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AN EXTENSION OF A NORM INEQUALITY FOR

A SEMI-DISCRETE g∗

λ
FUNCTION

Caroline Sweezy

A norm inequality for a semi-discrete g∗λ(f) function is obtained for func-
tions, f , that can be written as a sum whose terms consist of a numerical
coefficient multiplying a member of a family of functions that have properties
of geometric decay, minimal smoothness and almost orthogonality condition.

The theorem is applied to the rate of change of u, a solution to Lu = div
−→
f

in a bounded, nonsmooth domain Ω ⊂ Rd, d ≥ 3, u = 0 on ∂Ω.

1. INTRODUCTION

In classical harmonic analysis the various different “square” functions, the
Lusin area integral, the g∗λ-function and the g-function, were useful in obtaining
norm estimates for functions that were not themselves easily estimated. In proba-
bility square functions are even more widely employed. These auxiliary functions
continue to be useful in obtaining information about solutions to more general sec-
ond order partial differential equations. However, one needs to find the “right”
definition for a square function that can be useful in this setting. The lack of
smoothness for solutions is an obstacle, as it means one cannot prove pointwise es-
timates for derivatives of weak solutions. In this paper a weighted norm inequality
is proved for a “Littlewood-Paley” type function that is defined for functions that
can be represented as sums of coefficients multiplying members of a family of func-
tions that have minimal smoothness, some cancellation properties and geometric
decay. This theorem can be applied to solutions of second order elliptic equations
to obtain conditions on two measures sufficient for obtaining weighted norm in-
equalities for the gradients (or, more usefully, local Hölder norms) of solutions to
homogeneous and non-homogeneous elliptic equations on bounded domains. The
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Appendix contains the proof that a family of functions ϕJ(x) satisfying such con-
ditions can be derived using averages of the Green function generated by a strictly
elliptic operator on a rough boundary domain. Theorem A, the square function
result, was announced in [7] and [8]; these papers contained the weighted norm
inequality for pde solutions, Theorem B, and a sketch of the proof of Theorem B.
The proof of Theorem A appears here for the first time.

Before Theorem A is stated, first recall what it means for a measure to be
A∞ with respect to another measure:

A measure σ defined on a domain D, is said to be A∞ with respect to Lebesgue
measure if for any cube Q ⊂ D and any measurable subset E of Q, there are fixed

constants C0 and κ > 0 so that
(

σ(E)

σ(Q)

)κ

≤ C0
|E|

|Q|
, [1].

Theorem A will be proved for functions of the form f(x) =
∑

J∈F

λJϕ(J)(x),

with F being a finite set of dyadic cubes that are also Whitney-type cubes with
respect to the domain Ω, the ϕ(J) are functions as described above. W will denote
the collection of certain Whitney-type dyadic cubes (these are dyadic cubes whose
dimension compares with the cube’s distance from the boundary of Ω) that lie in
Ω. These cubes have the property that their interiors are pairwise disjoint; a fixed
dilate of any cube will also be Whitney-type with respect to Ω, and Ω = ∪

Qj∈W
Qj .

For technical reasons we need to take Q0 as a large dyadic cube that contains Ω.
The cubes in W are also dyadic subcubes of Q0. We will refer to the collection of
all dyadic subcubes of Q0 as D, so F $ W $ D.

Next we need to define the function g∗(f)(x) = g∗(x) and to give the condi-
tions a), a′), b), and c). When f(x) =

∑
J∈F

λJϕ(J)(x),

g∗(x) =

(
∑

J∈F

λ 2
J

|J |

(
1 +

|x − xJ |

`(J)

)−d+ε
)1/2

.

g∗(x) is a discrete version of the g∗λ function of classical Littlewood-Paley theory.

S(Q) = {J ∈ F : J * Q}. δ(x) = distance (x, ∂Ω). xJ = the center point of
J .

The four conditions that will be assumed to hold for the family
{

ϕ(J)(x)
}

are:

a)
∣∣∣ϕ(J)(x)

∣∣∣ ≤ C`(J)2−d/2

(
1 +

|x − xJ |

`(J)

)2−d

for all x ∈ Ω.

a′)
∣∣∣ϕ(J)(x)

∣∣∣ ≤ Cδ(x)α`(J)2−d/2−α

(
1 +

|x − xJ |

`(J)

)2−d−α

for all x ∈ Ω.

b) There is an absolute constant η, 0 < η < 1, so that

∣∣∣ϕ(J)(x) − ϕJ(y)
∣∣∣ ≤ C |x − y|

α
`(J)2−d/2−α

(
1 +

|x − xJ |

`(J)
+

|y − xJ |

`(J)

)2−d−α
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for all x, y in ηQj and J ∈ S(Qj).

c)

∫ ∣∣∣∣
∑

J∈F

λJϕ(J)(x)

∣∣∣∣
2

dx ≤ C
∑

J∈F

λ 2
J .

Theorem A. Suppose that f(x) =
∑

J∈F

λJϕ(J)(x) is a function defined on Ω,

where F is a finite set of dyadic cubes from W , and the
{
ϕ(J)

}
J∈F

are a family of

functions that satisfy conditions a), a′), b), and c), and such that ϕ(J)(x) = 0 if

x ∈ Q0 \ Ω. Then, if dσ ∈ A∞(Q0, dx), there is a constant C = C(d, α, p, Ω, ε, κ, C0)
such that, for any 0 < p < ∞,

‖f‖Lp(Q0,dσ) ≤ C ‖g∗‖Lp(Q0,dσ) .

Theorem A is proved in the next two sections. Section 2 contains the local es-
timates needed to prove a good-λ inequality, which is contained in the third section.
The fourth section describes briefly an application of Theorem A. The application,
Theorem B, consists of determining sufficient conditions for two measures, µ and η,
defined on a bounded rough domain Ω in Rn so that, for solutions u(x) to the inho-

mogeneous equation Lu = div
−→
f in Ω, u |∂Ω = 0 with L =

d∑
i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)
,

symmetric and strictly elliptic,

(∫

Ω

(‖u‖Hα (x))q dµ(x)

)1/q

≤ C

(∫

Ω

(∣∣∣
−→
f (x)

∣∣∣
p

+
∣∣∣div

−→
f (x)

∣∣∣
p)

dν(x)

)1/p

.

C is independent of u and f . The local Hölder norm of u is defined by ‖u‖Hα (x)

:= sup
0<|x−y|<δ(x)/50

|u(x) − u(y)|

|x − y|α
, δ(x) = distance of x from ∂Ω.

