Applicable Analysis and Discrete Mathematics

available online at http://pefmath.etf.bg.ac.yu

Appl. Anal. Discrete Math. 3 (2009), 198–211.

doi:10.2298/AADM0902198S

ON TRACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT POLYBALL

Romi F. Shamoyan, Olivera R. Mihić¹

In this paper we completely describe traces of holomorphic Bergman classes and Bloch-type classes on polyballs and obtain related estimates generalizing classical Bergman projection theorem.

1. INTRODUCTION

Let \mathbb{C} denote the set of complex numbers. Throughout the paper we fix a positive integer n and let $\mathbb{C}^n = \mathbb{C} \times \cdots \times \mathbb{C}$ denote the Euclidean space of complex dimension n. The open unit ball in \mathbb{C}^n is the set $\mathbf{B}^n = \{z \in \mathbb{C}^n | |z| < 1\}$. The boundary of \mathbf{B}^n will be denoted by \mathbf{S}^n , $\mathbf{S}^n = \{z \in \mathbb{C}^n | |z| = 1\}$.

As usual, we denote by $H(\mathbf{B}^n)$ the class of all holomorphic functions on \mathbf{B}^n . For every function $f \in H(\mathbf{B}^n)$ having a series expansion $f(z) = \sum_{|k| \ge 0} a_k z^k$,

we define the operator of fractional differentiation by

$$D^{\alpha}f(z) = \sum_{|k|\ge 0} (|k|+1)^{\alpha}a_k z^k,$$

where α is any real number. It is obvious that for any α , D^{α} operator is acting from $H(\mathbf{B}^n)$ to $H(\mathbf{B}^n)$.

For $z \in \mathbf{B}^n$ and r > 0 set $\mathcal{D}(z,r) = \{w \in \mathbf{B}^n : \beta(z,w) < r\}$ where β is a Bergman metric on \mathbf{B}^n , $\beta(z,w) = \frac{1}{2}\log \frac{1+|\varphi_z(w)|}{1-|\varphi_z(w)|}$ is called the Bergman metric ball at z (see [15]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 32A18.

Keywords and Phrases. Holomorphic functions, trace problem, Bergman, Bloch classes on polyballs, Bergman type projection.

¹Supported by MNZŽS Serbia, Project 144010.

Let m > 1 is a natural number, $M \subset \mathbb{C}^n$ and $K \subset \mathbb{C}^{mn}$, $C^{mn} = C^n \times \cdots \times C^n$, be a hyper surface. Let X(M) be a class of functions on M, Y(K) the same. We say Trace Y = X or in short $\operatorname{Tr} Y = X$, $K = M^m$, $M^m = M \times \cdots \times M$, if for any $f \in Y(K)$, $f(w, \ldots, w) \in X(M)$, $w \in M$, and for any $g \in X(M)$, there exist a function $f \in Y(K)$ such that $f(w, \ldots, w) = g(w)$, $w \in M$. Traces of various functional spaces in \mathbb{R}^n were described in [6] and [14]. In polydisk this problem is also known as a problem of diagonal map (see 3] and references there).

The intention of this paper is to consider the following natural Trace problem for polyballs. Let M be a unit ball and let K be a polyball (product of m balls) in definition we gave above. Let further $H(\mathbf{B} \times \cdots \times \mathbf{B})$ be a space of all holomorphic functions by each $z_j, z_j \in B, \quad j = 1, \ldots, m : f(z_1, \ldots, z_m)$. Let further Y be a subspace of $H(\mathbf{B} \times \cdots \times \mathbf{B})$. The question we would like to study and solve in this work is the following: Find the complete description of Trace Y in a sense of our definition for several concrete functional classes. We observe that for n = 1 this problem completely coincide with the well- known problem of diagonal map. The last problem of description of diagonal of various subspaces of $H(\mathbf{U}^n)$ of spaces of all holomorphic functions in the polydisk was studied by many authors before (see [2, 3, 5, 8, 9, 12, 13] and references there).

The goal of this paper is to give a complete description of traces classical Bergman spaces defined on polyballs and traces of some Bloch type classes in polyballs. Let us note that for n = 1 traces of Bergman spaces were completely described previously in [3] and [12] (see also, for example, [13] and reference there). In this paper as in case of polydisk estimates for expanded Bergman projection (the operator of polarization) are playing a crucial role during all our proofs.

Trace theorems even for n = 1 (case of polydisk) have numerous applications in the theory of holomorphic functions (see for example [1, 3, 10]).

Throughout the paper, we write C (sometimes with indexes) to denote a positive constant which might be different at each occurrence (even in a chain of inequalities) but is independent of the functions or variables being discussed.

As usual, let $d\nu$ denote the Lebesgue measure on **B** normalized such that $\nu(\mathbf{B}) = 1$. For any real number α , let $d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha} d\nu(z)$ for |z| < 1. Here, if $\alpha \leq -1$, $c_{\alpha} = 1$ and if $\alpha > -1$, $c_{\alpha} = \frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)\Gamma(\alpha+1)}$ is the normalizing constant so that ν_{α} has unit total mass.

2. BERGMAN CLASSES AND BLOCH TYPE SPACES ON THE POLYBALLS

The following estimate is well-known and will used often in the paper. For a proof, see [15], Theorem 1.12.

