Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 3 (2009), 198-211.
doi:10.2298/AADM0902198S

ON TRACES OF HOLOMORPHIC FUNCTIONS
 ON THE UNIT POLYBALL

Romi F. Shamoyan, Olivera R. Mihić ${ }^{1}$

Abstract

In this paper we completely describe traces of holomorphic Bergman classes and Bloch-type classes on polyballs and obtain related estimates generalizing classical Bergman projection theorem.

1. INTRODUCTION

Let \mathbb{C} denote the set of complex numbers. Throughout the paper we fix a positive integer n and let $\mathbb{C}^{n}=\mathbb{C} \times \cdots \times \mathbb{C}$ denote the Euclidean space of complex dimension n. The open unit ball in \mathbb{C}^{n} is the set $\mathbf{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$. The boundary of \mathbf{B}^{n} will be denoted by $\mathbf{S}^{n}, \mathbf{S}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid=1\right\}$.

As usual, we denote by $H\left(\mathbf{B}^{n}\right)$ the class of all holomorphic functions on \mathbf{B}^{n}.
For every function $f \in H\left(\mathbf{B}^{n}\right)$ having a series expansion $f(z)=\sum_{|k| \geq 0} a_{k} z^{k}$, we define the operator of fractional differentiation by

$$
D^{\alpha} f(z)=\sum_{|k| \geq 0}(|k|+1)^{\alpha} a_{k} z^{k}
$$

where α is any real number. It is obvious that for any α, D^{α} operator is acting from $H\left(\mathbf{B}^{n}\right)$ to $H\left(\mathbf{B}^{n}\right)$.

For $z \in \mathbf{B}^{n}$ and $r>0$ set $\mathcal{D}(z, r)=\left\{w \in \mathbf{B}^{n}: \beta(z, w)<r\right\}$ where β is a Bergman metric on $\mathbf{B}^{n}, \beta(z, w)=\frac{1}{2} \log \frac{1+\left|\varphi_{z}(w)\right|}{1-\left|\varphi_{z}(w)\right|}$ is called the Bergman metric ball at z (see [15]).

[^0]Let $m>1$ is a natural number, $M \subset \mathbb{C}^{n}$ and $K \subset \mathbb{C}^{m n}, C^{m n}=C^{n} \times \cdots \times C^{n}$, be a hyper surface. Let $X(M)$ be a class of functions on $M, Y(K)$ the same. We say Trace $Y=X$ or in short $\operatorname{Tr} Y=X, K=M^{m}, M^{m}=M \times \cdots \times M$, if for any $f \in Y(K), f(w, \ldots, w) \in X(M), w \in M$, and for any $g \in X(M)$, there exist a function $f \in Y(K)$ such that $f(w, \ldots, w)=g(w), w \in M$. Traces of various functional spaces in \mathbb{R}^{n} were described in [6] and [14]. In polydisk this problem is also known as a problem of diagonal map (see 3] and references there).

The intention of this paper is to consider the following natural Trace problem for polyballs. Let M be a unit ball and let K be a polyball (product of m balls) in definition we gave above. Let further $H(\mathbf{B} \times \cdots \times \mathbf{B})$ be a space of all holomorphic functions by each $z_{j}, z_{j} \in B, \quad j=1, \ldots, m: f\left(z_{1}, \ldots, z_{m}\right)$. Let further Y be a subspace of $H(\mathbf{B} \times \cdots \times \mathbf{B})$. The question we would like to study and solve in this work is the following: Find the complete description of Trace Y in a sense of our definition for several concrete functional classes. We observe that for $n=1$ this problem completely coincide with the well- known problem of diagonal map. The last problem of description of diagonal of various subspaces of $H\left(\mathbf{U}^{n}\right)$ of spaces of all holomorphic functions in the polydisk was studied by many authors before (see $[\mathbf{2}, \mathbf{3}, \mathbf{5}, \mathbf{8}, \mathbf{9}, \mathbf{1 2}, \mathbf{1 3}]$ and references there).

The goal of this paper is to give a complete description of traces classical Bergman spaces defined on polyballs and traces of some Bloch type classes in polyballs. Let us note that for $n=1$ traces of Bergman spaces were completely described previously in $[\mathbf{3}]$ and $[\mathbf{1 2}]$ (see also, for example, $[\mathbf{1 3}]$ and reference there). In this paper as in case of polydisk estimates for expanded Bergman projection (the operator of polarization) are playing a crucial role during all our proofs.

Trace theorems even for $n=1$ (case of polydisk) have numerous applications in the theory of holomorphic functions (see for example $[\mathbf{1}, \mathbf{3}, \mathbf{1 0}]$).

Throughout the paper, we write C (sometimes with indexes) to denote a positive constant which might be different at each occurrence (even in a chain of inequalities) but is independent of the functions or variables being discussed.

As usual, let $\mathrm{d} \nu$ denote the Lebesgue measure on \mathbf{B} normalized such that $\nu(\mathbf{B})=1$. For any real number α, let $\mathrm{d} \nu_{\alpha}(z)=c_{\alpha}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} \nu(z)$ for $|z|<1$. Here, if $\alpha \leq-1, c_{\alpha}=1$ and if $\alpha>-1, c_{\alpha}=\frac{\Gamma(n+1+\alpha)}{\Gamma(n+1) \Gamma(\alpha+1)}$ is the normalizing constant so that ν_{α} has unit total mass.

2. BERGMAN CLASSES AND BLOCH TYPE SPACES ON THE POLYBALLS

The following estimate is well-known and will used often in the paper. For a proof, see [15], Theorem 1.12.

