ab) - \phi(a)G(b) = f(a)\theta(b)$$

for all $a, b \in \mathcal{R}$. Since G(e) = 0 and $\theta(e) = \phi(e) = e$, letting a = e in (3.22) and b = e in (3.23), we get $g(b) = F(b) - F(e)\theta(b) = G(b)$ and F(a) = f(a), respectively, for all $a, b \in \mathcal{R}$. So g is a (θ, ϕ) -derivation and f is a generalized (θ, ϕ) -derivation. Moreover, $f = F(e)\theta + g$.

Corollary 3.6. Let ε, δ, p be non-negative real numbers with $0 . If <math>\mathcal{R}$ is a normed ring with the identity e, \mathcal{M} is unit linked and $f, g: \mathcal{R} \to \mathcal{M}$ are mappings with f(0) = g(0) = 0 and satisfy the inequality

$$\|D_{f,g}^{\theta,\phi}(a,b,c,d)\| \le \delta + \varepsilon (\|a\|^p + \|b\|^p + \|c\|^p + \|d\|^p),$$

for all $a, b, c, d \in \mathcal{R}$, then g is a (θ, ϕ) -derivation and f is a generalized (θ, ϕ) -derivation. Moreover, $f = a\theta + g$, where $a = \lim_{n \to \infty} \frac{1}{2^n} f(2^n e)$.

Theorem 3.7. Let $f, g : \mathcal{R} \to \mathcal{M}$ be mappings for which there exist functions $\varphi, \psi : \mathcal{R}^2 \to [0, \infty)$ such that

(3.24)
$$\lim_{n \to \infty} \frac{1}{n} \varphi(na, b) = \lim_{n \to \infty} \frac{1}{n} \varphi(a, nb) = 0,$$

(3.25)
$$\lim_{n \to \infty} \frac{1}{n} \psi(na, b) = \lim_{n \to \infty} \frac{1}{n} \psi(a, nb) = 0$$

(3.26) $||f(ab) - f(a)\theta(b) - \phi(a)g(b)|| \le \varphi(a,b),$

(3.27)
$$||g(ab) - g(a)\theta(b) - \phi(a)g(b)|| \le \psi(a, b)$$

for all $a, b \in \mathcal{R}$. If \mathcal{R} is normed with the identity e and \mathcal{M} is unit linked, then

(3.28)
$$g(ab) = g(a)\theta(b) + \phi(a)g(b), \quad f(ab) = f(a)\theta(b) + \phi(a)g(b)$$

for all $a, b \in \mathcal{R}$.

Proof. By (3.24) and (3.27), we get

(3.29)
$$\lim_{n \to \infty} \frac{1}{n} \left[g(nab) - g(na)\theta(b) \right] = \phi(a)g(b),$$
$$\lim_{n \to \infty} \frac{1}{n} \left[g(nab) - \phi(a)g(nb) \right] = g(a)\theta(b)$$

for all $a, b \in \mathcal{R}$. Using the Badora's method [3] on the inequality (3.27), we have

$$\begin{split} \|g(ab) - g(a)\theta(b) - \phi(a)g(b)\| \\ &\leq \left\|g(ab) - \frac{1}{n}g(nabe) + \frac{1}{n}\phi(ab)g(ne)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}\phi(a)g(nb) - g(a)\theta(b)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}g(na)\theta(b) - \phi(a)g(b)\right\| \\ &+ \frac{1}{n}\left\|\phi(a)g(nb) - \phi(ab)g(ne) + g(na)\theta(b) - g(nab)\right\| \\ &\leq \left\|g(ab) - \frac{1}{n}g(nabe) + \frac{1}{n}\phi(ab)g(ne)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}\phi(a)g(nb) - g(a)\theta(b)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}g(na)\theta(b) - \phi(a)g(b)\right\| \\ &+ \frac{1}{n}\left\|g(nab) - g(b)\theta(ne) - \phi(b)g(ne)\right\| \\ &+ \frac{1}{n}\left\|g(nab) - g(na)\theta(b) - \phi(na)g(b)\right\| \\ &\leq \left\|g(ab) - \frac{1}{n}g(nabe) + \frac{1}{n}\phi(a)g(nb) - g(a)\theta(b)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}g(na)\theta(b) - g(a)\theta(b)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}g(na)\theta(b) - g(a)\theta(b)\right\| \\ &+ \left\|\frac{1}{n}g(nab) - \frac{1}{n}g(na)\theta(b) - \phi(a)g(b)\right\| \\ &+ \left\|\frac{1}{n}g(na)\theta(b) - \frac{1}{n}g(na)\theta(b) - \frac{1}{n}g(na)\theta(b) \\ &+ \left\|\frac{1}{n}g(na)\theta(b) - \frac{1}{n}g(na)\theta(b) - \frac{1}{n}g(na)\theta(b) \\ &+ \left\|\frac{1$$