Lemma A. Suppose c > 0 is real and t > -1. Then the integral

$$J_{c,t}(z) = \int_{\mathbf{B}} \frac{(1 - |w|^2)^t \, d\nu(w)}{|1 - \langle z, w \rangle|^{n+1+t+c}}, \quad z \in \mathbf{B},$$

has the following asymptotic property

$$J_{c,t} \sim (1 - |z|^2)^{-c} \ as \ |z| \to 1 -$$

We need the following estimate (see [7]):

Lemma B. Let $0 \le t_1 < s < t_0$, then

$$\int_{\mathbf{B}} \frac{(1-|\eta|^2)^s}{|1-\langle z,\eta\rangle|^{n+1+t_0}|1-\langle \xi,\eta\rangle|^{t_1}} \left(\log^k \frac{2}{1-|\eta|^2}\right) d\nu(\eta) \\ \leq \frac{C}{(1-|z|^2)^{t_0-s}|1-\langle z,\xi\rangle|^{t_1}} \left(\log^k \frac{2}{1-|z|^2}\right), \ z, \ \xi \in \mathbf{B}, \ k \in \mathbb{N}.$$

For any integer $k \geq 1$, positive real numbers r_1, \ldots, r_k and function f on

 $\mathbf{B} \times \cdots \times \mathbf{B}$, we define

$$||f||_{r_1,\ldots,r_k} = \sup_{z_1,\ldots,z_k \in \mathbf{B}} \left\{ |f(z_1,\ldots,z_k)| \prod_{j=1}^n \left(1 - |z_j|^2\right)^{r_j} \right\}$$

Let $\Lambda(r_1, \ldots, r_k)$ denote the space of all $f \in H(\mathbf{B} \times \cdots \times \mathbf{B})$ such that $||f||_{r_1,\ldots,r_k} < \infty$. It can be checked without difficulties that $\Lambda(r_1,\ldots,r_k)$ with the norm $||f||_{r_1,\ldots,r_k}$ is a Banach space.

Theorem 1. Let $r_j > 0$, j = 1, ..., m and $r = r_1 + \cdots + r_m$, then Trace $(\Lambda(r_1, \ldots, r_m)) = \Lambda(r)$.

Proof. For every positive large enough b_j we have $F(z, \ldots, z) = f(z)$, where

$$F(z_1,\ldots,z_m) = C \int_{\mathbf{B}} \frac{f(w)(1-|w|)^{\sum\limits_{j=1}^m b_j - n - 1}}{\prod\limits_{j=1}^m (1-\langle \overline{w}, z_j \rangle)^{b_j}} \,\mathrm{d}v(w)$$

by Bergman representation formula (see [15]). The proof follows from Hölder's inequality for *n*-functions and Lemma A. If $f \in \Lambda(r)$, then $|f(w)| \leq ||f||_r (1 - |w|^2)^{-r}$. Hence we have by Hölder's inequality

$$|F(z_1, \dots, z_m)| \le C \int_{\mathbf{B}} \frac{|f(w)|(1-|w|)^{-n-1+\sum_{j=1}^m b_j}}{\prod_{j=1}^m |1-\langle z_j, w\rangle|^{b_j}} d\nu(w)$$

$$\le C ||f||_r \int_{\mathbf{B}} \frac{\prod_{j=1}^m (1-|w|^2)^{b_j-r_j}}{\prod_{j=1}^m |1-\langle z_j, w\rangle|^{b_j}} (1-|w|^2)^{-(n+1)} d\nu(w)$$

$$\le C ||f||_r \prod_{j=1}^m \left(\int_{\mathbf{B}} \frac{(1-|w|^2)^{s_j}}{|1-\langle z_j, w\rangle|^{mb_j}} \right)^{1/m} \le C ||f||_r \prod_{j=1}^m (1-|z_j|^2)^{-r_j},$$

where $s_j = m(b_j - r_j) - n - 1$.

Hence $F \in \Lambda(r_1, \ldots, r_m)$, $F(z, \ldots, z) = f(z)$. The reverse assertion is obvious since if $F \in \Lambda(r_1, \ldots, r_n)$, then $F(z, \ldots, z) \in \Lambda(r)$. Theorem is proved. \Box Let

$$\begin{split} \Lambda_{\log}(r_1, \dots, r_m) &= \bigg\{ f \in H(\mathbf{B}^{\mathbf{m}}) : \sup_{z_j \in \mathbf{B}} |f(z_1, \dots, z_n)| \\ &\times \prod_{j=1}^m \bigg(\log \frac{1}{1 - |z_j|} \bigg)^{-1/r_j} (1 - |z_j|)^{1/r_j} < \infty, \ \sum_{j=1}^m \frac{1}{r_j} = 1, \ r_j > 0 \bigg\}. \end{split}$$

Then we have the following theorem. The proof use Lemma B and ideas of Theorem 1.

Theorem 2. Trace $(\Lambda_{\log}(r_1, \ldots, r_m)) = \Lambda_{\log}(1)$, where

$$\Lambda_{\log}(1) = \left\{ f \in H(\mathbf{B}) : \sup_{z \in \mathbf{B}} |f(z)| \left(\log \frac{1}{1 - |z|} \right)^{-1} (1 - |z|) < \infty \right\}.$$

REMARK 1. Note that Theorem 1 and Theorem 2 are obvious for m = 1.

For each real number α and $p \in (0, \infty)$, the Bergman space A^p_{α} is the intersection of $H(\mathbf{B})$ with $L^p(\mathbf{B}, d\nu_{\alpha})$. It is well-known that A^p_{α} is a closed subspace of $L^p(\mathbf{B}, d\nu_{\alpha})$. See [15], Chapter 2 for more detail.

To the end of the paper, fix an integer $m \ge 1$. For any two *n*-tuples of real numbers $\mathbf{a} = (a_1, \ldots, a_m)$, and $\mathbf{b} = (b_1, \ldots, b_m)$, we define the integral operators

$$(T_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m) = \prod_{j=1}^m (1-|z_j|^2)^{a_j} \int_{\mathbf{B}} \frac{f(w)(1-|w|^2)^{-n-1+\sum_{j=1}^n b_j}}{\prod_{j=1}^m |1-\langle z_j,w\rangle|^{a_j+b_j}} d\nu(w)$$

m

and

$$(S_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m) = \prod_{j=1}^m (1-|z_j|^2)^{a_j} \int_{\mathbf{B}} \frac{f(w)(1-|w|^2)^{-n-1+\sum_{j=1}^{m} b_j}}{\prod_{j=1}^m (1-\langle z_j,w\rangle)^{a_j+b_j}} \mathrm{d}\nu(w),$$

where z_1, \ldots, z_m are in **B** and f is a function in $L^1\left(\mathbf{B}, d\nu_{-n-1+\sum_{j=1}^m b_j}\right)$. Note that for such f, the functions $T_{\mathbf{a},\mathbf{b}}f$ and $S_{\mathbf{a},\mathbf{b}}f$ are defined on \mathbf{B}^m , the product of m

copies of **B**, and we have $|S_{\mathbf{a},\mathbf{b}}f| \leq T_{\mathbf{a},\mathbf{b}}|f|$.