Lemma A. Suppose $c>0$ is real and $t>-1$. Then the integral

$$
J_{c, t}(z)=\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{t} \mathrm{~d} \nu(w)}{|1-\langle z, w\rangle|^{n+1+t+c}}, \quad z \in \mathbf{B}
$$

has the following asymptotic property

$$
J_{c, t} \sim\left(1-|z|^{2}\right)^{-c} \text { as }|z| \rightarrow 1-
$$

We need the following estimate (see [7]):
Lemma B. Let $0 \leq t_{1}<s<t_{0}$, then

$$
\begin{aligned}
& \int_{\mathbf{B}} \frac{\left(1-|\eta|^{2}\right)^{s}}{|1-\langle z, \eta\rangle|^{n+1+t_{0}}|1-\langle\xi, \eta\rangle|^{t_{1}}}\left(\log ^{k} \frac{2}{1-|\eta|^{2}}\right) \mathrm{d} \nu(\eta) \\
& \quad \leq \frac{C}{\left(1-|z|^{2}\right)^{t_{0}-s}|1-\langle z, \xi\rangle|^{t_{1}}}\left(\log ^{k} \frac{2}{1-|z|^{2}}\right), z, \quad \xi \in \mathbf{B}, k \in \mathbb{N} .
\end{aligned}
$$

For any integer $k \geq 1$, positive real numbers r_{1}, \ldots, r_{k} and function f on
$\mathbf{B} \times \cdots \times \mathbf{B}$, we define

$$
\|f\|_{r_{1}, \ldots, r_{k}}=\sup _{z_{1}, \ldots, z_{k} \in \mathbf{B}}\left\{\left|f\left(z_{1}, \ldots, z_{k}\right)\right| \prod_{j=1}^{n}\left(1-\left|z_{j}\right|^{2}\right)^{r_{j}}\right\}
$$

Let $\Lambda\left(r_{1}, \ldots, r_{k}\right)$ denote the space of all $f \in H(\mathbf{B} \times \cdots \times \mathbf{B})$ such that $\|f\|_{r_{1}, \ldots, r_{k}}<\infty$. It can be checked without difficulties that $\Lambda\left(r_{1}, \ldots, r_{k}\right)$ with the norm $\|f\|_{r_{1}, \ldots, r_{k}}$ is a Banach space.

Theorem 1. Let $r_{j}>0, j=1, \ldots, m$ and $r=r_{1}+\cdots+r_{m}$, then
Trace $\left(\Lambda\left(r_{1}, \ldots, r_{m}\right)\right)=\Lambda(r)$.
Proof. For every positive large enough b_{j} we have $F(z, \ldots, z)=f(z)$, where

$$
F\left(z_{1}, \ldots, z_{m}\right)=C \int_{\mathbf{B}} \frac{f(w)(1-|w|)^{\sum_{j=1}^{m} b_{j}-n-1}}{\prod_{j=1}^{m}\left(1-\left\langle\bar{w}, z_{j}\right\rangle\right)^{b_{j}}} \mathrm{~d} v(w)
$$

by Bergman representation formula (see [15]). The proof follows from Hölder's inequality for n-functions and Lemma A. If $f \in \Lambda(r)$, then $|f(w)| \leq\|f\|_{r}(1-$ $\left.|w|^{2}\right)^{-r}$. Hence we have by Hölder's inequality

$$
\begin{aligned}
\left|F\left(z_{1}, \ldots, z_{m}\right)\right| & \leq C \int_{\mathbf{B}} \frac{|f(w)|(1-|w|)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{b_{j}}} \mathrm{~d} \nu(w) \\
& \leq C\|f\|_{r} \int_{\mathbf{B}} \frac{\prod_{j=1}^{m}\left(1-|w|^{2}\right)^{b_{j}-r_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{b_{j}}}\left(1-|w|^{2}\right)^{-(n+1)} \mathrm{d} \nu(w) \\
& \leq C\|f\|_{r} \prod_{j=1}^{m}\left(\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{s_{j}}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{m b_{j}}}\right)^{1 / m} \leq C\|f\|_{r} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{-r_{j}},
\end{aligned}
$$

where $s_{j}=m\left(b_{j}-r_{j}\right)-n-1$.
Hence $F \in \Lambda\left(r_{1}, \ldots, r_{m}\right), F(z, \ldots, z)=f(z)$. The reverse assertion is obvious since if $F \in \Lambda\left(r_{1}, \ldots, r_{n}\right)$, then $F(z, \ldots, z) \in \Lambda(r)$. Theorem is proved.

Let

$$
\begin{aligned}
& \Lambda_{\log }\left(r_{1}, \ldots, r_{m}\right)=\left\{f \in H\left(\mathbf{B}^{\mathbf{m}}\right): \sup _{z_{j} \in \mathbf{B}}\left|f\left(z_{1}, \ldots, z_{n}\right)\right|\right. \\
& \left.\quad \times \prod_{j=1}^{m}\left(\log \frac{1}{1-\left|z_{j}\right|}\right)^{-1 / r_{j}}\left(1-\left|z_{j}\right|\right)^{1 / r_{j}}<\infty, \sum_{j=1}^{m} \frac{1}{r_{j}}=1, r_{j}>0\right\} .
\end{aligned}
$$

Then we have the following theorem. The proof use Lemma B and ideas of Theorem 1.

Theorem 2. Trace $\left(\Lambda_{\log }\left(r_{1}, \ldots, r_{m}\right)\right)=\Lambda_{\log }(1)$, where

$$
\Lambda_{\log }(1)=\left\{f \in H(\mathbf{B}): \sup _{z \in \mathbf{B}}|f(z)|\left(\log \frac{1}{1-|z|}\right)^{-1}(1-|z|)<\infty\right\}
$$

Remark 1. Note that Theorem 1 and Theorem 2 are obvious for $m=1$.
For each real number α and $p \in(0, \infty)$, the Bergman space A_{α}^{p} is the intersection of $H(\mathbf{B})$ with $L^{p}\left(\mathbf{B}, d \nu_{\alpha}\right)$. It is well-known that A_{α}^{p} is a closed subspace of $L^{p}\left(\mathbf{B}, d \nu_{\alpha}\right)$. See [15], Chapter 2 for more detail.