2. LOCAL ESTIMATES

To prove Theorem A we follow the method of Wilson [11] (see also [5], [6], [9],
and [10]) in using the following ”cube-skipping” functions F (I, x) =

∑
J∈S(I)

λJϕ(J)(x),

F (I) = F (I, xI), F ∗(x) = supI3x F (I) and

G(I, x) =




∑

J∈S(I)

λ 2
J

|J |

(
1 +

|x − xJ |

`(J)

)−(d−ε)



1/2

,

G(I) = G(I, xI), G∗(x) = supI3x G(I), for I ∈ D. Notice that I can be any
dyadic cube from D, although the cubes J in S(I) are taken from W . The
functions F (I, x), G(I, x), etc. are always generated by a given function f(x) =
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∑
J∈F

λJϕ(J)(x), where F is a finite family of dyadic cubes from W . S(I) = {J ∈ F :

J " I}, and `(I) is the side length of the dyadic cube I. F (I, x) and G(I, x) are
only defined for x ∈ I. We note some special properties of the particular functions
ϕ(J)(x) that are defined below. These properties will be crucial in proving the
estimates in Lemmas 1–7 and the Central Lemma, Lemma 8. We have ϕ(J)(x) = 0
whenever x lies outside Ω. Also each ϕ(J) is chosen so that J ∈ W . As in [11] we
obtain local estimates relating the functions F (I, x), G(I, x), etc. in order to use
these functions to prove the crucial good-λ inequality of the Corollary to Lemma 8.
The good-λ inequality then yields the result of Theorem A by standard methods.
The local estimates are established in Lemmas 1–7 below.

For the remaining part of the paper we take f(x) =
∑

J∈F

λJϕ(J)(x), where F

is a finite family of dyadic cubes; the ϕ(J) satisfy properties a), a′), b), and c),
and they have all the properties mentioned in the previous paragraph. We note
that many of the constants obtained in Lemmas 1–7 depend on diam(Ω). For the
functions ϕ(J) that appear in the proof of Theorem B, i.e. for

ϕ(J)(y) =
1√
|J |

(∫

(3/2)J

(
G(x, y) − G̃(x, y)

)
dx

)
,

the constants in a′) and b) for these functions also depend on diam(Ω) and Ω
(see [3]), so this is no new restriction. We also note that having the ϕ(J)(x) = 0

whenever x lies outside Ω means that F (I, x) = 0 when x ∈ ΩC . However, F ∗(x),
G(I, x), G∗(x) are not necessarily zero for x outside Ω. Following Wilson [11] we
start with

Lemma 1. | f(x)| ≤ F ∗(x) for a.e. x ∈ Q0.

Proof. This follows from the definition of F ∗(x), the fact that F is a finite family,
and that the boundaries of all the dyadic cubes in D form a set of measure zero.

Lemma 2. There is a constant C so that G∗(x) ≤ Cg∗(x) for a.e. x ∈ Q0.

Proof. G∗(x) = supQ3x G(Q). If x ∈ Q and I ∈ S(Q), then either I % Q

or I lies outside Q. In both cases, |xI − xQ| ≥ c`(Q) and |x − xQ| ≤ c′`(Q).
Therefore |x − xI | ≤ |x − xQ| + |xQ − xI | ≤ C |xQ − xI | . So (1 + |x − xI | /`(I)) ≤
C′(1 + |xQ − xI | /`(I)) or

(1 + |xQ − xI | /`(I))−d+ε ≤ C′′ (1 + |x − xI | /`(I))−d+ε .

For I ∈ F whenever the term on the left is in G(Q), the term on the right appears
in g∗(x), x ∈ Q, multiplied by 1/C′′. This is true for all dyadic cubes Q with the
same constant C = max(1, C′′), so G(Q) ≤ Cg∗(x)

Lemma 3. For any η, 0 < η < 1, if x ∈ ηQ, then there is a constant C1 = C(d, η)
so that C−1

1 G(Q) ≤ G(Q, x) ≤ C1G(Q).

Proof. For any cube I ∈ S(Q), |x − xI | / |xQ − xI | is bounded above and below
by constants that depend on η and d.



An extension of a norm inequality for a semi-discrete g∗λ function 181

Lemma 4. For η as in b), 0 < η < 1, if x, y ∈ ηQ, then there is a constant

C2 = C(d, λ, η, diam (Ω), Ω, α) so that |F (Q, x) − F (Q, y)| ≤ C2G(Q).

Proof. As in [11] we write

|F (Q, x) − F (Q, y)| =

∣∣∣∣∣
∑

J∈S(Q)

λJ(ϕ(J)(x) − ϕ(J)(y))

∣∣∣∣∣

≤
∑

J∈S(Q),`(J)≥`(Q)

|λJ |
∣∣∣ϕ(J)(x) − ϕ(J)(y)

∣∣∣

+
∑

J∈S(Q),`(J)<`(Q)

|λJ |
∣∣∣ϕ(J)(x) − ϕ(J)(y)

∣∣∣ = I. + II.

When x and y both lie inside Ω, I. will be shown to be bounded by CG(Q)
using the Hölder continuity of the ϕ(J)’s, property b). II. must also be bounded
using Hölder continuity. When both x and y lie outside Ω, F (Q, x) and F (Q, y)
are both 0, so the estimate of Lemma 4 is trivially valid. However, the situation
when x ∈ Ω but y ∈ ΩC needs to be considered separately. We are not guaranteed
that b) is valid when one point, x or y, lies outside the domain Ω. I. and II. must
be estimated using a′) in this case.

We start with the proof for x and y ∈ ηQ ⊂ Ω. Then by b) and Cauchy-
Schwarz, (remember that d ≥ 3),

I. =
∑

J∈S(Q),`(J)≥`(Q)

|λJ |
∣∣∣ϕ(J)(x) − ϕ(J)(y)

∣∣∣

.
∑

J∈S(Q),`(J)≥`(Q)

|λJ | |x − y|
α

(`(J))
2−(d/2)−α

(
1+

|x − xJ |

`(J)
+

|y − xJ |

`(J)

)2−d−α

=
∑

J∈S(Q),`(J)≥`(Q)

|λJ |

(
|x − y|

`(J)

)α

(`(J))
2−(d/2)

(
1+

|x − xJ |

`(J)
+

|y − xJ |

`(J)

)2−d−α

.




∑

J∈S(Q),`(J)≥`(Q)

λ 2
J

|J |

(
1 +

|x − xJ |

`(J)

)−d+ε



1/2

×

×




∑

J∈S(Q),`(J)≥`(Q)

(
|x − y|

`(J)

)2α

(`(J))
4

(
1 +

|x − xJ |

`(J)

)4−d−ε−2α



1/2

. G(Q, x)C(d(Ω))2




∑

J∈S(Q),`(J)≥`(Q)

(
|x − y|

`(J)

)2α(
1 +

|x − xJ |

`(J)

)−d−ε−2α



1/2

.

The last inequality follows from the fact that `(J)

(
1 +

|x − xJ |

`(J)

)
≤ C( diam(Ω)) =

C(d(Ω)). From Lemma 3, G(Q, x) ≤ C(d, η)G(Q) because x ∈ ηQ. So we need
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only show that
(

∑

J∈S(Q),`(J)≥`(Q)

(
|x − y|

`(J)

)2α (
1 +

|x − xJ |

`(J)

)−d−ε−2α
)

≤ C.

The sum on the left can be divided into two parts:
∑

J!Q
J∈S(Q),`(J)�`(Q)

+
∑

J∩Q=∅
J∈S(Q),`(J)≥`(Q)

.

