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g-EXTENSION OF SOME SYMMETRICAL AND
SEMI-CLASSICAL ORTHOGONAL POLYNOMIALS
OF CLASS ONE

M. Mejri
We study in detail a g-extension of a symmetrical form (functional) of class

one. We show that it is symmetrical and Hg4-semi-classical of class one. The

moments and a discrete representation are given.

1. INTRODUCTION

The monic orthogonal polynomials sequence (MOPS) {S,, } >0 satisfying the

recurrence relation [1]

S()(l‘) = 1, Sl(l‘) =,
STL-’,—Q(x) = $Sn+1($) - 0’7L+1Sn($); n > 0,
where
1 n -+«
, = — — >0
T2n+l 4 2n+a)2n+a+1)’ -
1
nt n >0,

1
T2 = Cn+a+1)2n+a+2)’

is associated with the form v(a). This form is symmetrical semi-classical of class

one satisfying the functional equation [1]

(ac%(a))l + ( —2(a+ 1)2?* - %) v(a) = 0.
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Replacing the derivative operator by the ¢-difference operator Hy [4, 6] and —2«

_ o 2a-2
by % in the precedent equation, we get ¢-PEARSON equation
1— q—2a—2 1
(1) Hq(l’3’ll,(04)) + (17_ql’2 - 5)’1},(04) = 0, [ NS (C

The aim of this contribution is to determine the symmetrical quasi-definite
functional u(«) fulfilling the last equation. This latter is considered the g-analogous
of the form v(e). When ¢ — 1, we meet again the form v(a). In fact the problem of
defining g-analogous of symmetrical MOPS has been the interest of some authors
from different point of views [2, 3, 7, 10, 11, 14].

The second section is of a preliminary and introductory character. In the
third section, we determine the elements of three-term recurrence relation fulfilled
by the polynomial sequence, orthogonal with respect to u(«). Finally, in the fourth
section we give the moments and a discrete representation.

2. PRELIMINARIES

Let P be the vector space of polynomials with coefficients in C and let P’ be
its dual space. We denote by (u, f) the action of u € P’ on f € P. In particular,
for any f € P, any a € C\ {0}, we let fu and h,u, be the forms defined by duality

(fu,p) == (u, fp); (hau,p) := (u, hap), p € P,

where (hq.p)(x) = p(ax).
The form w is called quasi-definite functional if we can associate with it a
sequence { P, },>0 of monic polynomials deg P, = n, n > 0 such that

(U, PPy = rn0nm, mym > 0; ryy #0, n > 0.

The sequence { P, },>0 is orthogonal with respect to u and fulfils the standard
recurrence relation:

Py(xz) =1, Pi(z) =2 — o,
(2.1) { Prio(x) = (2 = But1)Pui1 (@) — Ynp1Polx), n >0,

2
u7pn
7n2077n+1:%,n20-

»yPn

: _ (w,ap ()
The form u is called normalized if (u)o = 1 where in general (u),, = (u,z™), n >
0, are the moments of u. In this paper we suppose that the forms are normalized.

Let us introduce the HAHN’s operator [6]

flgz) — f(=)

A

(2.2) (Hyf)(x) =
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where g # 0, ¢" # 1, n > 0. By duality we have
(Hyu, f) = —(u, Hyf), u € P', f € P.
When ¢ — 1, we meet again the derivative D.

Definition. A form u is called H,-semi-classical when it is regular and satisfies
the equation

(2.3) H,(éu) + pu =0,

where (¢,1) are two polynomials, ¢ monic with degd > 0 and degty > 1. The
corresponding orthogonal sequence {Py}n>0 is called Hy-semi-classical.

Moreover, if u is semi-classical satisfying (2.3 ), the class of u, denoted s is,
defined by [9]

s = min (deg (¢) — 2, deg (¥) — 1),

where the minimum is taken over all pairs (¢, 1)) satisfying the equation (2.3).
We have the following result:

Proposition 2.1. [9] Let u be a H,-semi-classical form satisfying the equation
(2.3) and s = max (deg (¢) — 2,deg (¢)) — 1). Then the class of u is s if and only if

[T (lahawe) + (Hi8) (@) + (1, q(0ugth) + (0eq 0 0c0))]) > 0,
c€Z(9)

where Z(8) == {z € C, §(2) = 0}, (Bep)(x) = LL=2 e p.