To the end of the paper, fix an integer $m \geq 1$. For any two n-tuples of real numbers $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$, and $\mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$, we define the integral operators

$$
\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{a_{j}} \int_{\mathbf{B}} \frac{f(w)\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{a_{j}+b_{j}}} \mathrm{~d} \nu(w)
$$

and

$$
\left(S_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{a_{j}} \int_{\mathbf{B}} \frac{f(w)\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left(1-\left\langle z_{j}, w\right\rangle\right)^{a_{j}+b_{j}}} \mathrm{~d} \nu(w)
$$

where z_{1}, \ldots, z_{m} are in \mathbf{B} and f is a function in $L^{1}\left(\mathbf{B}, d \nu_{-n-1+\sum_{j=1}^{m} b_{j}}\right)$. Note that for such f, the functions $T_{\mathbf{a}, \mathbf{b}} f$ and $S_{\mathbf{a}, \mathbf{b}} f$ are defined on \mathbf{B}^{m}, the product of m copies of \mathbf{B}, and we have $\left|S_{\mathbf{a}, \mathbf{b}} f\right| \leq T_{\mathbf{a}, \mathbf{b}}|f|$.

We will study the boundedness of $T_{\mathbf{a}, \mathbf{b}}$ and $S_{\mathbf{a}, \mathbf{b}}$ from certain L^{p} spaces of \mathbf{B} into those of \mathbf{B}^{m}. Consider first the case $1 \leq p<\infty$. Let s_{1}, \ldots, s_{m} be arbitrary real numbers and put $t=(m-1)(n+1)+\sum_{j=1}^{m} s_{j}$. The following proposition gives sufficient conditions for the boundedness of $T_{\mathbf{a}, \mathbf{b}}$ (and hence, the boundedness of $\left.S_{\mathbf{a}, \mathbf{b}}\right)$ from $L^{p}\left(\mathbf{B}, d \nu_{t}\right)$ into $L^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$.

Proposition 1. Let $1 \leq p<\infty$ and $s_{j}>-1$. Suppose for each $j=1, \ldots$, m, we have $-p a_{j}<s_{j}+1$ and $m s_{j}+1<p\left(m b_{j}-n\right)-(m-1)(n+1)$. Then there is a constant $C>0$ such that

$$
\begin{array}{r}
\int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|\left(T_{a, b} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \ldots \mathrm{d} \nu\left(z_{m}\right) \\
\leq C \int_{\mathbf{B}}|f(w)|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w)
\end{array}
$$

for all f in $L^{1}(\mathbf{B}, \mathrm{~d} \nu)$.
Proof. The case $p=1$ follows from Fubinis theorem and the estimates in Lemma A. Now assume $p>1$. Let q denote the exponential conjugate of p, that is, $\frac{1}{p}+\frac{1}{q}=$ 1. Choose a positive number such that $p \gamma<\min \left\{p\left(m b_{j}-n\right)-(m-1)(n+1)\right.$ $\left.-m s_{j}-1: j=1, \ldots, m\right\}$. Put $\alpha=\frac{1}{m}\left(\gamma-\frac{1}{q}\right)$ and $\beta=-n-1+\sum_{j=1}^{m} b_{j}-m \alpha$ $=-n-1+\sum_{j=1}^{m} b_{j}-\gamma+\frac{1}{q}$. For each j, choose e_{j} such that

$$
\frac{n+1}{m q}+\alpha<e_{j}<\frac{n+1}{m q}+\alpha+\frac{p a_{j}+s_{j}+1}{p} .
$$

It is possible to choose such an e_{j} since $p a_{j}+s_{j}+1>0$. Put $d_{j}=a_{j}+b_{j}-e_{j}$. For any measurable function f on \mathbf{B} and z_{1}, \ldots, z_{m} in \mathbf{B}, using Hölders inequality, we have

$$
\begin{aligned}
& \int_{\mathbf{B}} \frac{|f(w)|\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{a_{j}+b_{j}}} \mathrm{~d} \nu(w) \\
& =\int_{\mathbf{B}}\left(\frac{|f(w)|\left(1-|w|^{2}\right)^{\beta}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{d_{j}}}\right) \prod_{j=1}^{m} \frac{\left(1-|w|^{2}\right)^{\alpha}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{e_{j}}} \mathrm{~d} \nu(w) \\
& \leq\left(\int_{\mathbf{B}} \frac{|f(w)|^{p}\left(1-|w|^{2}\right)^{p \beta}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{p d_{j}}} \mathrm{~d} \nu(w)\right)^{1 / p} \prod_{j=1}^{m}\left(\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{m q \alpha}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{m q e_{j}}} \mathrm{~d} \nu(w)\right)^{1 /(m q)}
\end{aligned}
$$

For each j, since $m q \alpha=q \gamma-1>-1$ and $m q e_{j}>n+1+m q \alpha$, Lemma A shows that

$$
\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{m q \alpha}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{m q e_{j}}} \mathrm{~d} \nu(w) \leq C\left(1-\left|z_{j}\right|^{2}\right)^{n+1+m q \alpha-m q e_{j}}
$$

where C is independent of z_{1}, \ldots, z_{m}. Thus we obtain

$$
\begin{aligned}
& \int_{\mathbf{B}} \frac{|f(w)|\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{a_{j}+b_{j}}} \mathrm{~d} \nu(w) \\
& \quad \leq C\left(\int_{\mathbf{B}} \frac{|f(w)|^{p}\left(1-|w|^{2}\right)^{p \beta}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{p d_{j}}} \mathrm{~d} \nu(w)\right)^{1 / p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{\frac{n+1}{m q}+\alpha-e_{j}}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \\
& \quad \leq C\left(\int_{\mathbf{B}} \frac{|f(w)|^{p}\left(1-|w|^{2}\right)^{p \beta}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{p d_{j}}} \mathrm{~d} \nu(w)\right) \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{\frac{p(n+1)}{m q}+p\left(\alpha-e_{j}+a_{j}\right)} .
\end{aligned}
$$