It is easy to see that the first sum reduces to a geometric series. For the sum over
cubes that lie outside Q, we know that Q lies inside some dyadic cube, JQ, of side
length 2k`(Q) for each k = 0, 1, 2, . . . . The other dyadic cubes, call them J , of side

length 2k`(Q), will lie in cubic annular regions Aj,k
Q , whose distance from JQ ranges

from 0 to C(d, diam(Ω))`(JQ) or 2j−1`(JQ) ≤ dist(JQ, J) < C2j`(JQ) for j ≥ 1.
This means that 2(j−1)`(J) ≤ `(J) + dist(JQ, J) ≤ C22

(j+1)`(JQ) for j ≥ 1. Now
x ∈ ηQ implies dist(JQ, J) . |x − xJ | ∼ |xQ − xJ | , with constants depending on

the dimension d. We can say that if J ⊂ Aj,k
Q , then 2(j−1)`(J) . `(J) + |x − xJ | ≤

C2(j+1)`(J) where C = C(d, diam(Ω)) > 1.

Since x and y lie in ηQ, the second sum can be written as

∞∑

k=0

∑

`(J)=2k`(Q)
J∈S(Q)

(
`(Q)

`(J)

)2α(
1 +

|x − xJ |

`(J)

)−d−ε−2α

=

∞∑

k=0

2−2αk

{
C +

∑

j=1

∑

J⊂Aj,k

Q

`(J)=2k`(Q),J∈S(Q)

(
1 +

|x − xJ |

`(J)

)−d−ε−2α}

. C +
∞∑

k=0

2−2αk
∑

j=0




∑

J⊂Aj,k
Q

`(J)=2k`(Q),J∈S(Q)

(
1 +

|x − xJ |

`(J)

)−d−ε−2α




. C + C(d)

∞∑

k=0

2−2αk
∞∑

j=k

2d(j−k)

(
1 +

|xQ − xJ0
|

`(J0)

)−d−ε−2α

.

J0 is a cube of size 2k`(Q). The last estimate follows from counting the number of

cubes J of side length 2k`(Q) that can exist in the annular region Aj,k
Q if j ≥ k. It

is easy to see that the last sum is bounded by

C(d)
∞∑

k=0

2−2αk
∞∑

j=k

2d(j−k)
(
2j−k−1

)−(d+ε+2α)
≤ C(d, α, ε)

∞∑
k=0

2εk
∞∑

j=k

2−(ε+2α)j

≤ C(d, α, ε)
∞∑

k=0

2−2αk
∞∑

j=0

2−(2α+ε)j ≤ C(d, α, ε).



An extension of a norm inequality for a semi-discrete g∗λ function 183

Now to bound II, still keeping x, y ∈ ηQ inside Ω, we have

II. ≤
∑

J∈S(Q),`(J)<`(Q)

|λJ |
(∣∣∣ϕ(J)(x) − ϕ(J)(y)

∣∣∣
)

,

so by Lemma 3 it is enough to show this sum is ≤ CG(Q, x). Using b) gives
∑

J∈S(Q),`(J)<`(Q)

|λJ |
∣∣∣ϕ(J)(x) − ϕ(J)(y)

∣∣∣ .

(A)
∑

J∈S(Q),`(J)<`(Q)

|λJ | |x − y|
α

(`(J))
2−d/2−α

(
1 +

|x − xJ |

(`(J))
+

|y − xJ |

(`(J))

)2−d−α

.

(
∑

J∈S(Q)

λ 2
J

|J |

(
1 +

|x − xJ |

`(J)

)−d+ε
)1/2

×

×

{ ∑

J∈S(Q),`(J)<`(Q)

(`(Q))
2α

(`(J))
4−2α

(
1 +

|x − xJ |

(`(J))

)4−d−ε−2α }1/2

= CG(Q, x)

{ ∑

J∈S(Q),`(J)<`(Q)

(
`(Q)

`(J)

)2α

(`(J))4
(
1+

|x − xJ |

(`(J))

)4−d−ε−2α}1/2

≤ CG(Q) · H(Q)(x).

Now, (remember that `(J)

(
1 +

|x − xJ |

`(J)

)
≤ C diam(Ω)),

H(Q)(x) ≤ C( diamΩ)2

(
∑

J∈S(Q),`(J)<`(Q)

(
`(Q)

`(J)

)2α(
1 +

|x − xJ |

(`(J))

)−d−ε−2α
)1/2

≤ C

(
∑

J∈S(Q),`(J)<`(Q)

(
`(Q)

`(J)

)−d−ε−2α+2α(
1 +

|xQ − xJ |

(`(Q))

)−d−ε−2α
)1/2

The last inequality follows from the fact that for

J ∩ Q = ∅, J ∈ S(Q), x ∈ ηQ,
|x − xJ |

|xQ − xJ |
∼ C

and, since |xQ − xJ | & `(Q), we have

1 +
|x − xJ |

`(J)
&

`(Q)

`(J)

|xQ − xJ |

`(Q)
&

`(Q)

`(J)

(
1 +

|xQ − xJ |

`(Q)

)
.

This means that

(
1 +

|x − xJ |

(`(J))

)−d−ε−2α

.

(
`(Q)

`(J)

(
1 +

|xQ − xJ |

`(Q)

))−d−ε−2α

.
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Finally, to estimate

(
∑

J∈S(Q),`(J)<`(Q)

(
`(Q)

`(J)

)−d−ε(
1 +

|xQ − xJ |

(`(Q))

)−d−ε−2α
)1/2

we can proceed as in [11] to divide Q0\Q into dyadic cubes Q′ whose size is the
same as that of Q. We write the sum as

(
∑

Q′⊂Q0\Q

∑

J∈S(Q),J⊂Q′

(
`(J)

`(Q)

)d+ε(
1 +

|xQ − xJ |

(`(Q))

)−d−ε−2α
)1/2

.

(
∑

Q′⊂Q0\Q

∑

J∈S(Q),J⊂Q′

(
`(J)

`(Q)

)d+ε(
1 +

|xQ − xQ′ |

(`(Q′))

)−d−ε−2α
)1/2

,

which is valid since |xQ − xJ | & |xQ − xQ′ | . Now the J are Whitney cubes from
F , so they are disjoint. Consequently, for each Q′,

∑

J⊂Q′

(
`(J)

`(Q)

)d+ε

≤
∑

J⊂Q′

|J |

|Q′|
≤ 1.

Therefore we can write

H 2
Q (x) .

∞∑

k=0

∑

Q′⊂Q0\Q

2k−1`(Q).|xQ−xQ′ |<C(d)2k`(Q)

(
1 +

|xQ − xQ′ |

(`(Q′))

)−d−ε−2α

.
∞∑

k=0

2kd2−k(d+ε+2α) ≤ C(α, d, ε),

by counting the maximum number of cubes Q′ that can lie inside the annular region
2k−1`(Q) . |xQ − xQ′ | . 2k`(Q).

We have shown that |F (Q, x) − F (Q, y)| ≤ C2G(Q), when both x and y lie
inside Ω, or when both points lie in Q0\Ω. The remaining case is for one point
lying inside Ω and the other point lying outside Ω. This implies of course that
the dyadic cube Q is such that ηQ ∩ Ω 6= ∅ and ηQ ∩ ΩC 6= ∅. Without loss of
generality x ∈ Ω, and y /∈ Ω. So F (Q, y) = 0. Here we cannot use b), since the
decay in b) is not necessarily valid for points outside Ω. However, we note that a′)
is useful. Since Q overlaps the boundary of Ω, and x ∈ Q∩Ω, we have that δ(x) =
distance(x, ∂Ω) . `(Q). So |F (Q, x) − F (Q, y)| = |F (Q, x)| ≤

∑
J∈S(Q),`(J)≥`(Q)

|λJ | |ϕJ(x)| +
∑

J∈S(Q),`(J)<`(Q)

|λJ | |ϕJ(x)| = I ′ + II ′.

