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ON TRACES OF HOLOMORPHIC FUNCTIONS

ON THE UNIT POLYBALL

Romi F. Shamoyan, Olivera R. Mihić 1

In this paper we completely describe traces of holomorphic Bergman classes
and Bloch-type classes on polyballs and obtain related estimates generalizing
classical Bergman projection theorem.

1. INTRODUCTION

Let C denote the set of complex numbers. Throughout the paper we fix a
positive integer n and let Cn = C× · · · ×C denote the Euclidean space of complex
dimension n. The open unit ball in Cn is the set Bn = {z ∈ Cn

∣

∣ |z| < 1}. The

boundary of Bn will be denoted by Sn, Sn = {z ∈ Cn
∣

∣ |z| = 1}.

As usual, we denote by H(Bn) the class of all holomorphic functions on Bn.

For every function f ∈ H(Bn) having a series expansion f(z) =
∑

|k|≥0

akzk,

we define the operator of fractional differentiation by

Dαf(z) =
∑

|k|≥0

(|k| + 1)αakzk,

where α is any real number. It is obvious that for any α, Dα operator is acting
from H(Bn) to H(Bn).

For z ∈ Bn and r > 0 set D(z, r) = {w ∈ Bn : β(z, w) < r} where β is a

Bergman metric on Bn, β(z, w) =
1

2
log

1 + |ϕz(w)|

1 − |ϕz(w)|
is called the Bergman metric

ball at z (see [15]).
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Let m > 1 is a natural number, M ⊂ Cn and K ⊂ Cmn, Cmn = Cn×· · ·×Cn,

be a hyper surface. Let X(M) be a class of functions on M, Y (K) the same. We
say Trace Y = X or in short TrY = X, K = Mm, Mm = M × · · · × M, if for
any f ∈ Y (K), f(w, . . . , w) ∈ X(M), w ∈ M, and for any g ∈ X(M), there exist
a function f ∈ Y (K) such that f(w, . . . , w) = g(w), w ∈ M. Traces of various
functional spaces in Rn were described in [6] and [14]. In polydisk this problem is
also known as a problem of diagonal map (see 3] and references there).

The intention of this paper is to consider the following natural Trace problem
for polyballs. Let M be a unit ball and let K be a polyball (product of m balls) in
definition we gave above. Let further H(B× · · ·×B) be a space of all holomorphic
functions by each zj , zj ∈ B, j = 1, . . . , m : f(z1, . . . , zm). Let further Y be a
subspace of H(B× · · · ×B). The question we would like to study and solve in this
work is the following: Find the complete description of Trace Y in a sense of our
definition for several concrete functional classes. We observe that for n = 1 this
problem completely coincide with the well- known problem of diagonal map. The
last problem of description of diagonal of various subspaces of H(Un) of spaces of
all holomorphic functions in the polydisk was studied by many authors before (see
[2, 3, 5, 8, 9, 12, 13] and references there).

The goal of this paper is to give a complete description of traces classical
Bergman spaces defined on polyballs and traces of some Bloch type classes in
polyballs. Let us note that for n = 1 traces of Bergman spaces were completely
described previously in [3] and [12] (see also, for example, [13] and reference there).
In this paper as in case of polydisk estimates for expanded Bergman projection (the
operator of polarization) are playing a crucial role during all our proofs.

Trace theorems even for n = 1 (case of polydisk) have numerous applications
in the theory of holomorphic functions (see for example [1, 3, 10]).

Throughout the paper, we write C (sometimes with indexes) to denote a
positive constant which might be different at each occurrence (even in a chain of
inequalities) but is independent of the functions or variables being discussed.

As usual, let dν denote the Lebesgue measure on B normalized such that
ν(B) = 1. For any real number α, let dνα(z) = cα(1 − |z|2)α dν(z) for |z| < 1.

Here, if α ≤ −1, cα = 1 and if α > −1, cα =
Γ(n + 1 + α)

Γ(n + 1)Γ(α + 1)
is the normalizing

constant so that να has unit total mass.