We will study the boundedness of $T_{\mathbf{a},\mathbf{b}}$ and $S_{\mathbf{a},\mathbf{b}}$ from certain L^p spaces of **B** into those of \mathbf{B}^m . Consider first the case $1 \leq p < \infty$. Let s_1, \ldots, s_m be arbitrary real numbers and put $t = (m-1)(n+1) + \sum_{j=1}^m s_j$. The following proposition gives sufficient conditions for the boundedness of $T_{\mathbf{a},\mathbf{b}}$ (and hence, the boundedness of $S_{\mathbf{a},\mathbf{b}}$) from $L^p(\mathbf{B}, d\nu_t)$ into $L^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m})$.

Proposition 1. Let $1 \le p < \infty$ and $s_j > -1$. Suppose for each j = 1, ..., m, we have $-pa_j < s_j + 1$ and $ms_j + 1 < p(mb_j - n) - (m - 1)(n + 1)$. Then there is a constant C > 0 such that

$$\begin{split} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |(T_{a,b}f)(z_1, \dots, z_m)|^p \prod_{j=1}^m (1 - |z_j|^2)^{s_j} \mathrm{d}\nu(z_1) \dots \mathrm{d}\nu(z_m) \\ &\leq C \int_{\mathbf{B}} |f(w)|^p (1 - |w|^2)^{(m-1)(n+1) + \sum_{j=1}^m s_j} \mathrm{d}\nu(w), \end{split}$$

for all f in $L^1(\mathbf{B}, \mathrm{d}\nu)$.

Proof. The case p = 1 follows from Fubinis theorem and the estimates in Lemma A. Now assume p > 1. Let q denote the exponential conjugate of p, that is, $\frac{1}{p} + \frac{1}{q} = 1$. Choose a positive number such that $p\gamma < \min\{p(mb_j - n) - (m - 1)(n + 1) - ms_j - 1 : j = 1, \dots, m\}$. Put $\alpha = \frac{1}{m} \left(\gamma - \frac{1}{q}\right)$ and $\beta = -n - 1 + \sum_{j=1}^{m} b_j - m\alpha$ $= -n - 1 + \sum_{j=1}^{m} b_j - \gamma + \frac{1}{q}$. For each j, choose e_j such that $\frac{n+1}{mq} + \alpha < e_j < \frac{n+1}{mq} + \alpha + \frac{pa_j + s_j + 1}{p}$.

It is possible to choose such an e_j since $pa_j + s_j + 1 > 0$. Put $d_j = a_j + b_j - e_j$. For any measurable function f on **B** and z_1, \ldots, z_m in **B**, using Hölders inequality, we have

$$\begin{split} &\int_{\mathbf{B}} \frac{|f(w)|(1-|w|^2)^{-n-1+\sum_{j=1}^m b_j}}{\prod_{j=1}^m |1-\langle z_j, w\rangle|^{a_j+b_j}} \,\mathrm{d}\nu(w) \\ &= \int_{\mathbf{B}} \left(\frac{|f(w)|(1-|w|^2)^{\beta}}{\prod_{j=1}^m |1-\langle z_j, w\rangle|^{d_j}} \right) \prod_{j=1}^m \frac{(1-|w|^2)^{\alpha}}{|1-\langle z_j, w\rangle|^{e_j}} \,\mathrm{d}\nu(w) \\ &\leq \left(\int_{\mathbf{B}} \frac{|f(w)|^p (1-|w|^2)^{p\beta}}{\prod_{j=1}^m |1-\langle z_j, w\rangle|^{pd_j}} \,\mathrm{d}\nu(w) \right)^{1/p} \prod_{j=1}^m \left(\int_{\mathbf{B}} \frac{(1-|w|^2)^{mq\alpha}}{|1-\langle z_j, w\rangle|^{mqe_j}} \,\mathrm{d}\nu(w) \right)^{1/(mq)} \end{split}$$

For each j, since $mq\alpha = q\gamma - 1 > -1$ and $mqe_j > n + 1 + mq\alpha$, Lemma A shows that

$$\int_{\mathbf{B}} \frac{(1-|w|^2)^{mq\alpha}}{|1-\langle z_j,w\rangle|^{mqe_j}} \,\mathrm{d}\nu(w) \le C(1-|z_j|^2)^{n+1+mq\alpha-mqe_j},$$

where C is independent of z_1, \ldots, z_m . Thus we obtain

$$\int_{\mathbf{B}} \frac{|f(w)|(1-|w|^2)^{-n-1+\sum_{j=1}^{m} b_j}}{\prod_{j=1}^{m} |1-\langle z_j,w\rangle|^{a_j+b_j}} d\nu(w) \\ \leq C \left(\int_{\mathbf{B}} \frac{|f(w)|^p (1-|w|^2)^{p\beta}}{\prod_{j=1}^{m} |1-\langle z_j,w\rangle|^{pd_j}} d\nu(w) \right)^{1/p} \prod_{j=1}^{m} \left(1-|z_j|^2\right)^{\frac{n+1}{mq}+\alpha-e_j}.$$

This implies that

$$|(T_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m)|^p \leq C\left(\int_{\mathbf{B}} \frac{|f(w)|^p (1-|w|^2)^{p\beta}}{\prod_{j=1}^m |1-\langle z_j,w\rangle|^{pd_j}} \,\mathrm{d}\nu(w)\right) \prod_{j=1}^m (1-|z_j|^2)^{\frac{p(n+1)}{mq}+p(\alpha-e_j+a_j)}.$$