When the last condition is not satisfied for ¢ € Z($) the equation (2.3) be-
comes

Hy(0c()u) 4 (g0cqt + Ocq 0 0cp)u = 0.

REMARK. If u is Hg-semi-classical of class zero, we are dealing with H, -classical forms
or classical functional [8, 13].

Lemma 2.2. Let u € P’ the following statements are equivalent:
(i) The form u satisfies

(2.4) Hy(z¢(x)u) + (z)u = 0.
(ii) The form w satisfies

(2.5) he(gu) + (1 — @) — ¢)u =0.
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Proof. For f € P we have
<Hq(acq§(ac)u), f> = — <x¢(x)u,qu>

=~ (wote gy ) = (pgomnar) + (7= on.s)
— (77 ha(ou). £) + (70w £).
Therefore
(26) (Hyfzo(@)u). £) = (7 (ha(6w) = 60). 1),
Indeed, from (2.6) we can deduce the desired results. (I

3. THE ¢-EXTENSION OF THE SEQUENCE {5,},>0

We assume that u(a) is a symmetrical Hg-semi-classical form and {P, }n>0
its orthogonal sequence satisfying the following functional equation:

3 ﬂﬁ N 20 o
(3.1) Hy(z’u(e)) + ( =2 2) (@) =0, eC,
we have
Py(z) =1, Pi(z) ==,
. { Poi2(r) = 2Pyy1(z) — Yny1Pu(z), n>0.
Let
(3-3) Ink(q) = <u(0‘),ﬂckPn(:c)Pn(q_1:c)>, n>00<k<2.

Lemma 3.1. We have the following result:

—1
(3.4) (™) — 20721, 5(q) + ==

Proof. By virtue of the Lemma 2.2, the functional equation (3.1) is equivalent to

-1
hy(2?u(a) + ( —q 2 qT)u(a) =0,

then, we obtain

(hata?ute)) + (= 0222 + L2 ) ue), Pa(@)Pala ™)) =0, n 20,

it is equivalent to

(z*u(a), Pn(ac)Pn(qa:)>+<(—q_Qa_2x2+q—_1)u(oz), Pn(ac)Pn(q_lac)> =0,n2>0.
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The previous equation can be written as the following:

<u(a), :UQPn(ac)Pn(qa:» — q720‘72<u(oz)7 xQPn(x)Pn(qflx»
q—1
2
Thus (3.4). O
We need the following result:

+

(u(a), Py(z)Pa(q'2)) =0, n > 0.

Lemma 3.2. [12] Let {ap}n>0 with an, # 0, n > 0, {bn}n>0 two sequences and
{Zn}n>0 the sequence satisfying the recurrence relation:

gCnJrl:anzn“i’bn; 77,20, QCOZGEC\{O}.

We have

n

mn+1ﬁak<a+ ( Ha#)_lbk), n > 0.
k=0 k

—og #=0

Lemma 3.3. The sequences {I, x(q) }n>0 are given by the following formulas:

(3.5) Ino(g) = ¢ "(u(a), P,?), n >0,
(3.6) In2(q) = 7,
(3.7) Lio(q) = ¢ (v +72),

n+1

(3.8) In2(g) = 4 "(u(@), P) ( > w—¢ z_: %>, n>2.

Proof. We have I,,0(q) = (u(a), P,(z)Pa(q")), n > 0, by the orthogonality of
{Pn}n>0 (3.5) can be deduced.

Writing Io2(q) = (u(e),2?) = (u(), P> + 71 ), then we obtain (3.6).