Now,

(I ′) .
∑

J∈S(Q),`(J)≥`(Q)

|λJ | δ(x)α`(J)2−d/2−α

(
1 +

|x − xJ |

(`(J))

)2−d−α
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from using a′) on the functions |ϕJ(x)| in I ′. The last sum is bounded by

C( diam(Ω)2)
∑

J∈S(Q),`(J)≥`(Q)

|λJ |

(
`(Q)

`(J)

)α

`(J)−d/2

(
1 +

|x − xJ |

(`(J))

)−d−α

≤ CG(Q)

(
∑

J∈S(Q),`(J)≥`(Q)

(
`(Q)

`(J)

)2α (
1 +

|x − xJ |

(`(J))

)−d−ε−2α
)1/2

.

Dominating the last sum by a constant follows as before. Estimating II ′ follows
from almost the same proof that gave the bound for II in the first case, in which
x and y were both located inside Ω. Here the fact that δ(x) . `(Q) replaces the
similar estimate for |x − y| in (A). After that the calculations are identical.

For the next four Lemmas we define N(I) = {I∗ ∈ D : I∗ ⊂ I and `(I∗) =
0.5`(I)} for any dyadic cube I ∈ D. We have

Lemma 5. G(I) ≤ CG(I∗).

Proof. xI∗ ∈ ηI if 0 < η < 1 is sufficiently large, depending on d. By Lemma 3,
G(I) ≤ CG(I, xI∗), and by definition G(I, xI∗) ≤ G(I∗, xI∗) = G(I∗).

Lemma 6. For I∗ ∈ N(I), G(I∗) ≤ CG∗(x) whenever x ∈ I.

Proof. By definition G∗(x) = supJ3x G(J), so if x ∈ I∗, G(I∗) ≤ G∗(x). Suppose
that x lies in I \ I∗. For any J ⊂ I \ I∗ such that x ∈ J , then G(I∗)2 ≤ CG(J)2+B,
where

B =
∑

K⊂J,K∈S(I∗)

λ 2
K

|K|

(
1 +

|xI∗ − xK |

`(K)

)−d+ε

.

All the terms in B occur in G(I∗)2. If L ∈ S(I∗)\{K ⊂ J, K ∈ S(I∗)}, then
L ∈ S(J). We also have |xL − xJ | ≤ |xL − xI∗ |+ |xJ − xI∗ | ≤ |xL − xI∗ |+ c`(I) ≤
c′ |xL − xI∗ | since |xL − xI∗ | & `(I). We may assume c′ ≥ 1; this implies that

(
1 +

|xL − xJ |

`(L)

)−d+ε

≥ C′

(
1 +

|xL − xI∗ |

`(L)

)−d+ε

.

So each term in G(I∗) that does not occur in B is less than or equal to a constant
times a term that occurs in G(J). Now F is a finite family, so for |J | sufficiently
small, the sum in B will be empty, and G(J) ≤ G∗(x).

Lemma 7. |F (I∗) − F (I)| ≤ CG(I∗).

Proof. Lemmas 4 and 5 imply that |F (I, xI∗) − F (I)| ≤ CG(I) ≤ C′G(I∗);
consequently it is enough to show that |F (I, xI∗) − F (I∗)| ≤ CG(I∗). If xI∗ ∈ ΩC ,
then both functions on the left are zero, so we can assume that xI∗ ∈ Ω. We have

|F (I, xI∗) − F (I∗)| =

∣∣∣∣
∑

J∈S(I∗)\S(I)

λJϕJ(xI∗)

∣∣∣∣

≤
∑

J∈S(I∗)\S(I)

|λJ | `(J)2−d/2

(
1 +

|xI∗ − xJ |

`(J)

)2−d
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from a). Cauchy-Schwarz gives

|F (I, xI∗) − F (I∗)| ≤

(
∑

J∈S(I∗)\S(I)

|λJ |
2

|J |

(
1 +

|xI∗ − xJ |

`(J)

)−d+ε
)1/2

×

×

(
∑

J∈S(I∗)\S(I)

`(J)4
(

1 +
|xI∗ − xJ |

`(J)

)4−d−ε
)1/2

≤ CG(I∗) · C(d(Ω))2

(
∑

J∈S(I∗)\S(I)

(
1 +

|xI∗ − xJ |

`(J)

)−d−ε
)1/2

.

If we can show that

( ∑

J∈S(I∗)\S(I)

(
1 +

|xI∗ − xJ |

`(J)

)−d−ε)1/2

is bounded by a con-

stant, we will be done. Notice that

1 +
|xI∗ − xJ |

`(J)
≥

|xI∗ − xJ |

`(J)
=

`(I)

`(J)
·
|xI∗ − xJ |

`(I)
,

and |xI∗ − xJ | ∼ `(I) because J ∈ S(I∗)\S(I). So

`(I)

`(J)
·
|xI∗ − xJ |

`(I)
≥ C

`(I)

`(J)

(
1 +

|xI∗ − xJ |

`(I)

)
.

We have

(
1 +

|xI∗ − xJ |

`(J)

)−d−ε

≤ C

(
`(J)

`(I)

)d+ε(
1 +

|xI∗ − xJ |

`(I)

)−d−ε

.

This gives

∑

J∈S(I∗)\S(I)

(
1 +

|xI∗ − xJ |

`(J)

)−d−ε

≤ C
∑

J∈S(I∗)\S(I)

(
`(J)

`(I)

)d+ε(
1 +

|xI∗ − xJ |

`(I)

)−d−ε

.

Now remember that the cubes J originally came from F so they are disjoint. Also
J ∈ S(I∗)\S(I) means that either J = I or J ⊂ I \ I∗. As a result

∑

J∈S(I∗)\S(I)

(
`(J)

`(I)

)d+ε(
1 +

|xI∗ − xJ |

`(I)

)−d−ε

≤
∑

J∈S(I∗)\S(I)

(
`(J)

`(I)

)d

≤ 2.

The purpose of establishing Lemmas 1–7 is to prove Lemma 8, the Central
Lemma.
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3. THE GOOD-λ INEQUALITIES

Lemma 8 (Central Lemma). Let f(x) =
∑

I∈F

λIϕ(I)(x), where F is a finite family

of cubes from W , the ϕ(I) satisfy a),a′),b) and c), and λI = 0 for any I " I0. I0

is a fixed cube in D. For any β, 0 < β < 1, there is a γ = γ(β, d, λ, α, Ω, η) such

that

|{x ∈ I0 : F ∗(x) > 1 and G∗(x) ≤ γ}| ≤ β |I0| .

Proof. Let Ij be the dyadic cubes for which one of the subcubes, I∗j ∈ N(Ij), is a

maximal dyadic cube in I0 so that G(I∗j ) > Aγ, for A large enough so AC−1 > 1,
C being the constant in Lemma 6. Notice that G(I0) = 0 (and so is F (I0, x)
for any x ∈ I0), and Ij ⊆ I0. We have that G(Ij) ≤ Aγ, x ∈ Ij implies that
G∗(x) > AC−1γ > γ from Lemma 6, and G∗(x) ≤ Aγ for almost all x ∈ I0 \ ∪Ij .