2. BERGMAN CLASSES AND BLOCH TYPE SPACES ON THE

POLYBALLS

The following estimate is well-known and will used often in the paper. For a
proof, see [15], Theorem 1.12.

Lemma A. Suppose c > 0 is real and t > −1. Then the integral

Jc,t(z) =

∫

B

(1 − |w|2)t dν(w)

|1 − 〈z, w〉|n+1+t+c
, z ∈ B,
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has the following asymptotic property

Jc,t ∼ (1 − |z|2)−c as |z| → 1 − .

We need the following estimate (see [7]):

Lemma B. Let 0 ≤ t1 < s < t0, then
∫

B

(1 − |η|2)s

|1 − 〈z, η〉|n+1+t0 |1 − 〈ξ, η〉|t1

(

logk 2

1 − |η|2

)

dν(η)

≤
C

(1 − |z|2)t0−s|1 − 〈z, ξ〉|t1

(

logk 2

1 − |z|2

)

, z, ξ ∈ B, k ∈ N.

For any integer k ≥ 1, positive real numbers r1, . . . , rk and function f on

B× · · · × B, we define

‖f‖r1,...,rk
= sup

z1,...,zk∈B

{

|f(z1, . . . , zk)|
n
∏

j=1

(

1 − |zj |
2
)rj

}

Let Λ(r1, . . . , rk) denote the space of all f ∈ H(B × · · · × B) such that
‖f‖r1,...,rk

< ∞. It can be checked without difficulties that Λ(r1, . . . , rk) with the
norm ‖f‖r1,...,rk

is a Banach space.

Theorem 1. Let rj > 0, j = 1, . . . , m and r = r1 + · · · + rm, then

Trace (Λ(r1, . . . , rm)) = Λ(r).

Proof. For every positive large enough bj we have F (z, . . . , z) = f(z), where

F (z1, . . . , zm) = C

∫

B

f(w)(1 − |w|)

m
∑

j=1

bj−n−1

m
∏

j=1

(1 − 〈w, zj〉)bj

dv(w)

by Bergman representation formula (see [15]). The proof follows from Hölder’s
inequality for n-functions and Lemma A. If f ∈ Λ(r), then |f(w)| ≤ ‖f‖r(1 −
|w|2)−r. Hence we have by Hölder’s inequality

|F (z1, . . . , zm)| ≤ C

∫

B

|f(w)|(1 − |w|)
−n−1+

m
∑

j=1

bj

m
∏

j=1

|1 − 〈zj , w〉|bj

dν(w)

≤ C‖f‖r

∫

B

m
∏

j=1

(1 − |w|2)bj−rj

m
∏

j=1

|1 − 〈zj, w〉|bj

(1 − |w|2)−(n+1) dν(w)

≤ C‖f‖r

m
∏

j=1

(
∫

B

(1 − |w|2)sj

|1 − 〈zj , w〉|mbj

)1/m

≤ C‖f‖r

m
∏

j=1

(1 − |zj |
2)−rj ,
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where sj = m(bj − rj) − n − 1.

Hence F ∈ Λ(r1, . . . , rm), F (z, . . . , z) = f(z). The reverse assertion is obvious
since if F ∈ Λ(r1, . . . , rn), then F (z, . . . , z) ∈ Λ(r). Theorem is proved. �

Let

Λlog(r1, . . . , rm) =

{

f ∈ H(Bm) : sup
zj∈B

|f(z1, . . . , zn)|

×
m
∏

j=1

(

log
1

1 − |zj|

)−1/rj

(1 − |zj |)
1/rj < ∞,

m
∑

j=1

1

rj
= 1, rj > 0

}

.

Then we have the following theorem. The proof use Lemma B and ideas of
Theorem 1.

Theorem 2. Trace (Λlog(r1, . . . , rm)) = Λlog(1), where

Λlog(1) =

{

f ∈ H(B) : sup
z∈B

|f(z)|

(

log
1

1 − |z|

)−1

(1 − |z|) < ∞

}

.

Remark 1. Note that Theorem 1 and Theorem 2 are obvious for m = 1.