for all $a, b \in \mathcal{R}$. Applying (3.25) and (3.29), we observe that the right side of the last inequality tends to 0 when n tends to infinity. Therefore

(3.30)
$$g(ab) = g(a)\theta(b) + \phi(a)g(b)$$

for all $a, b \in \mathcal{R}$.

Similarly, by (3.24) and (3.26), we have

(3.31)
$$\lim_{n \to \infty} \frac{1}{n} \left[f(nab) - f(na)\theta(b) \right] = \phi(a)g(b),$$
$$\lim_{n \to \infty} \frac{1}{n} \left[f(nab) - \phi(a)g(nb) \right] = f(a)\theta(b)$$

for all $a, b \in \mathcal{R}$. Let $a, b \in \mathcal{R}$ and $n \in \mathbb{N}$ be fixed. Since g satisfies (3.30), we have $g(nb) = g(bne) = ng(b) + \phi(b)g(ne)$. Using (3.26), we have

$$\begin{split} \|f(ab) - f(a)\theta(b) - \phi(a)g(b)\| \\ &\leq \left\| f(ab) - \frac{1}{n} f(nabe) + \frac{1}{n} \phi(ab)g(ne) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} \phi(a)g(nb) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \frac{1}{n} \left\| \phi(a)g(nb) - \phi(ab)g(ne) + f(na)\theta(b) - f(nab) \right\| \\ &= \left\| f(ab) - \frac{1}{n} f(nabe) + \frac{1}{n} \phi(ab)g(ne) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} \phi(a)g(nb) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \frac{1}{n} \left\| n\phi(a)g(b) + f(na)\theta(b) - f(nab) \right\| \\ &\leq \left\| f(ab) - \frac{1}{n} f(nabe) + \frac{1}{n} \phi(a)g(nb) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(nabe) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - f(a)\theta(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(nab) - \frac{1}{n} f(na)\theta(b) - \phi(a)g(b) \right\| \\ &+ \left\| \frac{1}{n} f(na)\theta(b) \right\| \\ &+ \left\| \frac{1}$$

Applying (3.24) and (3.31), we observe that the right side of the last inequality tends to 0 when n tends to infinity. Therefore

$$f(ab) = f(a)\theta(b) + \phi(a)g(b).$$

Corollary 3.8. Let $\varepsilon, \delta, p, q$ be non-negative real numbers with 0 < p, q < 1. If \mathcal{R} is a normed ring with the identity e, \mathcal{M} is unit linked and $f, g : \mathcal{R} \to \mathcal{M}$ are mappings satisfy the inequalities

$$\|f(ab) - f(a)\theta(b) - \phi(a)g(b)\| \le \delta + \varepsilon(\|a\|^p + \|b\|^q), \\ \|g(ab) - g(a)\theta(b) - \phi(a)g(b)\| \le \delta + \varepsilon(\|a\|^p + \|b\|^q)$$

for all $a, b \in \mathcal{R}$, then f and g satisfy (3.28) for all $a, b \in \mathcal{R}$.

Acknowledgment. The authors thank the referee(s) for a number of valuable suggestions on a previous version of this paper.