Now by Fubini theorem,

$$
\begin{align*}
& \text { (1) } \left.\quad \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} \mid\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right)\left.\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right) \tag{1}\\
& \leq C \int_{\mathbf{B}}\left(\prod_{j=1}^{m} \int_{\mathbf{B}} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{\frac{p(n+1)}{m q}+p\left(\alpha-e_{j}+a_{j}\right)+s_{j}}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{p d_{j}}} \mathrm{~d} \nu\left(z_{j}\right)\right)|f(w)|^{p}\left(1-|w|^{2}\right)^{p \beta} \mathrm{~d} \nu(w) .
\end{align*}
$$

For each j, by the choice of e_{j} and γ, we have $\frac{p(n+1)}{m q}+p \alpha-p e_{j}+p a_{j}+s_{j}>-1$ and $n+1+\frac{p(n+1)}{m q}+p\left(\alpha-e_{j}+a_{j}\right)+s_{j}-p d_{j}<0$. Applying Lemma A again, we have

$$
\begin{align*}
\int_{\mathbf{B}} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{\frac{p(n+1)}{m q}+p\left(\alpha-e_{j}+a_{j}\right)+s_{j}}}{\left|1-\left\langle z_{j}, w\right\rangle\right|^{p d_{j}}} \mathrm{~d} \nu\left(z_{j}\right) \tag{2}\\
\quad \leq C\left(1-|w|^{2}\right)^{n+1+\frac{p(n+1)}{m q}+p\left(\alpha-e_{j}+a_{j}\right)+s_{j}-p d_{j}} \\
\quad=C\left(1-|w|^{2}\right)^{\frac{p \gamma-p\left(m b_{j}-n\right)+(m-1)(n+1)+\left(m s_{j}+1\right)}{m}}
\end{align*}
$$

where C independent of w. From (1) and (2) and the fact that

$$
\sum_{j=1}^{m} \frac{p \gamma-p\left(m b_{j}-n\right)+(m-1)(n+1)+\left(m s_{j}+1\right)}{m}
$$

$$
\begin{aligned}
& =(m-1)(n+1)+\sum_{j=1}^{m} s_{j}-p\left(\sum_{j=1}^{m} b_{j}-\gamma-n\right)+1 \\
& =(m-1)(n+1)+\sum_{j=1}^{m} s_{j}-p \beta
\end{aligned}
$$

the conclusion of the proposition follows.
Remark 2. Note that for $m=1$ our assertion in Proposition 1 is well known and has numerous applications (see [15]).

For any two n-tuples of real numbers $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)$, we consider the integral operator

$$
\begin{aligned}
& \left(R_{\mathbf{x}, \mathbf{y}} g\right)(w)=\left(1-|w|^{2}\right)^{-m(n+1)+\sum_{j=1}^{m} y_{j}} \\
& \quad \times \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g\left(z_{1}, \ldots, z_{m}\right)\left(\prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{x_{j}}}{\left(1-\left\langle w, z_{j}\right\rangle\right)^{x_{j}+y_{j}}}\right) \mathrm{d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right)
\end{aligned}
$$

for $g \in L^{1}\left(\mathbf{B}^{m}, d \nu_{x_{1}} \cdots d \nu_{x_{m}}\right)$ and $w \in \mathbf{B}$. Using Proposition 1, we obtain the following proposition which gives conditions for the boundedness of $R_{\mathbf{x}, \mathbf{y}}$.

Proposition 2. Let $1 \leq p<\infty$ and $s_{j}>-1$. Suppose for each j we have $s_{j}+1<p\left(x_{j}+1\right)$ and $m s_{j}+1>m p\left(n+1-y_{j}\right)-(m-1)(n+1)$. Then there is a constant $C>0$ such that

$$
\begin{aligned}
& \int_{\mathbf{B}}\left|\left(R_{\mathbf{x}, \mathbf{y}} g\right)(w)\right|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w) \\
& \quad \leq C \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|g\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right)
\end{aligned}
$$

Proof. We first consider the case $p=1$. We have

$$
\begin{align*}
& \int_{\mathbf{B}}\left|\left(R_{\mathbf{x}, \mathbf{y}} g\right)(w)\right|\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} d \nu(w) \tag{3}\\
\leq & \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|g\left(z_{1}, \ldots, z_{m}\right)\right| \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{x_{j}} \\
\times & \left(\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m}\left(y_{j}+s_{j}\right)}}{\prod_{j=1}^{m}\left|1-\left\langle w, z_{j}\right\rangle\right|^{x_{j}+y_{j}}} d \nu(w)\right) \mathrm{d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right) .
\end{align*}
$$

By Hölders inequality,

$$
\int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m}\left(y_{j}+s_{j}\right)}}{\prod_{j=1}^{m}\left|1-\left\langle w, z_{j}\right\rangle\right|^{x_{j}+y_{j}}} \mathrm{~d} \nu(w) \leq\left(\prod_{j=1}^{m} \int_{\mathbf{B}} \frac{\left(1-|w|^{2}\right)^{-n-1+m y_{j}+m s_{j}}}{\left|1-\left\langle w, z_{j}\right\rangle\right|^{m x_{j}+m y_{j}}} \mathrm{~d} \nu(w)\right)^{1 / m}
$$

From the assumption of the proposition, we have $-n-1+m y_{j}+m s_{j}>-1$ and $m x_{j}+m y_{j}>\left(-n-1+m y_{j}+m s_{j}\right)+(n+1)$ for each j. Lemma A shows that the above product is less than or equal to $\prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}-x_{j}}$. From this and (3), the conclusion of the proposition then follows.