Now by Fubini theorem,

(1)
$$\int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |(T_{\mathbf{a},\mathbf{b}}f)(z_{1},\ldots,z_{m})|^{p} \prod_{j=1}^{m} (1-|z_{j}|^{2})^{s_{j}} \mathrm{d}\nu(z_{1})\cdots \mathrm{d}\nu(z_{m})$$
$$\leq C \int_{\mathbf{B}} \left(\prod_{j=1}^{m} \int_{\mathbf{B}} \frac{(1-|z_{j}|^{2})^{\frac{p(n+1)}{mq}+p(\alpha-e_{j}+a_{j})+s_{j}}}{|1-\langle z_{j},w\rangle|^{pd_{j}}} \mathrm{d}\nu(z_{j}) \right) |f(w)|^{p} (1-|w|^{2})^{p\beta} \mathrm{d}\nu(w).$$

For each j, by the choice of e_j and γ , we have $\frac{p(n+1)}{mq} + p\alpha - pe_j + pa_j + s_j > -1$ and $n+1 + \frac{p(n+1)}{mq} + p(\alpha - e_j + a_j) + s_j - pd_j < 0$. Applying Lemma A again, we have

(2)
$$\int_{\mathbf{B}} \frac{(1-|z_j|^2)^{\frac{p(n+1)}{mq}+p(\alpha-e_j+a_j)+s_j}}{|1-\langle z_j,w\rangle|^{pd_j}} \,\mathrm{d}\nu(z_j)$$
$$\leq C(1-|w|^2)^{n+1+\frac{p(n+1)}{mq}+p(\alpha-e_j+a_j)+s_j-pd_j}$$
$$= C(1-|w|^2)^{\frac{p\gamma-p(mb_j-n)+(m-1)(n+1)+(ms_j+1)}{m}},$$

where C independent of w. From (1) and (2) and the fact that

$$\sum_{j=1}^{m} \frac{p\gamma - p(mb_j - n) + (m-1)(n+1) + (ms_j + 1)}{m}$$

$$= (m-1)(n+1) + \sum_{j=1}^{m} s_j - p\left(\sum_{j=1}^{m} b_j - \gamma - n\right) + 1$$
$$= (m-1)(n+1) + \sum_{j=1}^{m} s_j - p\beta,$$

the conclusion of the proposition follows.

REMARK 2. Note that for m = 1 our assertion in Proposition 1 is well known and has numerous applications (see [15]).

For any two *n*-tuples of real numbers $\mathbf{x} = (x_1, \ldots, x_m)$ and $\mathbf{y} = (y_1, \ldots, y_m)$, we consider the integral operator

$$(R_{\mathbf{x},\mathbf{y}}g)(w) = (1 - |w|^2)^{-m(n+1) + \sum_{j=1}^m y_j} \\ \times \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g(z_1, \dots, z_m) \left(\prod_{j=1}^m \frac{(1 - |z_j|^2)^{x_j}}{(1 - \langle w, z_j \rangle)^{x_j + y_j}} \right) \mathrm{d}\nu(z_1) \cdots \mathrm{d}\nu(z_m),$$

for $g \in L^1(\mathbf{B}^m, d\nu_{x_1} \cdots d\nu_{x_m})$ and $w \in \mathbf{B}$. Using Proposition 1, we obtain the following proposition which gives conditions for the boundedness of $R_{\mathbf{x},\mathbf{y}}$.

Proposition 2. Let $1 \le p < \infty$ and $s_j > -1$. Suppose for each j we have $s_j + 1 < p(x_j + 1)$ and $ms_j + 1 > mp(n + 1 - y_j) - (m - 1)(n + 1)$. Then there is a constant C > 0 such that

$$\int_{\mathbf{B}} |(R_{\mathbf{x},\mathbf{y}}g)(w)|^{p} (1-|w|^{2})^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} d\nu(w)$$

$$\leq C \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |g(z_{1},\ldots,z_{m})|^{p} \prod_{j=1}^{m} (1-|z_{j}|^{2})^{s_{j}} d\nu(z_{1}) \cdots d\nu(z_{m}).$$

Proof. We first consider the case p = 1. We have

(3)
$$\int_{\mathbf{B}} |(R_{\mathbf{x},\mathbf{y}}g)(w)| (1-|w|^2)^{(m-1)(n+1)+\sum_{j=1}^m s_j} d\nu(w)$$
$$\leq \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |g(z_1, \dots, z_m)| \prod_{j=1}^m (1-|z_j|^2)^{x_j}$$
$$\times \left(\int_{\mathbf{B}} \frac{(1-|w|^2)^{-n-1+\sum_{j=1}^m (y_j+s_j)}}{\prod_{j=1}^m |1-\langle w, z_j \rangle|^{x_j+y_j}} d\nu(w) \right) d\nu(z_1) \cdots d\nu(z_m).$$

By Hölders inequality,

$$\int_{\mathbf{B}} \frac{(1-|w|^2)^{-n-1+\sum_{j=1}^{m}(y_j+s_j)}}{\prod_{j=1}^{m}|1-\langle w, z_j\rangle|^{x_j+y_j}} \,\mathrm{d}\nu(w) \le \left(\prod_{j=1}^{m} \int_{\mathbf{B}} \frac{(1-|w|^2)^{-n-1+my_j+ms_j}}{|1-\langle w, z_j\rangle|^{mx_j+my_j}} \,\mathrm{d}\nu(w)\right)^{1/m}.$$

From the assumption of the proposition, we have $-n - 1 + my_j + ms_j > -1$ and $mx_j + my_j > (-n - 1 + my_j + ms_j) + (n + 1)$ for each *j*. Lemma A shows that the above product is less than or equal to $\prod_{j=1}^{m} (1 - |z_j|^2)^{s_j - x_j}$. From this and (3), the conclusion of the proposition then follows.