Let E = {x ∈ I0 : F ∗(x) > 1 and G∗(x) ≤ γ} . For any x ∈ E there is a max-
imal dyadic cube Qi such that F (Qi) > 1. Qi ⊂ I0 and Qi " Ij for any of the
maximal cubes defined in the previous paragraph, because G∗(x) ≤ γ means that x
can’t lie in Ij . Following the argument in the proof of the Main Lemma in [11], we
create the family of dyadic cubes G={Pk} which consists of the maximal disjoint
cubes that result from combining the Ij and the Qi. So E ⊂ ∪kPk. In fact x ∈ E
implies that x ∈ Pk′ for some maximal cube in G for which F (Pk′ ) > 1. It is
also true that G(Pk′ ) ≤ γ, since G∗(x) ≤ γ. We proceed to divide the cubes in
F into two sets, F1 = {J : J " Pk for any Pk ∈ G)} and F2 = {J : J j Pk for
some Pk ∈ G)}. Writing f(x) =

∑
J∈F1

λIϕ(I)(x) +
∑

J∈F2

λIϕ(I)(x) = f1(x) + f2(x),

we can define Fi(Q, x), Fi(Q), F ∗
i (x), Gi(Q, x), Gi(Q),and G∗

i (x) for i = 1, 2 just
as we did for f(x). F (Q, x) = F1(Q, x) + F2(Q, x), while Gi(Q, x) ≤ G(Q, x) ≤
G1(Q, x) + G2(Q, x) ≤ CG(Q, x).

The facts that E ⊂ ∪Pk′ and that Lebesgue measure is a doubling measure

mean |E| ≤ C(d)
∑
k′

|c(Pk′)| , where c(Pk) =
{
x ∈ Pk : x ∈

1

10
Pk

}
. For x ∈ Pk′ ,

we must have either F1(Pk′) > 0.5 or F2(Pk′ ) > 0.5. For x ∈ c(Pk′), Lemma 4 says
that either F1(Pk′ , x) > 0.25 or F2(Pk′ , x) > 0.25 whenever γ is small enough. Also

∑
k′

|c(Pk′ )| ≤
∑

F1(Pk′ )>0.5

|c(Pk′ )| +
∑

F2(Pk′ )>0.5

|c(Pk′)|

≤
∑
k′

|{x ∈ c(Pk′) : F1(Pk′ , x) > 0.25}|+
∑
k′

|{x ∈ c(Pk′ ) : F2(Pk′ , x) > 0.25}| .

Using Chebyshev’s inequality we can see we only need to estimate

∑

k′

16

∫

c(Pk′)

|F1(Pk′ , x)|
2
dx and

∑

k′

16

∫

c(Pk′)

|F2(Pk′ , x)|
2
dx.

In fact, for the second sum we will estimate each integral taken over a smaller
set than c(Pk′ ). This will be explained after we obtain a bound for the first sum.
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Notice that the definition of F1 gives that F1(Pk′ , x) = f1(x) for any x ∈ Pk′ .

Then
∑
k′

16
∫
c(Pk′ )

|F1(Pk′ , x)|
2
dx =

∑
k′

16
∫
c(Pk′ )

|f1(x)|
2
dx ≤ C

∫
I0
|f1(x)|

2
dx.

By the almost orthogonality property c) for the ϕ(I)’s,

∫

I0

|f1(x)|
2
dx ≤

∑
J∈F1

λ 2
J =

∫

I0

∑

J∈F1

J3x

λ 2
J

|J |
dx ≤ C(Aγ)2 |I0| ≤

β

3
|I0|

for γ sufficiently small. The second to the last estimate follows from the fact that
for x ∈ I0 \ ∪Ij , (Ij are the maximal cubes defined in the beginning of the proof),∑
J3x

λ 2
J / |J | ≤ CG∗(x)2 ≤ (Aγ)2 , and for x ∈ Ij ,

∑
J3x,J∈F1

is empty.

Next we bound
∑
k′

|{x ∈ c(Pk′ ) : F2(Pk′ , x) > 0.25}|. As in [11] we cut out a

thin annular region around each of the Pk′ ’s to handle edge effects. Choosing τ > 1,

so that |τPk′ \ Pk′ | ≤
β

3
|Pk′ |, and letting D = ∪{τPk′\Pk′}, then |D| ≤

β

3
|I0|

(remember the Pk′ are disjoint). Also
∑

k′

|{x ∈ c(Pk′ ) : F2(Pk′ , x) > 0.25}| ≤ |D| +
∑

k′

16
∫
c(Pk′)\D

|F2(Pk′ , x)|2 dx.

We need only prove that
∑

k′

16
∫
c(Pk′)\D |F2(Pk′ , x)|

2
dx ≤ C′(Aγ)2 |I0| , and take

γ small enough so that C′(Aγ)2 ≤
β

3
.

If k′ is temporarily fixed and x ∈ c(Pk′ ) \ D, then

F2(Pk′ , x) =
∑

J∈F2,J"Pk′

λJϕ(J)(x),

so

|F2(Pk′ , x)|
2
≤
∣∣∣

∑
J∈F2,J"Pk′

λJϕ(J)(x)
∣∣∣
2

≤

(
∑

J∈F2,J"Pk′

|λJ | `(J)2−d/2

(
1 +

|x − xJ |

`(J)

)2−d
)2

by a). Again, Cauchy-Schwarz gives

|F2(Pk′ , x)|2 ≤

(
∑

J⊆Pj ,j 6=k′

λ 2
J

|J |

(
1 +

|x − xJ |

`(J)

)−d+ε
)

×

(
∑

J⊆Pj ,j 6=k′

`(J)4
(

1 +
|x − xJ |

`(J)

)4−d−ε
)

≤ CG(Pk′ )2 C( diam(Ω)4)

(
∑

J⊆Pj ,j 6=k′

(
1 +

|x − xJ |

`(J)

)−d−ε
)

.
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To bound the last sum by a constant we note that |x − xJ | ≥ C
∣∣x − xPj

∣∣
whenever x ∈ c(Pk′ ) \ D and J ⊆ Pj , j 6= k′. So as above

1 +
|x − xJ |

`(J)
≥

|x − xJ |

`(J)
≥ C

∣∣x − xPj

∣∣
`(Pj)

·
`(Pj)

`(J)
≥ C′ `(Pj)

`(J)

(
1 +

∣∣x − xPj

∣∣
`(Pj)

)
,

since also
∣∣x − xPj

∣∣ ≥ C′′`(Pj). We have

(
∑

J⊂Pj ,j 6=k′

(
1 +

|x − xJ |

`(J)

)−d−ε
)

≤ C
∑

J⊂Pj ,j 6=k′

(
`(Pj)

`(J)

)−d−ε(
1+

∣∣x − xPj

∣∣
`(Pj)

)−d−ε

.