For each real number α and p ∈ (0,∞), the Bergman space Ap
α is the inter-

section of H(B) with Lp(B, dνα). It is well-known that Ap
α is a closed subspace of

Lp(B, dνα). See [15], Chapter 2 for more detail.

To the end of the paper, fix an integer m ≥ 1. For any two n-tuples of real
numbers a = (a1, . . . , am), and b = (b1, . . . , bm), we define the integral operators

(Ta,bf)(z1, . . . , zm) =

m
∏

j=1

(1 − |zj |
2)aj

∫

B

f(w)(1 − |w|2)
−n−1+

m
∑

j=1

bj

m
∏

j=1

|1 − 〈zj, w〉|aj+bj

dν(w),

and

(Sa,bf)(z1, . . . , zm) =

m
∏

j=1

(1 − |zj|
2)aj

∫

B

f(w)(1 − |w|2)
−n−1+

m
∑

j=1

bj

m
∏

j=1

(1 − 〈zj , w〉)aj+bj

dν(w),

where z1, . . . , zm are in B and f is a function in L1
(

B, dν
−n−1+

m
∑

j=1

bj

)

. Note that

for such f, the functions Ta,bf and Sa,bf are defined on Bm, the product of m

copies of B, and we have |Sa,bf | ≤ Ta,b|f |.

We will study the boundedness of Ta,b and Sa,b from certain Lp spaces of B

into those of Bm. Consider first the case 1 ≤ p < ∞. Let s1, . . . , sm be arbitrary

real numbers and put t = (m − 1)(n + 1) +
m
∑

j=1

sj . The following proposition gives

sufficient conditions for the boundedness of Ta,b (and hence, the boundedness of
Sa,b) from Lp(B, dνt) into Lp(Bm, dνs1

· · ·dνsm
).
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Proposition 1. Let 1 ≤ p < ∞ and sj > −1. Suppose for each j = 1, . . . , m, we

have −paj < sj + 1 and msj + 1 < p(mbj − n) − (m − 1)(n + 1). Then there is a

constant C > 0 such that

∫

B

· · ·

∫

B

|(Ta,bf)(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj |
2)sj dν(z1) . . . dν(zm)

≤ C

∫

B

|f(w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w),

for all f in L1(B, dν).

Proof. The case p = 1 follows from Fubinis theorem and the estimates in Lemma

A. Now assume p > 1. Let q denote the exponential conjugate of p, that is,
1

p
+

1

q
=

1. Choose a positive number such that pγ < min{p(mbj − n) − (m − 1)(n + 1)

−msj − 1 : j = 1, . . . , m}. Put α =
1

m

(

γ −
1

q

)

and β = −n − 1 +
m
∑

j=1

bj − mα

= −n − 1 +
m
∑

j=1

bj − γ +
1

q
. For each j, choose ej such that

n + 1

mq
+ α < ej <

n + 1

mq
+ α +

paj + sj + 1

p
.

It is possible to choose such an ej since paj +sj +1 > 0. Put dj = aj +bj −ej .

For any measurable function f on B and z1, . . . , zm in B, using Hölders inequality,
we have

∫

B

|f(w)|(1 − |w|2)
−n−1+

m
∑

j=1

bj

m
∏

j=1

|1 − 〈zj , w〉|aj+bj

dν(w)

=

∫

B

(

|f(w)|(1 − |w|2)β

m
∏

j=1

|1 − 〈zj , w〉|dj

)

m
∏

j=1

(1 − |w|2)α

|1 − 〈zj , w〉|ej
dν(w)

≤

(

∫

B

|f(w)|p(1 − |w|2)pβ

m
∏

j=1

|1 − 〈zj , w〉|pdj

dν(w)

)1/p m
∏

j=1

(
∫

B

(1 − |w|2)mqα

|1 − 〈zj , w〉|mqej
dν(w)

)1/(mq)

.