Now assume $1 . Put <math>\mathbf{s} = (s_1, \dots, s_m)$, and let $\mathbf{a} = \mathbf{x} - \mathbf{s}$ and $\mathbf{b} = \mathbf{y} + \mathbf{s}$. Then

$$(S_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m) = \prod_{j=1}^m (1-|z_j|^2)^{x_j-s_j} \int_{\mathbf{B}} \frac{f(w)(1-|w|^2)^{-n-1+\sum_{j=1}^m (y_j+s_j)}}{\prod_{j=1}^m (1-\langle z_j,w\rangle)^{x_j+y_j}} d\nu(w).$$

By the assumption and Proposition 1, $S_{\mathbf{a},\mathbf{b}}$ is a bounded operator from $L^q(\mathbf{B}, \mathrm{d}\nu_t)$ into $L^q(\mathbf{B}^m, \mathrm{d}\nu_{s_1}\cdots \mathrm{d}\nu_{s_m})$, where $1 < q < \infty$ is the exponential conjugate of p and $t = (m-1)(n+1) + \sum_{j=1}^m s_j$. On the other hand, it can be checked easily that $S^*_{\mathbf{a},\mathbf{b}} = R_{\mathbf{x},\mathbf{y}}$. The conclusion of the proposition follows. \square REMARK 3. Note that for m = 1 the assertion of Proposition 2 is well known (see [15]). **Proposition 2'.** Let $p \in (0, \infty,)$ $s_j > -1$, $j = 1, \ldots, m$, $m \in \mathbb{N}$. Then the following estimate holds

$$\mathcal{J} = \int_{\mathbf{B}} |g(w, \dots, w)|^{p} (1 - |w|^{2})^{(m-1)(n+1) + \sum_{j=1}^{m} s_{j}} d\nu(w)$$

$$\leq C \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |g(z_{1}, \dots, z_{m})|^{p} \prod_{j=1}^{m} (1 - |z_{j}|^{2})^{s_{j}} d\nu(z_{1}) \cdots d\nu(z_{m}) = \mathcal{J}_{1}.$$

Proof. We have by Lemma 2.24 from [15] and properties of *r*-lattice in Bergman metric (see [15], Theorem 2.23)

$$\mathcal{J} \leq C \sum_{k \geq 0} \sup_{z \in \mathcal{D}(a_k, r)} |g(z, \dots, z)|^p (1 - |a_k|^2)^{(m-1)(n+1) + (\sum_{j=1}^m s_j) + n + 1}$$

$$\leq C \sum_{k_1 \geq 0} \cdots \sum_{k_m \geq 0} \sup_{\substack{z_1 \in \mathcal{D}(a_{k_1}, r) \\ \vdots \\ z_m \in \mathcal{D}(a_{k_m}, r)}} |g(z_1, \dots, z_m)|^p$$

$$\times (1 - |a_{k_1}|^2)^{\tau_1/m} \cdots (1 - |a_{k_m}|^2)^{\tau_m/m} \leq C_1 \mathcal{J}_1,$$

where $\tau_j = (n+1)m + s_j m$.

Theorem 3. Suppose $1 \le p \le \infty$ and $s_1, \ldots, s_m > -1$. Put t = (m-1)(n+1)+ $\sum_{j=1}^m s_j$. Then there are bounded operators $S : A^p(\mathbf{B}, d\nu_t) \to A^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m})$, and $R : A^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m}) \to A^p(\mathbf{B}, d\nu_t)$ such that $(Sf)(z, \ldots, z) = f(z)$ and $(Rg)(z) = g(z, \ldots, z)$ for all $f \in A^p(\mathbf{B}, d\nu_t)$, all $g \in A^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m})$ and all $z \in \mathbf{B}$. In other words, the Trace of $A^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m})$ is $A^p(\mathbf{B}, d\nu_t)$.

REMARK 4. For n = 1 Theorem 3 was known before (see [3], [8], [12]).

Proof. If $p = \infty$, then $A^{\infty}(\mathbf{B}, d\nu_t) = H^{\infty}(\mathbf{B})$ and $A^p(\mathbf{B}^m, d\nu_{s_1} \cdots d\nu_{s_m}) = H^{\infty}(\mathbf{B}^m)$. Define $(Sf)(z_1, \ldots, z_m) = f(z_1)$ for $f \in H^{\infty}(\mathbf{B}), z_1, \ldots, z_m \in \mathbf{B}$ and $(Rg)(w) = g(w, \ldots, w)$ for $g \in H^{\infty}(\mathbf{B}^m)$ and $w \in \mathbf{B}$. Then $||S||, ||R|| \leq 1$ and they satisfy the conclusion of the corollary.

Now suppose $1 \leq p < \infty$. Let $\mathbf{a} = (0, \ldots, 0)$, $\mathbf{b} = (b_1, \ldots, b_m)$, where b_j is large enough, and $S = CS_{\mathbf{a},\mathbf{b}}$. It can be checked that \mathbf{a} and \mathbf{b} satisfy the hypothesis of Proposition 1. On the other hand, for $f \in A^p(\mathbf{B}, d\nu_k)$, Sf is holomorphic and for $z \in \mathbf{B}$,

$$(Sf)(z,...,z) = C \int_{\mathbf{B}} \frac{f(w)(1-|w|^2)^{-n-1+\sum_{j=1}^{m} b_j}}{(1-\langle z,w\rangle)^{\sum_{j=1}^{m} b_j}} d\nu(w)$$
$$= \int_{\mathbf{B}} \frac{f(w) d\nu_{k+1}(w)}{(1-\langle z,w\rangle)^{n+2+k}} = f(z)$$

by [15], Theorem 2.2.