Now assume $1<p<\infty$. Put $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$, and let $\mathbf{a}=\mathbf{x}-\mathbf{s}$ and $\mathbf{b}=\mathbf{y}+\mathbf{s}$. Then

$$
\left(S_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{x_{j}-s_{j}} \int_{\mathbf{B}} \frac{f(w)\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m}\left(y_{j}+s_{j}\right)}}{\prod_{j=1}^{m}\left(1-\left\langle z_{j}, w\right\rangle\right)^{x_{j}+y_{j}}} \mathrm{~d} \nu(w)
$$

By the assumption and Proposition 1, $S_{\mathbf{a}, \mathbf{b}}$ is a bounded operator from $L^{q}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ into $L^{q}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$, where $1<q<\infty$ is the exponential conjugate of p and $t=(m-1)(n+1)+\sum_{j=1}^{m} s_{j}$. On the other hand, it can be checked easily that $S_{\mathbf{a}, \mathbf{b}}^{*}=R_{\mathbf{x}, \mathbf{y}}$. The conclusion of the proposition follows.
Remark 3. Note that for $m=1$ the assertion of Proposition 2 is well known (see [15]).
Proposition 2'. Let $p \in(0, \infty,) s_{j}>-1, j=1, \ldots, m, m \in \mathbb{N}$. Then the following estimate holds

$$
\begin{aligned}
\mathcal{J} & =\int_{\mathbf{B}}|g(w, \ldots, w)|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w) \\
& \leq C \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|g\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right)=\mathcal{J}_{1}
\end{aligned}
$$

Proof. We have by Lemma 2.24 from [15] and properties of r-lattice in Bergman metric (see [15], Theorem 2.23)

$$
\begin{aligned}
& \mathcal{J} \leq C \sum_{k \geq 0} \sup _{\text {un }\left(a_{k}, r\right)}|g(z, \ldots, z)|^{p}\left(1-\left|a_{k}\right|^{2}\right)^{(m-1)(n+1)+\left(\sum_{j=1}^{m} s_{j}\right)+n+1} \\
& \leq C \sum_{k_{1} \geq 0} \cdots \sum_{k_{m} \geq 0} \sup _{\substack{z_{1} \in \mathcal{D}\left(a_{k_{1}}, r\right) \\
\vdots \\
z_{m} \in \mathcal{D}\left(a_{k_{m}}, r\right)}}\left|g\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \\
& \times\left(1-\left|a_{k_{1}}\right|^{2}\right)^{\tau_{1} / m} \cdots\left(1-\left|a_{k_{m}}\right|^{2}\right)^{\tau_{m} / m} \leq C_{1} \mathcal{J}_{1},
\end{aligned}
$$

where $\tau_{j}=(n+1) m+s_{j} m$.
Theorem 3. Suppose $1 \leq p \leq \infty$ and $s_{1}, \ldots, s_{m}>-1$. Put $t=(m-1)(n+1)$ $+\sum_{j=1}^{m} s_{j}$. Then there are bounded operators $S: A^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right) \rightarrow A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$, and $R: A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right) \rightarrow A^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ such that $(S f)(z, \ldots, z)=f(z)$ and $(R g)(z)=g(z, \ldots, z)$ for all $f \in A^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$, all $g \in A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$ and all $z \in \mathbf{B}$. In other words, the Trace of $A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$ is $A^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$.
Remark 4. For $n=1$ Theorem 3 was known before (see [3], [8], [12]).
Proof. If $p=\infty$, then $A^{\infty}\left(\mathbf{B}, \mathrm{d} \nu_{t}\right)=H^{\infty}(\mathbf{B})$ and $A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)=$ $H^{\infty}\left(\mathbf{B}^{m}\right)$. Define $(S f)\left(z_{1}, \ldots, z_{m}\right)=f\left(z_{1}\right)$ for $f \in H^{\infty}(\mathbf{B}), z_{1}, \ldots, z_{m} \in \mathbf{B}$ and $(R g)(w)=g(w, \ldots, w)$ for $g \in H^{\infty}\left(\mathbf{B}^{m}\right)$ and $w \in \mathbf{B}$. Then $\|S\|,\|R\| \leq 1$ and they satisfy the conclusion of the corollary.

Now suppose $1 \leq p<\infty$. Let $\mathbf{a}=(0, \ldots, 0), \mathbf{b}=\left(b_{1}, \ldots, b_{m}\right)$, where b_{j} is large enough, and $S=C S_{\mathbf{a}, \mathbf{b}}$. It can be checked that \mathbf{a} and \mathbf{b} satisfy the hypothesis of Proposition 1. On the other hand, for $f \in A^{p}\left(\mathbf{B}, d \nu_{k}\right), S f$ is holomorphic and for $z \in \mathbf{B}$,

$$
\begin{aligned}
(S f)(z, \ldots, z) & =C \int_{\mathbf{B}} \frac{f(w)\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{(1-\langle z, w\rangle)^{\sum_{j=1}^{m} b_{j}}} \mathrm{~d} \nu(w) \\
& =\int_{\mathbf{B}} \frac{f(w) \mathrm{d} \nu_{k+1}(w)}{(1-\langle z, w\rangle)^{n+2+k}}=f(z)
\end{aligned}
$$

by [15], Theorem 2.2.
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$, where x_{j} is large enough, $\mathbf{y}=(n+1, \ldots, n+1)$ and $R=c_{x_{1}} \cdots c_{x_{m}} R_{\mathbf{x}, \mathbf{y}}$. Then \mathbf{x} and \mathbf{y} satisfy the hypothesis of Proposition 2. Furthermore, for $g \in A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \cdots \mathrm{~d} \nu_{s_{m}}\right)$ and $w \in \mathbf{B}$,

$$
\begin{aligned}
(R g)(w) & =\int_{\mathbf{B}} \cdots \int_{\mathbf{B}} \frac{g\left(z_{1}, \ldots, z_{m}\right) \mathrm{d} \nu_{x_{1}}\left(z_{1}\right) \cdots \mathrm{d} \nu_{x_{m}}\left(z_{m}\right)}{\prod_{j=1}^{m}\left(1-\left\langle w, z_{j}\right\rangle\right)^{x_{j}+y_{j}}} \\
& =\int_{\mathbf{B}} \cdots \int_{\mathbf{B}} \frac{g\left(z_{1}, \ldots, z_{m}\right) \mathrm{d} \nu_{x_{1}}\left(z_{1}\right) \cdots \mathrm{d} \nu_{x_{m}}\left(z_{m}\right)}{\prod_{j=1}^{m}\left(1-\left\langle w, z_{j}\right\rangle\right)^{n+1+x_{j}}} \\
& =g(w, \ldots, w),
\end{aligned}
$$

by applying [15], Theorem 2.2, m times. Therefore, S and R are the required operators.