For each j, since mqα = qγ − 1 > −1 and mqej > n + 1 + mqα, Lemma A
shows that

∫

B

(1 − |w|2)mqα

|1 − 〈zj, w〉|mqej
dν(w) ≤ C(1 − |zj |

2)n+1+mqα−mqej ,
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where C is independent of z1, . . . , zm. Thus we obtain

∫

B

|f(w)|(1 − |w|2)
−n−1+

m
∑

j=1

bj

m
∏

j=1

|1 − 〈zj , w〉|aj+bj

dν(w)

≤ C

(

∫

B

|f(w)|p(1 − |w|2)pβ

m
∏

j=1

|1 − 〈zj , w〉|pdj

dν(w)

)1/p m
∏

j=1

(

1 − |zj |
2
)

n + 1

mq
+α−ej

.

This implies that

|(Ta,bf)(z1, . . . , zm)|p

≤ C

(

∫

B

|f(w)|p(1 − |w|2)pβ

m
∏

j=1

|1 − 〈zj , w〉|pdj

dν(w)

)

m
∏

j=1

(1 − |zj |
2)

p(n + 1)

mq
+p(α−ej+aj)

.

Now by Fubini theorem,

(1)

∫

B

· · ·

∫

B

|(Ta,bf)(z1, . . . , zm))|p
m
∏

j=1

(1 − |zj |
2)sj dν(z1) · · · dν(zm)

≤ C

∫

B

(

m
∏

j=1

∫

B

(1 − |zj|2)
p(n + 1)

mq
+p(α−ej+aj)+sj

|1 − 〈zj, w〉|pdj
dν(zj)

)

|f(w)|p(1−|w|2)pβdν(w).

For each j, by the choice of ej and γ, we have
p(n + 1)

mq
+pα−pej+paj+sj > −1

and n +1+
p(n + 1)

mq
+ p(α− ej + aj)+ sj − pdj < 0. Applying Lemma A again, we

have

(2)

∫

B

(1 − |zj|2)
p(n + 1)

mq
+p(α−ej+aj)+sj

|1 − 〈zj , w〉|pdj
dν(zj)

≤ C(1 − |w|2)
n+1+

p(n + 1)

mq
+p(α−ej+aj)+sj−pdj

= C(1 − |w|2)
pγ − p(mbj − n) + (m − 1)(n + 1) + (msj + 1)

m ,

where C independent of w. From (1) and (2) and the fact that

m
∑

j=1

pγ − p(mbj − n) + (m − 1)(n + 1) + (msj + 1)

m
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= (m − 1)(n + 1) +
m
∑

j=1

sj − p

( m
∑

j=1

bj − γ − n

)

+ 1

= (m − 1)(n + 1) +

m
∑

j=1

sj − pβ,

the conclusion of the proposition follows. �

Remark 2. Note that for m = 1 our assertion in Proposition 1 is well known and has

numerous applications (see [15]).

For any two n-tuples of real numbers x = (x1, . . . , xm) and y = (y1, . . . , ym),
we consider the integral operator

(Rx,yg)(w) = (1 − |w|2)
−m(n+1)+

m
∑

j=1

yj

×

∫

B

· · ·

∫

B

g(z1, . . . , zm)

(

m
∏

j=1

(1 − |zj |2)xj

(1 − 〈w, zj〉)xj+yj

)

dν(z1) · · · dν(zm),

for g ∈ L1(Bm, dνx1
· · · dνxm

) and w ∈ B. Using Proposition 1, we obtain the
following proposition which gives conditions for the boundedness of Rx,y.

Proposition 2. Let 1 ≤ p < ∞ and sj > −1. Suppose for each j we have

sj + 1 < p(xj + 1) and msj + 1 > mp(n + 1 − yj) − (m − 1)(n + 1). Then there is

a constant C > 0 such that

∫

B

|(Rx,yg)(w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w)

≤ C

∫

B

· · ·

∫

B

|g(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj |
2)sj dν(z1) · · ·dν(zm).