Also, we have

Li2(q) = (u(a),2*Pi(z)Pi(q" ' x))
= (u(a), z{Py(z) + M} Pi(¢ ")) ( by (2.2))
- q_1<u(a), P22> +q¢ 'yIn2(q) (by the orthogonality of {Py,},>0),
by (3.6), we get (3.7).
For n > 0, we can write
Ini12(q) = (u(a), 2Py (@) Poy1 (¢ '2))
= (u(a), #{ Ppy2(2) + yni1Pu(2)} Poga (¢ 2)) (by (3.2))
= (w(@), £Pp12(2) Pog1 (g7 @) + Ynt1 (u(@), 2P (2) Py (g1 2)),

by the orthogonality of { P, },>0, we obtain

(39 Lurra(@) = " u(@), PAs) + s (u(@), 2Pa () Pusa (g '2)).

X
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On the other hand we have
(u(@), 2P () Pas1 (¢~ ) = (u(@), 2 Po(2){g " 2Pu(q @) — Y Pa-1(q”'2)})
= ¢ Yu(a),2” Po(2)Pa(q™ 7)) — m(u(a), 2P (@) Paor(q2)), n > 1,
on account of the orthogonality of { P, },>0, we can deduce that
(3.10)  (u(a),xPu(x)Pos1(q 2)) = ¢ na(a) —a " ymlula), P), n > L.
By virtue of (3.10), equation (3.9) becomes

In12(q) = ¢ il 2(q) + ¢ (u(@), P2o) — ¢ "y (ua), BR)
= ¢ mraln2(0) + 47" (u(@), Pho) — ¢ " (ule), Pl ), n > L
Using Lemma 3.2 and the relation (3.7), we get (3.8). O

Proposition 3.4. The sequence {Vnt1}n>0 given in (3.2) is defined by the following
formulas:

_1—gq ¢ —1 2n+2a+2 >0
Tan+1 = 2 An+2a _ | An+2a+2 _ | y =2 U,
511 (a ) (4 )
( ! ) q- 1 q2n+2 -1
Von+2 = Ty T ntdotd n > 0.
2 (q n+2a+2 _ 1) (q n+2a+4 _ 1)

Proof. Letting n =0 and n = 1 in (3.4), we obtain respectively:

Io2(q ™) — ¢~ 2 Ioa(g) + 2 ; 110,0((1) =0,
La(g™) = ¢ 2 2 a(g) + 2 ) “L10(q) = 0.
On account of (3.5), (3.6) and (3.7), it follows that
(3.12) m= % r{;‘i KA
2042

1 1—g¢q
(3.13) Mty = 5@‘1
Taking into account the relations (3.5)and (3.8), equation (3.4) becomes

n+1 n—1

Let

n
(3.15) Tp=> Y, n>1
v=1
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Then the system

—~

3.12)—(3.14) can be written:

1 1- q 20c+2
316  h=35 5 g4
1 1- q 20c+2
@17 h=5 e g4
-1
(318) (q2n o q—2a—2) Tn+1 _ q2(q2n—4 _ q—2a—2)Tn71 + qT _ 0’ n Z 2.

Moreover, letting n — 2n and n — 2n + 1 in (3.18), we get respectively:

(319) (q4n o q—2a—2)T2n+1 o q2(q4n—4 o q—2o¢—2)T2n71 + T _ 0’ n Z 1’
-1
(320) (q4n+2 o q—2a—2)T2n+2 o q2(q4n—2 o q—2a—2)T2n + qT — 0’ n 2 1.
By virtue of (3.19), (3.16) and the Lemma 3.2, we get
1 1— 2n+2
(3.21) Tonsr = d n>0.

2(q+1) ¢*r —q 22
Likewise, by (3.20), (3.18) and the lemma 3.2, we obtain

1 1— q2n
3.22 Ty = > 1.
(3.22) T oq+ 1) @n? g2’ nz

From (3.15), we get respectively vyan+1 = Tont1 — Ton, n > 1 and yop42 =
Ton+2 — Tont1, n > 0, then by (3.21), (3.22) and (3.16), we can deduce (3.11). O

REMARKS. 1. The form u(a) is quasi-definite if and only if n+ « # 0, n > 0. u(«) is not
positive definite.