It is not difficult to see that to get the second part of the Theorem 3 we can also apply Proposition 2^{\prime}.

The next lemma shows that if $s_{1}=\cdots=s_{m}$ and $b_{1}=\cdots=b_{m}$ then the converse of Proposition 1 holds true. We do not know if it is also the case for general s_{1}, \ldots, s_{m} and b_{1}, \ldots, b_{m}.

Lemma 1. Let $a_{1}, \ldots, a_{m}, b_{1}=\cdots=b_{m}=b$ and $s_{1}, \ldots, s_{m}=s$ be real numbers and let $1<p<\infty$. Put $t=(m-1)(n+1)+m s$. If $S_{\mathbf{a}, \mathbf{b}}$ is a bounded operator from $L^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ into $L^{p}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$, then $-p a_{j}<s+1$ for all $j=1, \ldots, m$ and $m s+1<p(m b-n)-(m-1)(n+1)$.
Proof. Choose N sufficiently large so that the function $f(w)=\left(1-|w|^{2}\right)^{N}$ belongs to $L^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$. By the rotation-invariant property of the Lebesgue measure, we see that $S_{\mathbf{a}, \mathbf{b}} f$ is a multiple of $\prod_{j=1}^{m}(1-|z j|)^{a_{j}}$. Since $S_{\mathbf{a}, \mathbf{b}} f$ belongs to $L^{p}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$, we conclude that $p a_{j}+s_{j}>-1$ for all $j=1, \ldots, m$. Now let $1<q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$. The boundedness of $S_{\mathbf{a}, \mathbf{b}}$ implies the boundedness of the adjoint $S_{\mathbf{a}, \mathbf{b}}^{*}$ as an operator from $L^{q}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$, into $L^{q}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$. One can check without difficulty that for $g \in L^{q}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$ the adjoint of $S_{\mathbf{a}, \mathbf{b}}$ equals

$$
\begin{aligned}
& \left(1-|w|^{2}\right)^{-n-1-t+\sum_{j=1}^{m} b_{j}} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g\left(z_{1}, \ldots, z_{m}\right) \prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|\right)^{a_{j}+s_{j}}}{\left(1-\left\langle w, z_{j}\right\rangle\right)^{a_{j}+b_{j}}} \mathrm{~d} \nu\left(z_{j}\right) \\
& =\left(1-|w|^{2}\right)^{-n-1-t+m b} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g\left(z_{1}, \ldots, z_{m}\right) \prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|\right)^{a_{j}+s}}{\left(1-\left\langle w, z_{j}\right\rangle\right)^{a_{j}+b}} \mathrm{~d} \nu\left(z_{j}\right) .
\end{aligned}
$$

Letting $g\left(z_{1}, \ldots, z_{m}\right)=\prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{M}$ for some large M, we see that $S_{\mathbf{a}, \mathbf{b}}^{*} g$ is a multiple of $\left(1-|w|^{2}\right)^{-n-1-t+m b}$.

If $1<p<\infty$, then $1<q<\infty$. Since $\left(S_{\mathbf{a}, \mathbf{b}}^{*} g\right)$ is in $L^{q}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ we have $q(-n-1-t+m b)+t>-1$, which is equivalent to $t+1<p(m b-n)$ and hence, $m s+1<p(m b-n)-(m-1)(n+1)$.

Remark 5. Suppose $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right), \mathbf{b}=(b, \ldots, b)$ and $s_{1}=\cdots=s_{m}=s$, where $a_{1}, \ldots, a_{m}, b, s$ are arbitrary real numbers. Put $t=(m-1)(n+1)+m s$. Suppose $1<p<\infty, s>-1$. Proposition 1 and Lemma 1 show that the following statements are equivalent.
(1) The operator $T_{\mathbf{a}, \mathbf{b}}$ is bounded from $L^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ into $L^{p}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$.
(2) The operator $S_{\mathbf{a}, \mathbf{b}}$ is bounded from $L^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$ into $L^{p}\left(\mathbf{B}^{m},\left(\mathrm{~d} \nu_{s}\right)^{m}\right)$.
(3) $m s+1<p(m b-n)-(m-1)(n+1)$ and $-p a_{j}<s+1$ for $j=1, \ldots, m$.

We now consider the case $0<p \leq 1$. Let s_{1}, \ldots, s_{m} be real numbers and let $t=(m-1)(n+1)+\sum_{j=1}^{m} s_{j}$. The following proposition gives sufficient conditions for the boundedness of $T_{\mathbf{a}, \mathbf{b}}$ from the Bergman space A_{t}^{p} into $L^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}} \times \cdots \times \mathrm{d} \nu_{s_{m}}\right)$.