Proof. We first consider the case p = 1. We have

(3)

∫

B

|(Rx,yg)(w)|(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w)

≤

∫

B

· · ·

∫

B

|g(z1, . . . , zm)|
m
∏

j=1

(1 − |zj|
2)xj

×

(

∫

B

(1 − |w|2)
−n−1+

m
∑

j=1

(yj+sj)

m
∏

j=1

|1 − 〈w, zj〉|xj+yj

dν(w)

)

dν(z1) · · · dν(zm).
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By Hölders inequality,

∫

B

(1 − |w|2)
−n−1+

m
∑

j=1

(yj+sj)

m
∏

j=1

|1 − 〈w, zj〉|xj+yj

dν(w) ≤

(

m
∏

j=1

∫

B

(1 − |w|2)−n−1+myj+msj

|1 − 〈w, zj〉|mxj+myj
dν(w)

)1/m

.

From the assumption of the proposition, we have −n− 1 + myj + msj > −1
and mxj + myj > (−n− 1 + myj + msj)+ (n + 1) for each j. Lemma A shows that

the above product is less than or equal to
m
∏

j=1

(1 − |zj|2)sj−xj . From this and (3),

the conclusion of the proposition then follows.

Now assume 1 < p < ∞. Put s = (s1, . . . , sm), and let a = x−s and b = y+s.

Then

(Sa,bf)(z1, . . . , zm) =
m
∏

j=1

(1 − |zj|
2)xj−sj

∫

B

f(w)(1 − |w|2)
−n−1+

m
∑

j=1

(yj+sj)

m
∏

j=1

(1 − 〈zj , w〉)xj+yj

dν(w).

By the assumption and Proposition 1, Sa,b is a bounded operator from
Lq(B, dνt) into Lq(Bm, dνs1

· · ·dνsm
), where 1 < q < ∞ is the exponential conju-

gate of p and t = (m − 1)(n + 1) +
m
∑

j=1

sj . On the other hand, it can be checked

easily that S∗
a,b = Rx,y. The conclusion of the proposition follows. �

Remark 3. Note that for m = 1 the assertion of Proposition 2 is well known (see [15]).

Proposition 2′. Let p ∈ (0,∞, ) sj > −1, j = 1, . . . , m, m ∈ N. Then the

following estimate holds

J =

∫

B

|g(w, . . . , w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w)

≤ C

∫

B

· · ·

∫

B

|g(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj|
2)sj dν(z1) · · · dν(zm) = J1.

Proof. We have by Lemma 2.24 from [15] and properties of r-lattice in Bergman
metric (see [15], Theorem 2.23)

J ≤ C
∑

k≥0

sup
z∈D(ak,r)

|g(z, . . . , z)|p(1 − |ak|
2)

(m−1)(n+1)+(
m
∑

j=1

sj)+n+1

≤ C
∑

k1≥0

· · ·
∑

km≥0

sup
z1 ∈ D(ak1

, r)
.
.
.
zm∈ D(akm , r)

|g(z1, . . . , zm)|p

× (1 − |ak1
|2)τ1/m · · · (1 − |akm

|2)τm/m ≤ C1J1,
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where τj = (n + 1)m + sjm. �

Theorem 3. Suppose 1 ≤ p ≤ ∞ and s1, . . . , sm > −1. Put t = (m − 1)(n + 1)

+
m
∑

j=1

sj . Then there are bounded operators S : Ap(B, dνt) → Ap(Bm, dνs1
· · ·dνsm

),

and R : Ap(Bm, dνs1
· · · dνsm

) → Ap(B, dνt) such that (Sf)(z, . . . , z) = f(z) and

(Rg)(z) = g(z, . . . , z) for all f ∈ Ap(B, dνt), all g ∈ Ap(Bm, dνs1
· · · dνsm

) and all

z ∈ B. In other words, the Trace of Ap(Bm, dνs1
· · ·dνsm

) is Ap(B, dνt).

Remark 4. For n = 1 Theorem 3 was known before (see [3], [8], [12]).