2. When ¢ — 1 in (3.1) and(3.11), we meet again the MOPS {Sy }n>0.

3. Let w(a) be the form defined by (w(a)), = (w(a))2n, n > 0.

We have

1 o
(hr-1w(a)), = e P n>0,a=—q".

Then, h,—1w(c) it is the alternative ¢>-CHARLIER form [8, pp 98].

Corollary 3.5. When u(«a) is quasi-definite it is Hy-semi-classical of class one.

3 l—g 22 5 1
Proof. Let ¢(x) = z°® and ¢(x) = B et =3
We have qhq{/;(O) + Hqg/f)\(O) = f% # 0. According to the proposition 2.1

we see that the functional equation in (3.1) can not be simplified by the factor .
Therefore we get the desired result. (I
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4. MOMENTS AND DISCRETE REPRESENTATION

4.1 We are going to use the following notations:[4, 5, 11]

1, n=0,
4.1 a;q)p, =1 n-—1
(4.1) (a;q) T ag). n> 1,
k=0
+oo &
(4.2) (a3 @)oo = kl:[o(l —aq®), qI< 1.
We have [5]
asq
(43) (@00 = s g ]< 1,
+oo k(k—1)
(*qu 2 k
4.4 =3 Tk < 1.
(4 (#39) ,; (@ )k 4]

We need the following results:

Lemma 4.1. Let u € P’ be a symmetrical form such that

+o0o
(4.5) (w)2n = Zak(ck)%, n > 0.
k=0
Then
13X
(4.6) u=3 > a(0e, +0-c,),
k=0

with <5caf> - f(c)a JEP.
Proof. We have (0, ,2%") = (§_.,,z*"), and (0, , 2°") = —(J_c,, z*"). Therefore

Ck»

+oo
(1 = 2" = (5 3 ak(Bu, +6-0,), "), n> 0.
k=0

Consequently, we get the desired result. (I

4.2. Now we are able to calculate the moments and to give a discrete representation
for the canonical case.

Proposition 4.2. The moments of the form u(a), o # —n, n > 0 defined in (3.1)
are given by the following formulas:

,rn

(4.7) (U(Oé))gn = M )

n > 0; (u(a))2n+1 =0,n>0,

where

1
(4.8) T=5¢"" (1)
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Proof. Indeed, by the Lemma 2.2, the functional equation (3.1) can be written

-1
he(z*u(a)) + (— g2 22 4 4 5 )u(a) =0.
From the previous equation, we get

<hq(x2u(a)) + ( —qTm 22 4 %)u(a), $2”> =0,n>0,

then
-1
q2”<u(a),x2"+2> + <u(a), ( — q_2“_2x2 + 4—- 5 >x2”> =0,n2>0.

Consequently, we are to the following equation:

T

(@) 512 = T mrzars (@), 1 20.

Therefore "
-
(U(O‘))m = (@272 g2, n=>0
The form u(«) is symmetrical, then (u(oz))QnJrl =0, n > 0. Hence the desired
results. O

Proposition 4.3. When 0 < ¢ < 1, a« = —n, n > 0, the form u(a) possesses the
following discrete representation:

)k k(k—1)

_ 2k(a+1 B
(49) U(Oé) 2( 2a+2 kzo q q ) ((S_qu + 6&1’“)’

with
i
(4.10) €= Eqaﬂs/lfq.

Proof. On account of the Proposition 4.2 and the relation (4.3) we can deduce the

following result:
242 2n. 2
147 oo

("¢
(u(a)),, =7" @2 %) n > 0.
By virtue of (4.4), the previous equation becomes
too k, k(k—1)
~ 1 2k(a+1) (_1) q n, 2n
e =— q — Y 7"¢"", n>0.
(@), (€72 ¢%) 0 kz:;) (4%:4*)k

From (4.8), we get 7" = £2". Then, the last equation becomes

kgh(h=1)
(£9)*", n > 0.

(a(a))2n = ( 2a+2 ZQQk(CH_D

On account of lemma 4.1, we get (4.9). O

qq)
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