This means that
∑

k′

∫
c(Pk′)\D

|F2(Pk′ , x)|2 dx

≤ C
∑

k′

G(Pk′ )2
∫

c(Pk′)\D

∑

j 6=k′

∑

J⊂Pj

|J |

|Pj |

(
1 +

∣∣x − xPj

∣∣
`(Pj)

)−d−ε

dx

≤ C(Aγ)2
∫

I0

∑

j

(
1 +

∣∣x − xPj

∣∣
`(Pj)

)−d−ε

dx

≤ C(Aγ)2
∑

j

∫

I0

(
1 +

∣∣x − xPj

∣∣
`(Pj)

)−d−ε

`(Pj)
dd

(
(x − xPj

)

`(Pj)

)

≤ C(Aγ)2
∑
j

|Pj |

∫
rd−1

(1 + r)d+ε
drdωd−1 ≤ C(Aγ)2 |I0|

using polar coordinates and the fact that the Pj ’s are disjoint in I0. C =
C(τ , ε, α, d, λ, η, Ω). The Central Lemma is proved.

Corollary. Suppose σ ∈ A∞(Q0, dx) and f(x) =
∑

J∈F

λJϕ(J)(x) with F a finite

family of cubes from W and the ϕ(J) satisfying a),a′),b) and c). Then for any

β > 0 there exists a γ = γ(d, λ, ε, Ω, α, β) so that, for every ξ > 0,

σ ({x ∈ Q0 : F ∗(x) > 2ξ, G∗(x) ≤ γξ}) ≤ βσ({x ∈ Q0 : F ∗(x) > ξ}).

Proof. Let {Ij} be the maximal dyadic cubes in Q0 such that F (Ij) > ξ. We need
only show that

|{x ∈ Ij : F ∗(x) > 2ξ, G∗(x) ≤ γξ}| ≤ β̂ |{x ∈ Ij : F ∗(x) > ξ}|

for some β̂, determined by β and the constants in the condition that σ ∈ A∞(Q0, dx).
Notice that {x ∈ Q0 : F ∗(x) > ξ} = ∪Ij . Once again we cut out a small annu-
lar region for each cube Ij , but here the region lies inside Ij . We take ε > 0

so small that
∣∣{x ∈ Ij : distance(x, IC

j ) ≤ ε
}∣∣ ≤ (β̂/3) |Ij | . For x ∈ (1 − ε)Ij we
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have |F (Ij) − F (Ij , x)| ≤ CG(Ij), by Lemma 4. It is also true that for Îj ⊃ Ij ,

`(Ij) = 0.5`(Îj), Lemma 7 implies that
∣∣∣F (Îj) − F (Ij)

∣∣∣ ≤ C′G(Ij). By maximality

F (Îj) ≤ ξ. We also have

Ej = {x ∈ Ij : F ∗(x) > 2ξ, G∗(x) ≤ γξ}

⊆ {x ∈ (1 − ε)Ij : F ∗(x) > 2ξ, G∗(x) ≤ γξ} ∪
{
x ∈ Ij : distance(x, IC

j ) ≤ ε
}

.

For any Ij such that Ej 6= ∅, then G(Ij) ≤ γξ. From the previous calculations we

have, for any x ∈ ηIj , that |F (Ij , x)| ≤ F (Îj) + cG(Ij). So if γ is small enough
|F (Ij , x)| ≤ 1.1ξ. Writing

f(x) =
∑

J"Ij ,J∈F

λJϕ(J)(x) +
∑

J⊂Ij ,J∈F

λJϕ(J)(x) = F (Ij , x) + h(x),

and taking H(I, x) =
∑

J∈S(I)∩F ,J⊂Ij

λJϕ(J)(x), H∗(x) = supI3x H(I, xI), then

F ∗(x) − 1.2ξ ≤ H∗(x), This happens since Ij is maximal so that F (Ij) > ξ;
consequently any dyadic cube Q 3 x such that F (Q) > 2ξ must be contained in
the Ij that contains x. Setting Fj(x) = F (Ij , x), we have sup J3x

J⊂Ij

Fj(J, xJ) =

sup J3x
J⊂Ij

Fj(xJ ). Also, x ∈ (1 − ε)Ij means that for any dyadic J ⊂ Ij such that

x ∈ J , distance(xJ , IC
j ) ≥

ε

2
`(Ij). Taking η = (1 − ε/2), we have Fj(xJ ) ≤ 1.2ξ,

for any such J , so

{x ∈ (1 − ε)Ij : F ∗(x) > 2ξ, G∗(x) ≤ γξ}

⊆ {x ∈ (1 − ε)Ij : H∗(x) > 0.8ξ, G∗(x) ≤ γξ} .

After rescaling, the Central Lemma can be applied to the function h(x).

The full result of Theorem A follows from the Corollary by a standard ar-
gument because Ω is bounded and, f(x) being a finite sum, means that F ∗ ∈
Lp(Ω, dσ). To prove Theorem B for infinite sums we can use Fatou’s Lemma on
|fn(x)|

p
, for fn(x) =

∑
J∈F

`(J)≥(1/n)

λJϕ(J)(x), taking F to be an infinite family of dyadic

cubes from W .

4. AN APPLICATION

In this section questions concerning the rate of change of solutions to the

inhomogeneous equation Lu = div
−→
f in Ω, u |∂Ω = 0 will be stated for operators

of the form L =

d∑

i,j=1

∂

∂xi

(
ai,j(x)

∂

∂xj

)
, with L being symmetric and strictly elliptic,

i.e. there exists a positive constant λ such that
1

λ
|ξ|2 ≤

d∑
i,j=1

ξiai,j(x)ξj ≤ λ |ξ|2,
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and ai,j(x) = aj,i(x) for all x ∈ Ω and for i = 1, . . . , d, j = 1, . . . , d. Ω is a
bounded domain in Rd whose boundary satisfies an exterior cone condition. In [6]
the question of finding conditions on two measures µ and ν, defined on Ω, to give
the inequality

(∫

Ω

(|∇u(x)|)q dµ(x)

)1/q

≤ C

(∫

Ω

( ∣∣∣
−→
f (x)

∣∣∣
p

+
∣∣∣ div

−→
f (x)

∣∣∣
p )

dν(x)

)1/p

,

was considered. Also it was shown that a condition involving a singular poten-
tial of the measure µ gives the same kind of norm inequality for a local Hölder
norm of the solution u(x) instead of |∇u(x)|. Here, we can use Theorem A
to prove that a condition on the cubes in W gives a better result for the lo-
cal Hölder norm, ‖u‖Hα

, of the solution u(x) instead of |∇u(x)|. Recall that

‖u‖Hα
(x) = sup

0<|x−y|<δ(x)/50

|u(x) − u(y)|

|x − y|α
.

In Theorem B W and Q0 are as defined above. The measures µ and ν will
be taken to be Borel measures; µ is defined on Ω, with ν defined on Q0, absolutely
continuous with Lebesgue measure.

Next we define M(Qj) for any dyadic cube Qj , so that 4Qj lies inside Ω,

and for dσ(y) =

(
dν

dy
(y)

)1−p′

dy,

M(Qj) = max

{(
1

|Qj |

∫

4Qj

(
dν

dx
(x)

)s/(s−p)

dx

)1/s−1/p

`(Qj)
d/p′+1;

(∫

Q0

(
1 +

∣∣y − xQj

∣∣
`(Qj)

)−(d−ε)p′/2

dσ(y)

)1/p′}
.