Let $\mathbf{x} = (x_1, \ldots, x_m)$, where x_j is large enough, $\mathbf{y} = (n + 1, \ldots, n + 1)$ and $R = c_{x_1} \cdots c_{x_m} R_{\mathbf{x}, \mathbf{y}}$. Then \mathbf{x} and \mathbf{y} satisfy the hypothesis of Proposition 2. Furthermore, for $g \in A^p(\mathbf{B}^m, \mathrm{d}\nu_{s_1} \cdots \mathrm{d}\nu_{s_m})$ and $w \in \mathbf{B}$,

$$(Rg)(w) = \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} \frac{g(z_1, \dots, z_m) \, \mathrm{d}\nu_{x_1}(z_1) \cdots \mathrm{d}\nu_{x_m}(z_m)}{\prod_{j=1}^m (1 - \langle w, z_j \rangle)^{x_j + y_j}}$$
$$= \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} \frac{g(z_1, \dots, z_m) \, \mathrm{d}\nu_{x_1}(z_1) \cdots \mathrm{d}\nu_{x_m}(z_m)}{\prod_{j=1}^m (1 - \langle w, z_j \rangle)^{n+1+x_j}}$$
$$= g(w, \dots, w),$$

by applying [15], Theorem 2.2, *m* times. Therefore, *S* and *R* are the required operators.

It is not difficult to see that to get the second part of the Theorem 3 we can also apply Proposition 2'. $\hfill \Box$

The next lemma shows that if $s_1 = \cdots = s_m$ and $b_1 = \cdots = b_m$ then the converse of Proposition 1 holds true. We do not know if it is also the case for general s_1, \ldots, s_m and b_1, \ldots, b_m .

Lemma 1. Let $a_1, \ldots, a_m, b_1 = \cdots = b_m = b$ and $s_1, \ldots, s_m = s$ be real numbers and let 1 . Put <math>t = (m-1)(n+1) + ms. If $S_{\mathbf{a},\mathbf{b}}$ is a bounded operator from $L^p(\mathbf{B}, \mathrm{d}\nu_t)$ into $L^p(\mathbf{B}^m, (\mathrm{d}\nu_s)^m)$, then $-pa_j < s+1$ for all $j = 1, \ldots, m$ and ms+1 < p(mb-n) - (m-1)(n+1).

Proof. Choose N sufficiently large so that the function $f(w) = (1 - |w|^2)^N$ belongs to $L^p(\mathbf{B}, d\nu_t)$. By the rotation-invariant property of the Lebesgue measure, we see that $S_{\mathbf{a},\mathbf{b}}f$ is a multiple of $\prod_{j=1}^m (1 - |zj|)^{a_j}$. Since $S_{\mathbf{a},\mathbf{b}}f$ belongs to $L^p(\mathbf{B}^m, (d\nu_s)^m)$, we conclude that $pa_j + s_j > -1$ for all $j = 1, \ldots, m$. Now let $1 < q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. The boundedness of $S_{\mathbf{a},\mathbf{b}}$ implies the boundedness of the adjoint $S^*_{\mathbf{a},\mathbf{b}}$ as an operator from $L^q(\mathbf{B}^m, (d\nu_s)^m)$, into $L^q(\mathbf{B}, d\nu_t)$. One can check without difficulty that for $g \in L^q(\mathbf{B}^m, (d\nu_s)^m)$ the adjoint of $S_{\mathbf{a},\mathbf{b}}$ equals

$$(1-|w|^2)^{-n-1-t+\sum_{j=1}^m b_j} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g(z_1,\ldots,z_m) \prod_{j=1}^m \frac{(1-|z_j|)^{a_j+s_j}}{(1-\langle w,z_j\rangle)^{a_j+b_j}} d\nu(z_j)$$

= $(1-|w|^2)^{-n-1-t+mb} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} g(z_1,\ldots,z_m) \prod_{j=1}^m \frac{(1-|z_j|)^{a_j+s_j}}{(1-\langle w,z_j\rangle)^{a_j+b}} d\nu(z_j).$

Letting $g(z_1, \ldots, z_m) = \prod_{\substack{j=1 \ j=1}}^m (1 - |z_j|^2)^M$ for some large M, we see that $S^*_{\mathbf{a}, \mathbf{b}}g$ is a multiple of $(1 - |w|^2)^{-n-1-t+mb}$.

If $1 , then <math>1 < q < \infty$. Since $(S^*_{\mathbf{a},\mathbf{b}}g)$ is in $L^q(\mathbf{B}, d\nu_t)$ we have q(-n-1-t+mb)+t > -1, which is equivalent to t+1 < p(mb-n) and hence, ms+1 < p(mb-n) - (m-1)(n+1).

REMARK 5. Suppose $\mathbf{a} = (a_1, \ldots, a_m)$, $\mathbf{b} = (b, \ldots, b)$ and $s_1 = \cdots = s_m = s$, where a_1, \ldots, a_m, b, s are arbitrary real numbers. Put t = (m-1)(n+1) + ms. Suppose 1 , <math>s > -1. Proposition 1 and Lemma 1 show that the following statements are equivalent.

- (1) The operator $T_{\mathbf{a},\mathbf{b}}$ is bounded from $L^p(\mathbf{B}, \mathrm{d}\nu_t)$ into $L^p(\mathbf{B}^m, (\mathrm{d}\nu_s)^m)$.
- (2) The operator $S_{\mathbf{a},\mathbf{b}}$ is bounded from $L^p(\mathbf{B}, d\nu_t)$ into $L^p(\mathbf{B}^m, (d\nu_s)^m)$.
- (3) ms + 1 < p(mb n) (m 1)(n + 1) and $-pa_j < s + 1$ for j = 1, ..., m.

We now consider the case $0 . Let <math>s_1, \ldots, s_m$ be real numbers and let $t = (m-1)(n+1) + \sum_{j=1}^m s_j$. The following proposition gives sufficient conditions for the boundedness of $T_{\mathbf{a},\mathbf{b}}$ from the Bergman space A_t^p into $L^p(\mathbf{B}^m, \mathrm{d}\nu_{s_1} \times \cdots \times \mathrm{d}\nu_{s_m})$.