Proof. If p = ∞, then A∞(B, dνt) = H∞(B) and Ap(Bm, dνs1
· · ·dνsm

) =
H∞(Bm). Define (Sf)(z1, . . . , zm) = f(z1) for f ∈ H∞(B), z1, . . . , zm ∈ B and
(Rg)(w) = g(w, . . . , w) for g ∈ H∞(Bm) and w ∈ B. Then ‖S‖, ‖R‖ ≤ 1 and they
satisfy the conclusion of the corollary.

Now suppose 1 ≤ p < ∞. Let a = (0, . . . , 0), b = (b1, . . . , bm), where bj is
large enough, and S = CSa,b. It can be checked that a and b satisfy the hypothesis
of Proposition 1. On the other hand, for f ∈ Ap(B, dνk), Sf is holomorphic and
for z ∈ B,

(Sf)(z, . . . , z) = C

∫

B

f(w)(1 − |w|2)
−n−1+

m
∑

j=1

bj

(1 − 〈z, w〉)

m
∑

j=1

bj

dν(w)

=

∫

B

f(w) dνk+1(w)

(1 − 〈z, w〉)n+2+k
= f(z)

by [15], Theorem 2.2.

Let x = (x1, . . . , xm), where xj is large enough, y = (n + 1, . . . , n + 1)
and R = cx1

· · · cxm
Rx,y. Then x and y satisfy the hypothesis of Proposition 2.

Furthermore, for g ∈ Ap(Bm, dνs1
· · · dνsm

) and w ∈ B,

(Rg)(w) =

∫

B

· · ·

∫

B

g(z1, . . . , zm) dνx1
(z1) · · · dνxm

(zm)
m
∏

j=1

(1 − 〈w, zj〉)xj+yj

=

∫

B

· · ·

∫

B

g(z1, . . . , zm) dνx1
(z1) · · · dνxm

(zm)
m
∏

j=1

(1 − 〈w, zj〉)n+1+xj

= g(w, . . . , w),

by applying [15], Theorem 2.2, m times. Therefore, S and R are the required
operators.

It is not difficult to see that to get the second part of the Theorem 3 we can
also apply Proposition 2′. �

The next lemma shows that if s1 = · · · = sm and b1 = · · · = bm then the
converse of Proposition 1 holds true. We do not know if it is also the case for
general s1, . . . , sm and b1, . . . , bm.
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Lemma 1. Let a1, . . . , am, b1 = · · · = bm = b and s1, . . . , sm = s be real numbers

and let 1 < p < ∞. Put t = (m − 1)(n + 1) + ms. If Sa,b is a bounded operator

from Lp(B, dνt) into Lp(Bm, (dνs)
m), then −paj < s + 1 for all j = 1, . . . , m and

ms + 1 < p(mb − n) − (m − 1)(n + 1).

Proof. Choose N sufficiently large so that the function f(w) = (1−|w|2)N belongs
to Lp(B, dνt). By the rotation-invariant property of the Lebesgue measure, we see

that Sa,bf is a multiple of
m
∏

j=1

(1− |zj|)aj . Since Sa,bf belongs to Lp(Bm, (dνs)
m),

we conclude that paj + sj > −1 for all j = 1, . . . , m. Now let 1 < q < ∞ such

that
1

p
+

1

q
= 1. The boundedness of Sa,b implies the boundedness of the adjoint

S∗
a,b as an operator from Lq(Bm, (dνs)

m), into Lq(B, dνt). One can check without
difficulty that for g ∈ Lq(Bm, (dνs)

m) the adjoint of Sa,b equals

(1 − |w|2)
−n−1−t+

m
∑

j=1

bj
∫

B

· · ·

∫

B

g(z1, . . . , zm)

m
∏

j=1

(1 − |zj |)aj+sj

(1 − 〈w, zj〉)aj+bj
dν(zj)

= (1 − |w|2)−n−1−t+mb

∫

B

· · ·

∫

B

g(z1, . . . , zm)

m
∏

j=1

(1 − |zj |)aj+s

(1 − 〈w, zj〉)aj+b
dν(zj).

Letting g(z1, . . . , zm) =
m
∏

j=1

(1 − |zj |2)M for some large M, we see that S∗
a,bg

is a multiple of (1 − |w|2)−n−1−t+mb.