Theorem B. For 3 ≤ d < s < p ≤ q < ∞, if for any Qj ∈ W ,

(1) µ(Qj)
1/qM(Qj)`(Qj)

−d−α ≤ C0

then for any u, a solution to Lu = div
−→
f in Ω, u |∂Ω = 0, there is a constant C

independent of u,
−→
f , µ and ν so that

(2)

(∫

Ω

(‖u‖Hα (x))
q
dµ(x)

)1/q

≤ C

(∫

Ω

(∣∣∣
−→
f (x)

∣∣∣
p

+
∣∣∣ div

−→
f (x)

∣∣∣
p)

dν(x)

)1/p

.

Remark. By allowing C to depend on µ(Ω), on ν(Ω) and on q0 and p0, the range of p

and of q can be extended to 0 < q ≤ q0 and d < s < p0 ≤ p < ∞ for any fixed pair of

indices p0 and q0 having s < p0 ≤ q0. This follows from using Holder’s inequality on both

integrals in (2).

The proof of Theorem B follows the same general outline initiated in [12],
(see also [5], [6], [9], and [10]), namely one employs a dual operator argument
which depends on a Littlewood-Paley type inequality, Theorem A in this situation.
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Theorem A is applied to the family of functions defined in the appendix, which also
contains the proof that these functions satisfy the necessary decay, smoothness and
cancellation conditions.

5. APPENDIX

In Lemma 9 we establish the fact that the family of functions ϕ(J)(x),

ϕ(J)(x) =
C√
|J |

∫

3J/2

(
G(x, y) − G̃(x, y)

)
dy

satisfy the conditions a), a′), b) and c). Here G(x, y), respectively G̃(x, y), is
the Green function for L on Ω, respectively 4J , and is zero outside the domain of
definition. Among other results, Lemma 9 justifies the validity of applying Theorem
A to obtain the application given in Theorem B of the last section.

Lemma 9. Given ϕ(J)(x) as above, J ∈ F , then

a)
∣∣∣ϕ(J)(x)

∣∣∣ ≤ C`(J)2−d/2

(
1 +

|x − xJ |

`(J)

)2−d

for all x ∈ Ω.

a′)
∣∣∣ϕ(J)(x)

∣∣∣ ≤ Cδ(x)α`(J)2−d/2−α

(
1 +

|x − xJ |

`(J)

)2−d−α

for all x ∈ Ω.

b) There is an absolute constant η, 0 < η < 1, so that

∣∣∣ϕ(J)(x) − ϕJ(y)
∣∣∣ ≤ C |x − y|

α
`(J)2−d/2−α

(
1 +

|x − xJ |

`(J)
+

|y − xJ |

`(J)

)2−d−α

for all x, y in ηQj and J ∈ S(Qj).

c)

∫ ∣∣∣∣
∑

J∈F

λJϕ(J)(x)

∣∣∣∣
2

dx ≤ C
∑

J∈F

λ 2
J .

Proof. To establish a), a′), b) for these functions, we use the fact that H(x, y) =(
G(x, y) − G̃(x, y)

)
is a non-negative solution to Lv = 0 on 4J , ([2], [4])) so

Harnack’s inequality and the maximum principle can be applied to this function.
Since the coefficients of L are symmetric, this is valid for both the forward and the
adjoint variables. Three estimates of Grüter and Widman [3] are also used.

First we prove a):

If x ∈ Ω\4J , then for y ∈
3

2
J , distance(x, y) ' distance(x, xJ ) & l(J),

where xJ is the center point in the dyadic cube J . By Theorem 1.1, (1.8), of
Grüter and Widman, we have

G(x, y) ≤ C |x − y|
2−d
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so by the distance estimates,

|x − y|
2−d

≤ C′ (`(J) + |x − xJ |)
2−d

≤ C′`(J)2−d

(
1 +

|x − xJ |

`(J)

)2−d

,

and

G(x, y) ≤ C′′`(J)2−d

(
1 +

|x − xJ |

`(J)

)2−d

.

This gives a) for ϕ(J)(x) when x ∈ Ω\4J .

If x ∈ 4J , then the maximum principle implies that H(x, y) = G(x, y) −

G̃(x, y) ≤ max
x∈∂4J

H(x, y) ≤ max
x∈∂4J

G(x, y) = G(x∗, y) for some point x∗ in ∂4J . Har-

nack’s inequality gives that G(x∗, y) ≤ CG(x∗, xJ) since y ∈
3

2
J . Now distance

(x∗, xJ) & `(J), so the first case applies to show that

G(x∗, y) ≤ C′′`(J)2−d

(
1 +

|x∗ − xJ |

`(J)

)2−d

.

Since |x∗ − xJ | & |x − xJ |,

(
1 +

|x∗ − xJ |

`(J)

)2−d

≤ C

(
1 +

|x − xJ |

`(J)

)2−d

for any

x ∈ 4J . This means that

ϕ(J)(x) ≤ C`(J)2−(d/2)

(
1 +

|x − xJ |

`(J)

)2−d

.

To prove a′) we use Theorem 1.8 of Grüter and Widman: This says that for
all x, y in Ω,

G(x, y) ≤ Cδ(x)α |x − y|
2−d−α

.

(Notice that G(x, y) = G(y, x) since we assume that the coefficients of L are sym-
metric.)

Again assuming first that x ∈ Ω\4J , we have the same distance estimates as
above; Theorem 1.8 gives

ϕ(J)(x) =
C√
|J |

∫

3J/2

(
G(x, y) − G̃(x, y)

)
dy

≤
1√
|J |

∫

3J/2

Cδ(x)α |x − y|
2−d−α

dy

≤ Cδ(x)α`(J)2−d−α

(
1 +

|x − xJ |

`(J)

)2−d−α

·
|J |√
|J |

= Cδ(x)α`(J)2−d/2−α

(
1 +

|x − xJ |

`(J)

)2−d−α

.



194 Caroline Sweezy

If x ∈ 4J , as above the maximum principle and Harnack’s inequality give

ϕ(J)(x) =
C√
|J |

∫

3J/2

(
G(x, y) − G̃(x, y)

)
dy

≤
C√
|J |

∫

3J/2

(H(x∗, y)) dy ≤ C`(J)d/2G(x∗, xJ)

≤ C`(J)d/2δ(x)α`(J)2−d−α

(
1 +

|x − xJ |

`(J)

)2−d−α

.

Finally to prove the smoothness estimate, b), Theorem 1.9 of Grüter and
Widman is useful; it says that

|G(x, y) − G(z, y)| ≤ C |x − z|
α
(
|x − y|

2−d−α
+ |z − y|

2−d−α
)

for all x, z, and y 6= x or z in Ω.

b) will be proved for x and z in ηQ, with Q and J being cubes from D, J is
a cube in W , and J ∈ S(Q). Recall that 0 < η < 1. The definition of S(Q) means
that either J straddles Q, or, J and Q are disjoint. There is a technical problem
that arises from the fact that 4J may not be a cube in D, so Q and 4J are not
always nested or disjoint. If J straddles Q, then 4J will contain Q in its interior
with distance(Q, ∂(4J)) ' `(J); this is covered in case 2 below. For Q and J being
disjoint, there is a k ∈ Z, such that `(J) = 2k`(Q). Notice that 4J is in fact a union
of dyadic cubes that are half J ’s size, so if k ≥ 1, 4J and Q are nested or disjoint.
In the following analysis we are thinking of 4J as being a union of several annular
regions, centered around 3J/2, of dimension ∼ `(J)/4. The outer corridor of 4J is
the outermost annular region in 4J ; part of the outer corridor’s boundary coincides
with the boundary of 4J and all points in the outer corridor lie a distance ∼ `(J)
from 3J/2. The interior of 4J is 4J minus its outer corridor. If Q ⊂ 4J , then ηQ
will lie in the interior of 4J (case 2.) or in an outer corridor of 4J (case 3.). If
k ≤ −2, even when J is adjacent to Q, 4J will be a distance ' `(Q) from ηQ for
η sufficiently small, and we can use the estimate in case 1. (Here, for convenience,
η is assumed to be very much smaller than 1, say η < 1/10.) If k = −1 or 0, one
may have ηQ in the interior of 4J , in the outer corridor of 4J , or straddling part
of ∂(4J). The last scenario can mean that x ∈ 4J , but z /∈ 4J ; this eventuality is
dealt with in case 4.