Proposition 3. Let $p \in (0,1]$, $s_j > -1$. Suppose for each j = 1, ..., m, we have $-pa_j < s_j + 1$ and $s_j + 1 < pb_j - n$. Then there is a constant C > 0 such that

$$\int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |(T_{a,b}f)(z_1, \dots, z_m)|^p \prod_{j=1}^m (1 - |z_j|^2)^{s_j} \mathrm{d}\nu(z_1) \cdots \mathrm{d}\nu(z_m)$$

$$\leq C \int_{\mathbf{B}} |f(w)|^p (1 - |w|^2)^{(m-1)(n+1) + \sum_{j=1}^m s_j} \mathrm{d}\nu(w),$$

for all f in $H(\mathbf{B}) \cap L^1(\mathbf{B}, d\nu_b)$.

REMARK 6. The condition $s_j + 1 < pb_j - n$ is equivalent to $ms_j + 1 < p(mb_j - n) - (m-1)(n+1) - n(1-p)$. This shows that there is an extra summand (n(1-p)) in the condition on the s_j 's compared to that in Proposition 1. This extra summand vanishes when p = 1.

Proof. Let $\mathbf{D}(a, r)$ denote the Bergman disk of radius r centered at a for each $a \in \mathbf{B}$. Fix $0 < r \leq 1$ and choose $\{u_k\}_{k=1}^m$ to be any r-lattice in the Bergman metric of \mathbf{B} . This means that $\mathbf{B} = \bigcup_{k=1}^{\infty} \mathbf{D}(u_k, r), \mathbf{D}(u_k, r) \cap \mathbf{D}(u_\ell, r) = \emptyset$ if $k \neq \ell$ and there is an integer $N \geq 1$ such that each $z \in \mathbf{B}$ belongs to at most N of the sets $\mathbf{D}(u_k, 2r)$. (See [15], Theorem 2.23 and the remark following it for more detail about the existence of such a lattice). For any function $f \in L^1(\mathbf{B}, d\nu_n)$ and any $z_1, \ldots, z_m \in \mathbf{B}$, we have

$$|(T_{\mathbf{a},\mathbf{b}}f)(z_1,\dots,z_m)| \leq \prod_{j=1}^m (1-|z_j|^2)^{a_j} \sum_{k=1}^\infty \int_{\mathbf{D}(u_k,r)} \frac{|f(w)|(1-|w|^2)^{-n-1+\sum_{j=1}^m b_j}}{\prod_{j=1}^m |1-\langle z_j,w\rangle|^{a_j+b_j}} \,\mathrm{d}\nu(w).$$

By [15], Lemma 2.27, there is a constant C > 0 so that for each j = 1, ..., mand $k \ge 1$, $\frac{1}{C} \le \left| \frac{1 - \langle z_j, w \rangle}{1 - \langle z_j, u_k \rangle} \right| \le C$, for all $w \in \mathbf{D}(u_k, r)$. Also by [15], Lemma 1.24, $\int_{\mathbf{D}(u_k, r)} (1 - |w|^2)^{-n-1 + \sum_{j=1}^m b_j} d\nu(w)$ is comparable with $(1 - |u_k|^2)^{\sum_{j=1}^m b_j}$. Thus we have

$$\begin{aligned} |(T_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m)| \\ &\leq C\sum_{k=1}^{\infty}\prod_{j=1}^{m}\frac{(1-|z_j|^2)^{a_j}}{|1-\langle z_j,u_k\rangle|^{a_j+b_j}}\int_{\mathbf{D}(u_k,r)}|f(w)|(1-|w|^2)^{-n-1+\sum_{j=1}^{m}b_j}\mathrm{d}\nu(w) \\ &\leq C\sum_{k=1}^{\infty}\prod_{j=1}^{m}\frac{(1-|z_j|^2)^{a_j}(1-|u_k|^2)^{\sum_{j=1}^{m}b_j}}{|1-\langle z_j,u_k\rangle|^{a_j+b_j}}\sup\{|f(w)|:w\in\mathbf{D}(u_k,r)\}.\end{aligned}$$

Now since $0 , using the inequality <math>(x_1 + x_2 + \cdots)^p \le x_1^p + x_2^p + \cdots$,

which is valid for nonnegative numbers x_1, x_2, \ldots , we get

$$|(T_{\mathbf{a},\mathbf{b}}f)(z_1,\ldots,z_m)|^p \le C \sum_{k=1}^{\infty} \prod_{j=1}^m \frac{(1-|z_j|^2)^{pa_j}(1-|u_k|^2)^{p\left(\sum_{j=1}^m b_j\right)}}{|1-\langle z_j,u_k\rangle|^{pa_j+pb_j}} \sup\{|f(w)|^p : w \in \mathbf{D}(u_k,r)\}.$$

Integrating with respect to $d\nu_{s_1}(z_1)\cdots d\nu_{s_m}(z_m)$ and using Lemma A (note that by assumption, $pa_j + s_j > -1$ and $pa_j + pb_j > n + 1 + pa_j + s_j$), we obtain

$$\int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |(T_{\mathbf{a},\mathbf{b}}f)(z_{1},\ldots,z_{m})|^{p} \prod_{j=1}^{m} (1-|z_{j}|^{2})^{s_{j}} d\nu(z_{1}) \cdots d\nu(z_{m})$$

$$\leq C \sum_{k=1}^{\infty} \left(\prod_{j=1}^{m} (1-|u_{k}|^{2})^{n+1+s_{j}-pb_{j}} \right)$$

$$\times (1-|u_{k}|^{2})^{p\left(\sum_{j=1}^{m} b_{j}\right)} \sup\{|f(w)|^{p} : w \in \mathbf{D}(u_{k},r)\}$$

$$\leq C \sum_{k=1}^{\infty} (1-|u_{k}|^{2})^{m(n+1)+\sum_{j=1}^{m} s_{j}} \sup\{|f(w)|^{p} : w \in \mathbf{D}(u_{k},r)\}.$$