If 1 < p < ∞, then 1 < q < ∞. Since (S∗
a,bg) is in Lq(B, dνt) we have

q(−n − 1 − t + mb) + t > −1, which is equivalent to t + 1 < p(mb − n) and hence,
ms + 1 < p(mb − n) − (m − 1)(n + 1). �

Remark 5. Suppose a = (a1, . . . , am), b = (b, . . . , b) and s1 = · · · = sm = s,

where a1, . . . , am, b, s are arbitrary real numbers. Put t = (m − 1)(n + 1) + ms. Suppose
1 < p < ∞, s > −1. Proposition 1 and Lemma 1 show that the following statements are
equivalent.

(1) The operator Ta,b is bounded from Lp(B, dνt) into Lp(Bm, (dνs)
m).

(2) The operator Sa,b is bounded from Lp(B, dνt) into Lp(Bm, (dνs)
m).

(3) ms + 1 < p(mb − n) − (m − 1)(n + 1) and −paj < s + 1 for j = 1, . . . , m.

We now consider the case 0 < p ≤ 1. Let s1, . . . , sm be real numbers and let

t = (m− 1)(n+1)+
m
∑

j=1

sj . The following proposition gives sufficient conditions for

the boundedness of Ta,b from the Bergman space A
p
t into Lp(Bm, dνs1

×· · ·×dνsm
).

Proposition 3. Let p ∈ (0, 1], sj > −1. Suppose for each j = 1, . . . , m, we have

−paj < sj + 1 and sj + 1 < pbj − n. Then there is a constant C > 0 such that
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∫

B

· · ·

∫

B

|(Ta,bf)(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj |
2)sj dν(z1) · · ·dν(zm)

≤ C

∫

B

|f(w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w),

for all f in H(B) ∩ L1(B, dνb).

Remark 6. The condition sj + 1 < pbj − n is equivalent to msj + 1 < p(mbj − n) −

(m − 1)(n + 1) − n(1 − p). This shows that there is an extra summand (n(1 − p)) in the

condition on the sj ’s compared to that in Proposition 1. This extra summand vanishes

when p = 1.

Proof. Let D(a, r) denote the Bergman disk of radius r centered at a for each
a ∈ B. Fix 0 < r ≤ 1 and choose {uk}m

k=1 to be any r-lattice in the Bergman

metric of B. This means that B =
∞
⋃

k=1

D(uk, r), D(uk, r) ∩ D(u`, r) = ∅ if k 6= `

and there is an integer N ≥ 1 such that each z ∈ B belongs to at most N of the
sets D(uk, 2r). (See [15], Theorem 2.23 and the remark following it for more detail
about the existence of such a lattice). For any function f ∈ L1(B, dνn) and any
z1, . . . , zm ∈ B, we have

|(Ta,bf)(z1, . . . , zm)|

≤
m
∏

j=1

(1 − |zj|
2)aj

∞
∑

k=1

∫

D(uk,r)

|f(w)|(1 − |w|2)
−n−1+

m
∑

j=1

bj

m
∏

j=1

|1 − 〈zj , w〉|aj+bj

dν(w).

By [15], Lemma 2.27, there is a constant C > 0 so that for each j = 1, . . . , m

and k ≥ 1,
1

C
≤

∣

∣

∣

∣

1 − 〈zj , w〉

1 − 〈zj , uk〉

∣

∣

∣

∣

≤ C, for all w ∈ D(uk, r). Also by [15], Lemma

1.24,
∫

D(uk,r)
(1 − |w|2)

−n−1+
m
∑

j=1

bj

dν(w) is comparable with (1 − |uk|2)

m
∑

j=1

bj

. Thus

we have

|(Ta,bf)(z1, . . . , zm)|

≤ C

∞
∑

k=1

m
∏

j=1

(1 − |zj|2)aj

|1 − 〈zj , uk〉|aj+bj

∫

D(uk,r)

|f(w)|(1 − |w|2)
−n−1+

m
∑

j=1

bj

dν(w)

≤ C

∞
∑

k=1

m
∏

j=1

(1 − |zj |2)aj (1 − |uk|2)

m
∑

j=1

bj

|1 − 〈zj , uk〉|aj+bj
sup{|f(w)| : w ∈ D(uk, r)}.