For η closer to 1 (see the proof of Lemma 7), the constants will depend on
η. It is possible that x ∈ int(4J), but z lies in or outside the outer corridor of 4J .
This can happen only for a fixed range of sizes for Q. One can take a strategically
placed intermediate point, x∗, and, using the estimates from cases 2. and 3. or from
2. and 4., a short calculation shows that |ϕJ(x) − ϕJ(x∗)| + |ϕJ (z) − ϕJ (x∗)| ≤

C |x − z|α `(J)2−d/2−α

(
1 +

|x − xJ |

`(J)
+

|z − xJ |

`(J)

)2−d−α

.

Again we first take case 1. where Q lies outside of 4J , but x and z both lie
inside ηQ. Then |x − y| ' |x − xJ | & `(J), |z − y| ' |z − xJ | & `(J), |x − xJ | '
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|z − xJ |, and G̃(x, y) = 0 = G̃(z, y). This means that

∣∣∣ϕ(J)(x) − ϕ(J)(z)
∣∣∣ ≤

C√
|J |

∫

3J/2

|G(x, y) − G(z, y)| dy

≤
C√
|J |

∫

3J/2

(
|x − z|α

(
|x − y|2−d−α + |z − y|2−d−α

))
dy

≤ C`(J)d/2
(
|x − z|

α
(
|x − xJ |

2−d−α
+ |z − xJ |

2−d−α
))

≤ C`(J)2−d/2−α |x − z|
α

(
1 +

|x − xJ |

`(J)
+

|z − xJ |

`(J)

)2−d−α

.

If x and z both lie inside 4J , then H(x, y) is a non-negative solution to Lu = 0
in 4J . In fact we will only need to consider the case where x, z ∈ ηQ and J ∈ S(Q).
First we consider case 2. when both x and z lie away from the outer corridor of
4J , so that dist(x, (4J)C) ' `(J) and dist(z, (4J)C) ' `(J). The usual Holder
continuity result for a non-negative solution on a region which lies securely inside
the domain and the maximum principle give

|H(x, y) − H(z, y)| ≤ C max
z∗∈∂(4J)

H(z∗, y) ·

(
|x − z|

α

`(J)α

)
.

Then Harnack’s inequality and Theorem 1.8 imply that (remember that 4J is still
a Whitney-type cube),

max
y∈3J/2

H(z∗, y) ≤ CG(z∗, xJ ) ≤ C`(J)α |z∗ − xJ |
2−d−α

,

and, since |z∗ − xJ | ' `(J) ' dist(J, ∂Ω), we can say that |z∗ − xJ |
2−d−α

≤

C(`(J) + |x − xJ | + |z − xJ |)
2−d−α ≤ C`(J)2−d−α(1 +

|x − xJ |

`(J)
+

|z − xJ |

`(J)
)2−d−α.

This implies the estimate of b).

Next we consider case 3. in which both x and z lie in the outer corridor of

4J which has width ∼
1

2
`(J). Since y ∈

3

2
J we have |x − y| ∼ `(J) ∼ |z − y| ∼

|x − xJ | ∼ |z − xJ |. We have H(x, y) − H(z, y) = G(x, y) − G(z, y) + G̃(z, y) −

G̃(x, y). Since the pole of both Green functions, y, is a safe distance from x and
z, we can use the estimate in Theorem 1.9 of Grüter and Widman for both Green
functions taken separately. So |H(x, y) − H(z, y)| ≤ C |x − z|α (|x − y|2−d−α +

|z − y|2−d−α). Now the same estimates as above give

|H(x, y) − H(z, y)| ≤ C |x − z|
α

`(J)2−d−α

(
1 +

|x − xJ |

`(J)
+

|z − xJ |

`(J)

)2−d−α

,

and this estimate yields b) for
∣∣∣ϕ(J)(x) − ϕ(J)(z)

∣∣∣.
Finally we consider case 4. in which, say, x lies in the outer corridor of 4J and

z lies just outside 4J . This case will only occur when `(J) ∼ `(Q), so we can assume
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dist(x, z) . η `(J). We also have that |x − y| ' |x − xJ | ' |z − xJ | ' |z − y| '

`(J) for y ∈
3

2
Q. We have H(x, y) − H(z, y) = G(x, y) − G(z, y) − G̃(x, y). We

estimate G(x, y)−G(z, y) as in the last paragraph. For G̃(x, y) we can use Theorem
1.8 of Grüter and Widman applied to the domain 4J .

G̃(x, y) ≤ CδJ (x)α |x − y|
2−d−α

.

Here δJ (x) = dist(x, ∂(4J) ≤ dist(x, z) and |x − y| ' |x − xJ | ' |z − xJ |, so we

have G̃(x, y) ≤ C |x − z|
α

`(J)2−d−α

(
1 +

|x − xJ |

`(J)
+

|z − xJ |

`(J)

)2−d−α

as needed.

That the family of functions ϕJ satisfy condition c) is easy to establish: we
may assume that λj ≥ 0 and that ϕ(Qj)(y) ≥ 0 on Ω. We can write

∫

Ω

|h(y)|2 dy =

∫

Ω

∣∣∣
∑

Qj∈F

λjϕ(Qj)(y)
∣∣∣
2

dy =
∑

Qj∈F

λj

∫

Ω

h(y)ϕ(Qj)(y)dy

=
∑

Qj∈F

λj

∫

Ω

h(y)

(
1√
|Qj |

∫

(3/2)Qj

(
G(x, y) − G̃(x, y)

)
dx

)
dy

≤
∑

Qj∈F

λj
1√
|Qj|

∫

(3/2)Qj

v(x) dx

≤

( ∑
Qj∈F

λ 2
j

)1/2( ∑

Qj∈F

(
1√
|Qj|

∫

(3/2)Qj

v(x) dx

)2)1/2

≤

( ∑
Qj∈F

λ 2
j

)1/2( ∑

Qj∈F

∫

(3/2)Qj

v(x)2dx

)1/2

≤ C

( ∑
Qj∈F

λ 2
j

)1/2(∫

Ω

v(x)2dx

)1/2

≤ C′

( ∑
Qj∈F

λ 2
j

)1/2 (∫

Ω

h(x)2dx

)1/2

.

We have taken v(x) =
∫
Ω

G(x, y)h(y) dy to be the solution to Lv = h in Ω. Dividing

by
(∫

Ω h(x)2dx
)1/2

gives the property of almost orthogonality.
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