Proposition 3. Let $p \in(0,1], s_{j}>-1$. Suppose for each $j=1, \ldots, m$, we have $-p a_{j}<s_{j}+1$ and $s_{j}+1<p b_{j}-n$. Then there is a constant $C>0$ such that

$$
\begin{aligned}
& \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|\left(T_{a, b} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right) \\
& \leq C \int_{\mathbf{B}}|f(w)|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w)
\end{aligned}
$$

for all f in $H(\mathbf{B}) \cap L^{1}\left(\mathbf{B}, d \nu_{b}\right)$.
Remark 6. The condition $s_{j}+1<p b_{j}-n$ is equivalent to $m s_{j}+1<p\left(m b_{j}-n\right)-$ $(m-1)(n+1)-n(1-p)$. This shows that there is an extra summand $(n(1-p))$ in the condition on the s_{j} 's compared to that in Proposition 1. This extra summand vanishes when $p=1$.
Proof. Let $\mathbf{D}(a, r)$ denote the Bergman disk of radius r centered at a for each $a \in \mathbf{B}$. Fix $0<r \leq 1$ and choose $\left\{u_{k}\right\}_{k=1}^{m}$ to be any r-lattice in the Bergman metric of \mathbf{B}. This means that $\mathbf{B}=\bigcup_{k=1}^{\infty} \mathbf{D}\left(u_{k}, r\right), \mathbf{D}\left(u_{k}, r\right) \cap \mathbf{D}\left(u_{\ell}, r\right)=\emptyset$ if $k \neq \ell$ and there is an integer $N \geq 1$ such that each $z \in \mathbf{B}$ belongs to at most N of the sets $\mathbf{D}\left(u_{k}, 2 r\right)$. (See [15], Theorem 2.23 and the remark following it for more detail about the existence of such a lattice). For any function $f \in L^{1}\left(\mathbf{B}, \mathrm{~d} \nu_{n}\right)$ and any $z_{1}, \ldots, z_{m} \in \mathbf{B}$, we have

$$
\begin{aligned}
& \left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right| \\
& \quad \leq \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{a_{j}} \sum_{k=1}^{\infty} \int_{\mathbf{D}\left(u_{k}, r\right)} \frac{|f(w)|\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}}}{\prod_{j=1}^{m}\left|1-\left\langle z_{j}, w\right\rangle\right|^{a_{j}+b_{j}}} \mathrm{~d} \nu(w) .
\end{aligned}
$$

By [15], Lemma 2.27, there is a constant $C>0$ so that for each $j=1, \ldots, m$ and $k \geq 1, \frac{1}{C} \leq\left|\frac{1-\left\langle z_{j}, w\right\rangle}{1-\left\langle z_{j}, u_{k}\right\rangle}\right| \leq C$, for all $w \in \mathbf{D}\left(u_{k}, r\right)$. Also by [15], Lemma 1.24, $\int_{\mathbf{D}\left(u_{k}, r\right)}\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}} \mathrm{~d} \nu(w)$ is comparable with $\left(1-\left|u_{k}\right|^{2}\right)^{\sum_{j=1}^{m} b_{j}}$. Thus we have

$$
\begin{aligned}
& \left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right| \\
& \quad \leq C \sum_{k=1}^{\infty} \prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{a_{j}}}{\left|1-\left\langle z_{j}, u_{k}\right\rangle\right|^{a_{j}+b_{j}}} \int_{\mathbf{D}\left(u_{k}, r\right)}|f(w)|\left(1-|w|^{2}\right)^{-n-1+\sum_{j=1}^{m} b_{j}} \mathrm{~d} \nu(w) \\
& \quad \leq C \sum_{k=1}^{\infty} \prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{a_{j}}\left(1-\left|u_{k}\right|^{2}\right)^{\sum_{j=1}^{m}} b_{j}}{\left|1-\left\langle z_{j}, u_{k}\right\rangle\right|^{a_{j}+b_{j}}} \sup \left\{|f(w)|: w \in \mathbf{D}\left(u_{k}, r\right)\right\} .
\end{aligned}
$$

Now since $0<p \leq 1$, using the inequality $\left(x_{1}+x_{2}+\cdots\right)^{p} \leq x_{1}^{p}+x_{2}^{p}+\cdots$,
which is valid for nonnegative numbers x_{1}, x_{2}, \ldots, we get

$$
\begin{aligned}
& \left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \\
& \quad \leq C \sum_{k=1}^{\infty} \prod_{j=1}^{m} \frac{\left(1-\left|z_{j}\right|^{2}\right)^{p a_{j}}\left(1-\left|u_{k}\right|^{2}\right)^{p\left(\sum_{j=1}^{m} b_{j}\right)}}{\left|1-\left\langle z_{j}, u_{k}\right\rangle\right|^{p a_{j}+p b_{j}}} \sup \left\{|f(w)|^{p}: w \in \mathbf{D}\left(u_{k}, r\right)\right\}
\end{aligned}
$$

Integrating with respect to $\mathrm{d} \nu_{s_{1}}\left(z_{1}\right) \cdots \mathrm{d} \nu_{s_{m}}\left(z_{m}\right)$ and using Lemma A (note that by assumption, $p a_{j}+s_{j}>-1$ and $p a_{j}+p b_{j}>n+1+p a_{j}+s_{j}$), we obtain

$$
\begin{aligned}
& \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right) \\
& \leq C \sum_{k=1}^{\infty}\left(\prod_{j=1}^{m}\left(1-\left|u_{k}\right|^{2}\right)^{n+1+s_{j}-p b_{j}}\right) \\
& \quad \times\left(1-\left|u_{k}\right|^{2}\right)^{p\left(\sum_{j=1}^{m} b_{j}\right)} \sup \left\{|f(w)|^{p}: w \in \mathbf{D}\left(u_{k}, r\right)\right\} \\
& \leq C \sum_{k=1}^{\infty}\left(1-\left|u_{k}\right|^{2}\right)^{m(n+1)+\sum_{j=1}^{m} s_{j}} \sup \left\{|f(w)|^{p}: w \in \mathbf{D}\left(u_{k}, r\right)\right\}
\end{aligned}
$$