Now since 0 < p ≤ 1, using the inequality (x1 + x2 + · · · )p ≤ x
p
1 + x

p
2 + · · · ,
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which is valid for nonnegative numbers x1, x2, . . . , we get

|(Ta,bf)(z1, . . . , zm)|p

≤ C

∞
∑

k=1

m
∏

j=1

(1 − |zj |2)paj (1 − |uk|2)
p

(

m
∑

j=1

bj

)

|1 − 〈zj , uk〉|paj+pbj
sup{|f(w)|p : w ∈ D(uk, r)}.

Integrating with respect to dνs1
(z1) · · · dνsm

(zm) and using Lemma A (note that
by assumption, paj + sj > −1 and paj + pbj > n + 1 + paj + sj), we obtain

∫

B

· · ·

∫

B

|(Ta,bf)(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj |
2)sj dν(z1) · · · dν(zm)

≤ C

∞
∑

k=1

(

m
∏

j=1

(1 − |uk|
2)n+1+sj−pbj

)

× (1 − |uk|
2)

p

(

m
∑

j=1

bj

)

sup{|f(w)|p : w ∈ D(uk, r)}

≤ C

∞
∑

k=1

(1 − |uk|
2)

m(n+1)+
m
∑

j=1

sj

sup{|f(w)|p : w ∈ D(uk, r)}.

From [15], Lemma 2.20, (1 − |uk|
2) is comparable with (1 − |w|2) when w ∈

D(uk, r). This together with [15], Lemma 2.24 implies that, if f is holomorphic on
B, then

∫

B

· · ·

∫

B

|(Ta,bf)(z1, . . . , zm)|p
m
∏

j=1

(1 − |zj|
2)sj dν(z1) · · · dν(zm)

≤ C

∞
∑

k=1

sup{|f(w)|p(1 − |w|2)
m(n+1)+

m
∑

j=1

sj

: w ∈ D(uk, r)}

≤ C

∞
∑

k=1

∫

D(uk,2r)

|f(w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w)

≤ C

∫

B

|f(w)|p(1 − |w|2)
(m−1)(n+1)+

m
∑

j=1

sj

dν(w).

To derive the last inequality, we have used the fact that each z ∈ B belongs to at
most N of the sets D(uk, 2r). �

Remark 7. Proposition 3 for m = 1 is obvious, for m > 1, n = 1 it was proved in [3].

The following theorem follows directly from Proposition 3 and Proposition
2′.

Theorem 4. Let p ∈ (0, 1], s1 > −1, . . . , sm > −1, t = (m − 1)(n + 1) +
m
∑

j=1

sj .

Then TraceAp(Bm, dνs1
, . . . , dνsm

) = Ap(B, dνt).
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Remark 8. For n = 1 Theorem 4 was known before (see [3], [8], [12]).

Remark 9. It is not difficult to notice that some our assertions proved above (p ≤ 1 case)
are true even under general assumption that f is a subharmonic function in the unit ball
B.

Remark 10. Using approaches we develop in this paper and the previous remark (not
sharp) assertions of the type Trace X ⊂ Y or Y ⊂Trace X for Hp Hardy classes, weighted
Hardy classes, some mixed norm spaces and so-called Bergman-Nevanlinna classes (see
[4] Chapter 4) can be also obtained.

Remark 11. Traces of mixed norm type analogues of Bergman type classes on polyballs
we considered in this paper:

‖f‖p1 ,...,pm =

(

∫

B

· · ·

(
∫

B

|f(w1, ...wm)|p1(1 − |w1|)
α1dν

)p2/p1

· · ·

)pm/pm−1

can be also described with the help of approaches we develop in this note with some

restrictions on p1, . . . , pm. (See [11]).
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