From [15], Lemma 2.20, $(1 - |u_k|^2)$ is comparable with $(1 - |w|^2)$ when $w \in \mathbf{D}(u_k, r)$. This together with [15], Lemma 2.24 implies that, if f is holomorphic on **B**, then

$$\begin{split} \int_{\mathbf{B}} \cdots \int_{\mathbf{B}} |(T_{\mathbf{a},\mathbf{b}}f)(z_{1},\ldots,z_{m})|^{p} \prod_{j=1}^{m} (1-|z_{j}|^{2})^{s_{j}} \mathrm{d}\nu(z_{1})\cdots \mathrm{d}\nu(z_{m}) \\ &\leq C \sum_{k=1}^{\infty} \sup\{|f(w)|^{p} (1-|w|^{2})^{m(n+1)+\sum_{j=1}^{m} s_{j}} : w \in \mathbf{D}(u_{k},r)\} \\ &\leq C \sum_{k=1}^{\infty} \int_{\mathbf{D}(u_{k},2r)} |f(w)|^{p} (1-|w|^{2})^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{d}\nu(w) \\ &\leq C \int_{\mathbf{B}} |f(w)|^{p} (1-|w|^{2})^{(m-1)(n+1)+\sum_{j=1}^{m} s_{j}} \mathrm{d}\nu(w). \end{split}$$

To derive the last inequality, we have used the fact that each $z \in \mathbf{B}$ belongs to at most N of the sets $\mathbf{D}(u_k, 2r)$.

REMARK 7. Proposition 3 for m = 1 is obvious, for m > 1, n = 1 it was proved in [3].

The following theorem follows directly from Proposition 3 and Proposition 2'.

Theorem 4. Let $p \in (0,1]$, $s_1 > -1, \ldots, s_m > -1$, $t = (m-1)(n+1) + \sum_{j=1}^m s_j$. Then Trace $A^p(\mathbf{B}^m, \mathrm{d}\nu_{s_1}, \ldots, \mathrm{d}\nu_{s_m}) = A^p(\mathbf{B}, \mathrm{d}\nu_t)$. REMARK 8. For n = 1 Theorem 4 was known before (see [3], [8], [12]).

REMARK 9. It is not difficult to notice that some our assertions proved above ($p \leq 1$ case) are true even under general assumption that f is a subharmonic function in the unit ball **B**.

REMARK 10. Using approaches we develop in this paper and the previous remark (not sharp) assertions of the type Trace $X \subset Y$ or $Y \subset$ Trace X for H^p Hardy classes, weighted Hardy classes, some mixed norm spaces and so-called Bergman-Nevanlinna classes (see [4] Chapter 4) can be also obtained.

REMARK 11. Traces of mixed norm type analogues of Bergman type classes on polyballs we considered in this paper:

$$||f||_{p_1,\dots,p_m} = \left(\int_{\mathbf{B}} \cdots \left(\int_{\mathbf{B}} |f(w_1,\dots,w_m)|^{p_1} (1-|w_1|)^{\alpha_1} \mathrm{d}\nu\right)^{p_2/p_1} \cdots\right)^{p_m/p_{m-1}}$$

can be also described with the help of approaches we develop in this note with some restrictions on p_1, \ldots, p_m . (See [11]).

Acknowledgement. We thank TRIEU LE for his valuable remarks.

REFERENCES

- 1. E. AMAR, C. MENINI: A counterexample to the corona theorem for operators on $H^2(D^n)$. Pacific Journal of Mathematics, **206**, No 2, 2002.
- P. L. DUREN, A. L. SHIELDS: Restriction of H^p functions on the diagonal of the polydisk. Duke Math. Journal, 42 (1975), 751–753.
- 3. A. E. DJRBASHIAN, F. A. SHAMOIAN: Topics in the Theory of A^p_{α} Spaces. Leipzig, Teubner, 1988.
- 4. H. HEDENMALM, B. KORENBLUM, K. ZHU: Theory of Bergman spaces. Springer-Verlag, New York, 2000.
- M. JEVTIĆ, M. PAVLOVIĆ, R. SHAMOYAN: A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk. Public. Math. Debrecen, 74, 1–2 (2009), 1–14.
- 6. V. MAZYA: Sobolev Spaces. Springer-Verlag, New York, 1985.
- J. ORTEGA, J. FÀBREGA: Corona type decomposition theorems in some Besov spaces. J. Funct. Anal., 78 (1996), 93–111.
- G. REN, J. SHI: The diagonal mapping in mixed norm spaces. Studia Math., (163) 2 (2004), 103–117.
- 9. W. RUDIN: Function Theory in Polydisks. Benjamin, New York, 1969.
- R. F. SHAMOYAN: On the action of Hankel operators in bidisk and subspaces in H[∞] connected with inner functions in the unit disk. Doklady BAN, Bulgaria, **60**, No 9, 2007.
- 11. R. F. SHAMOYAN, O. R. MIHIĆ: Traces of Qp-type spaces and mixed norm analytic function spaces on polyballs and related problems. Preprint, 2009.

- 12. J. SHAPIRO: Mackey topologies, reproducing kernels and diagonal maps on the Hardy and Bergman spaces. Duke Math. Journal, 43 (1976), 187–202.
- 13. S. V. Shvedenko: Hardy classes and related spaces of analytik functions in the init disk, polydisc and unit ball. Seria Matematika, VINITI, (1985), p. 3–124, Russian.
- 14. H. TRIEBEL: *Theory of Function Spaces II.* Birkhäuser-Verlag, Basel-Boston-Berlin, 1992.
- 15. K. Zhu: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, 226. Springer-Verlag, New York, 2005.

Bryansk University, Bryansk, Russia, Russia E-mail: shamoyan@tu-bryansk.ru (Received March 2, 2009) (Revised May 28, 2009)

Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia E-email: oliveradj@fon.rs