From [15], Lemma 2.20, $\left(1-\left|u_{k}\right|^{2}\right)$ is comparable with $\left(1-|w|^{2}\right)$ when $w \in$ $\mathbf{D}\left(u_{k}, r\right)$. This together with [15], Lemma 2.24 implies that, if f is holomorphic on B, then

$$
\begin{aligned}
& \int_{\mathbf{B}} \cdots \int_{\mathbf{B}}\left|\left(T_{\mathbf{a}, \mathbf{b}} f\right)\left(z_{1}, \ldots, z_{m}\right)\right|^{p} \prod_{j=1}^{m}\left(1-\left|z_{j}\right|^{2}\right)^{s_{j}} \mathrm{~d} \nu\left(z_{1}\right) \cdots \mathrm{d} \nu\left(z_{m}\right) \\
& \quad \leq C \sum_{k=1}^{\infty} \sup \left\{|f(w)|^{p}\left(1-|w|^{2}\right)^{m(n+1)+\sum_{j=1}^{m} s_{j}}: w \in \mathbf{D}\left(u_{k}, r\right)\right\} \\
& \quad \leq C \sum_{k=1}^{\infty} \int_{\mathbf{D}\left(u_{k}, 2 r\right)}|f(w)|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w) \\
& \quad \leq C \int_{\mathbf{B}}|f(w)|^{p}\left(1-|w|^{2}\right)^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{~d} \nu(w)
\end{aligned}
$$

To derive the last inequality, we have used the fact that each $z \in \mathbf{B}$ belongs to at most N of the sets $\mathbf{D}\left(u_{k}, 2 r\right)$.
Remark 7. Proposition 3 for $m=1$ is obvious, for $m>1, n=1$ it was proved in [3].
The following theorem follows directly from Proposition 3 and Proposition 2^{\prime}.
Theorem 4. Let $p \in(0,1], s_{1}>-1, \ldots, s_{m}>-1, \quad t=(m-1)(n+1)+\sum_{j=1}^{m} s_{j}$.
Then Trace $A^{p}\left(\mathbf{B}^{m}, \mathrm{~d} \nu_{s_{1}}, \ldots, \mathrm{~d} \nu_{s_{m}}\right)=A^{p}\left(\mathbf{B}, \mathrm{~d} \nu_{t}\right)$.

Remark 8. For $n=1$ Theorem 4 was known before (see [3], [8], [12]).
Remark 9. It is not difficult to notice that some our assertions proved above ($p \leq 1$ case) are true even under general assumption that f is a subharmonic function in the unit ball B.

Remark 10. Using approaches we develop in this paper and the previous remark (not sharp) assertions of the type Trace $X \subset Y$ or $Y \subset \operatorname{Trace} X$ for H^{p} Hardy classes, weighted Hardy classes, some mixed norm spaces and so-called Bergman-Nevanlinna classes (see [4] Chapter 4) can be also obtained.

Remark 11. Traces of mixed norm type analogues of Bergman type classes on polyballs we considered in this paper:

$$
\|f\|_{p_{1}, \ldots, p_{m}}=\left(\int_{\mathbf{B}} \cdots\left(\int_{\mathbf{B}}\left|f\left(w_{1}, \ldots w_{m}\right)\right|^{p_{1}}\left(1-\left|w_{1}\right|\right)^{\alpha_{1}} \mathrm{~d} \nu\right)^{p_{2} / p_{1}} \cdots\right)^{p_{m} / p_{m-1}}
$$

can be also described with the help of approaches we develop in this note with some restrictions on p_{1}, \ldots, p_{m}. (See [11]).

Acknowledgement. We thank Trieu Le for his valuable remarks.

REFERENCES

1. E. Amar, C. Menini: A counterexample to the corona theorem for operators on $H^{2}\left(D^{n}\right)$. Pacific Journal of Mathematics, 206, No 2, 2002.
2. P. L. Duren, A. L. Shields: Restriction of H^{p} functions on the diagonal of the polydisk. Duke Math. Journal, 42 (1975), 751-753.
3. A. E. Djrbashian, F. A. Shamoian: Topics in the Theory of A_{α}^{p} Spaces. Leipzig, Teubner, 1988.
4. H. Hedenmalm, B. Korenblum, K. Zhu: Theory of Bergman spaces. SpringerVerlag, New York, 2000.
5. M. Jevtić, M. Pavlović, R. Shamoyan: A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk. Public. Math. Debrecen, 74, 1-2 (2009), 1-14.
6. V. Mazya: Sobolev Spaces. Springer-Verlag, New York, 1985.
7. J. Ortega, J. Fàbrega: Corona type decomposition theorems in some Besov spaces. J. Funct. Anal., 78 (1996), 93-111.
8. G. Ren, J. Shi: The diagonal mapping in mixed norm spaces. Studia Math., (163) 2 (2004), 103-117.
9. W. Rudin: Function Theory in Polydisks. Benjamin, New York, 1969.
10. R. F. Shamoyan: On the action of Hankel operators in bidisk and subspaces in H^{∞} connected with inner functions in the unit disk. Doklady BAN, Bulgaria, 60, No 9, 2007.
11. R. F. Shamoyan, O. R. Mihić: Traces of Qp-type spaces and mixed norm analytic function spaces on polyballs and related problems. Preprint, 2009.
12. J. Shapiro: Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces. Duke Math. Journal, 43 (1976), 187-202.
13. S. V. Shvedenko: Hardy classes and related spaces of analytik functions in the init disk, polydisc and unit ball. Seria Matematika, VINITI, (1985), p. 3-124, Russian.
14. H. Triebel: Theory of Function Spaces II. Birkhäuser-Verlag, Basel-Boston-Berlin, 1992.
15. K. Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, 226. Springer-Verlag, New York, 2005.

Bryansk University,
(Received March 2, 2009)
Bryansk, Russia,
(Revised May 28, 2009)
Russia
E-mail: shamoyan@tu-bryansk.ru
Fakultet organizacionih nauka, Jove Ilića 154, Belgrade,
Serbia
E-email: oliveradj@fon.rs

[^0]: 2000 Mathematics Subject Classification. Primary 32A18
 Keywords and Phrases. Holomorphic functions, trace problem, Bergman, Bloch classes on polyballs, Bergman type projection.
 ${ }^{1}$ Supported by MNZŽS Serbia, Project 144010.