REFERENCES

- M. AMYARI, M. S. MOSLEHIAN: Hyers-Ulam-Rassias stability of derivations on Hilbert C^{*}-modules. Contemporary Math., 427 (2007), 31–39.
- T. AOKI: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2 (1950), 64–66.
- 3. R. BADORA: On approximate derivations. Math. Inequal. Appl., 9 (2006), 167–173.
- M. BREŠAR: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc., 104 (1988), 1003–1006.
- L. CĂDARIU, V. RADU: On the stability of the Cauchy functional equation: A fixed point approach. Grazer Math. Ber., 346 (2004), 43–52.
- 6. J. CUSAK: Jordan derivations on rings. Proc. Amer. Math. Soc., 53 (1975), 321-324.
- 7. P. CZERWIK: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- P. GĂVRUTA: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184 (1994), 431–436.
- O. HATORI, J. WADA: Ring derivations on semi-simple commutative Banach algebras. Tokyo J. Math., 15 (1992), 223–229.
- I. N. HERSTEIN: Jordan derivations of prime rings. Proc. Amer. Math. Soc., 8 (1957), 1104–1119.
- 11. B. HVALA: Generalized derivations in rings. Comm. Algebra, 26 (1998), 1147-1166.
- D. H. HYERS: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
- D. H. HYERS, G. ISAC, TH. M. RASSIAS: Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998.
- W. JING, S. LU: Generalized Jordan derivations on prime rings and standard operator algebras. Taiwanese J. Math., 7 (2003), 605–613.
- B. E. JOHNSON: Continuity of derivations on commutative algebras. Amer. J. Math., 91 (1969), 1–10.
- 16. S.-M. JUNG: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press Inc., Palm Harbor, Florida, 2001.
- S.-M. JUNG, T.-S. KIM: A fixed point approach to stability of cubic functional equation. Bol. Soc. Mat. Mexicana, 12 (2006), 51–57.
- T.-K. LEE: Generalized derivations of left faithful rings. Comm. Algebra, 27 (1999), 4057–4073.
- C.-K. LIU, W.-K. SHIUE: Generalized Jordan triple (θ, φ)-derivations on semiprime rings. Taiwanese J. Math, 11 (2007), 1397–1406.
- B. MARGOLIS, J. B. DIAZ: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc., 74 (1968), 305–309.
- M. MIRZAVAZIRI, M. S. MOSLEHIAN: A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc., 37 (2006), 361–376.
- T. MIURA, G. HIRASAWA, S.-E. TAKAHASI: A perturbation of ring derivations on Banach algebras. J. Math. Anal. Appl., **319** (2006), 522–530.

- M. S. MOSLEHIAN: Hyers-Ulam-Rassias stability of generalized derivations. Int. J. Math. Math. Sci., (2006), Article ID 93942, pages 1–8.
- 24. A. NAJATI: Hyers-Ulam stability of an n-Apollonius type quadratic mapping. Bull. Belgian Math. Soc. Simon-Stevin, 14 (2007), 755–774.
- A. NAJATI: On the stability of a quartic functional equation. J. Math. Anal. Appl., 340 (2008), 569–574.
- A. NAJATI, M. B. MOGHIMI: Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. J. Math. Anal. Appl., 337 (2008), 399–415.
- A. NAJATI, C. PARK: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation. J. Math. Anal. Appl., 335 (2007), 763-778.
- A. NAJATI, C. PARK: On the stability of an n-dimensional functional equation originating from quadratic forms. Taiwanese J. Math., 12 (2008), 1609–1624.
- 29. C. PARK: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl., **275** (2002), 711–720.
- C. PARK: Homomorphisms between Poisson JC^{*}-algebras. Bull. Braz. Math. Soc., 36 (2005), 79–97.
- TH. M. RASSIAS: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72 (1978), 297–300.
- TH. M. RASSIAS: Functional Equations, Inequalities and Applications. Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
- P. SEMRL: On ring derivations and quadratic functionals. Aequationes Math., 42 (1991), 80–84.
- P. ŠEMRL: The functional equation of multiplicative derivation is superstable on standard operator algebras. Integr. Equat. Oper. Theory, 18 (1994), 118–122.
- I. M. SINGER, J. WERMER: Derivations on commutative normed algebras. Math. Ann., 129 (1955), 260–264.
- M. P. THOMAS: The image of a derivation is contained in the radical. Ann. of Math., 128 (1988), 435–460.
- S. M. ULAM: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.

Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran E-mail: a.nejati@yahoo.com (Received May 30, 2009) (Revised August 1, 2009)

Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece E-mail: trassias@math.ntua.gr