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q-EXTENSION OF SOME SYMMETRICAL AND

SEMI-CLASSICAL ORTHOGONAL POLYNOMIALS

OF CLASS ONE

M. Mejri

We study in detail a q-extension of a symmetrical form (functional) of class
one. We show that it is symmetrical and Hq-semi-classical of class one. The
moments and a discrete representation are given.

1. INTRODUCTION

The monic orthogonal polynomials sequence (MOPS) {Sn}n≥0 satisfying the
recurrence relation [1]

{

S0(x) = 1, S1(x) = x,

Sn+2(x) = xSn+1(x) − σn+1Sn(x), n ≥ 0,

where

σ2n+1 = − 1

4

n+ α

(2n+ α)(2n+ α+ 1)
, n ≥ 0,

σ2n+2 =
1

4

n+ 1

(2n+ α+ 1)(2n+ α+ 2)
, n ≥ 0,

is associated with the form v(α). This form is symmetrical semi-classical of class
one satisfying the functional equation [1]

(

x3v(α)
)′

+
(

− 2(α+ 1)x2 − 1

2

)

v(α) = 0.
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Replacing the derivative operator by the q-difference operator Hq [4, 6] and −2α

by
1 − q−2α−2

1 − q
in the precedent equation, we get q-Pearson equation

(1) Hq(x
3u(α)) +

(1 − q−2α−2

1 − q
x2 − 1

2

)

u(α) = 0, α ∈ C.

The aim of this contribution is to determine the symmetrical quasi-definite
functional u(α) fulfilling the last equation. This latter is considered the q-analogous
of the form v(α). When q → 1, we meet again the form v(α). In fact the problem of
defining q-analogous of symmetrical MOPS has been the interest of some authors
from different point of views [2, 3, 7, 10, 11, 14].

The second section is of a preliminary and introductory character. In the
third section, we determine the elements of three-term recurrence relation fulfilled
by the polynomial sequence, orthogonal with respect to u(α). Finally, in the fourth
section we give the moments and a discrete representation.

2. PRELIMINARIES

Let P be the vector space of polynomials with coefficients in C and let P ′ be
its dual space. We denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P . In particular,
for any f ∈ P , any a ∈ C \ {0}, we let fu and hau, be the forms defined by duality

〈fu, p〉 := 〈u, fp〉 ; 〈hau, p〉 := 〈u, hap〉, p ∈ P ,

where (hap)(x) = p(ax).

The form u is called quasi-definite functional if we can associate with it a
sequence {Pn}n≥0 of monic polynomials degPn = n, n ≥ 0 such that

〈u, PmPn〉 = rnδn,m, n,m ≥ 0; rn 6= 0, n ≥ 0.

The sequence {Pn}n≥0 is orthogonal with respect to u and fulfils the standard
recurrence relation:

(2.1)

{

P0(x) = 1, P1(x) = x− β0,

Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x), n ≥ 0,

with βn =
〈u, xp 2

n (x)〉

〈u, p 2
n 〉

, n ≥ 0, γn+1 =
〈u, p 2

n+1〉

〈u, p 2
n 〉

, n ≥ 0.

The form u is called normalized if (u)0 = 1 where in general (u)n = 〈u, xn〉, n ≥
0, are the moments of u. In this paper we suppose that the forms are normalized.

Let us introduce the Hahn’s operator [6]

(2.2) (Hqf)(x) :=
f(qx) − f(x)

(q − 1)x
, f ∈ P , q ∈ ˜C,
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where q 6= 0, qn 6= 1, n ≥ 0. By duality we have

〈Hqu, f〉 = −〈u,Hqf〉, u ∈ P ′, f ∈ P .

When q → 1, we meet again the derivative D.

Definition. A form u is called Hq-semi-classical when it is regular and satisfies

the equation

(2.3) Hq(φu) + ψu = 0,

where (φ, ψ) are two polynomials, φ monic with degφ ≥ 0 and degψ ≥ 1. The

corresponding orthogonal sequence {Pn}n≥0 is called Hq-semi-classical.

Moreover, if u is semi-classical satisfying (2.3 ), the class of u, denoted s is,
defined by [9]

s = min
(

deg (φ) − 2, deg (ψ) − 1
)

,

where the minimum is taken over all pairs (φ, ψ) satisfying the equation (2.3).

We have the following result:

Proposition 2.1. [9] Let u be a Hq-semi-classical form satisfying the equation

(2.3) and s = max
(

deg (φ)− 2, deg (ψ)− 1
)

. Then the class of u is s if and only if

∏

c∈Z(φ)

(

∣

∣qhqψ(c) + (Hqφ)(c)
∣

∣ +
∣

∣

〈

u, q
(

θcqψ
)

+
(

θcq ◦ θcφ
)〉∣

∣

)

> 0,

where Z(φ) := {z ∈ C, φ(z) = 0}, (θc p)(x) =
p(x) − p(c)

x − c
, p ∈ P.

When the last condition is not satisfied for c ∈ Z(φ) the equation (2.3) be-

comes

Hq

(

θc(φ)u
)

+
(

qθcqψ + θcq ◦ θcφ
)

u = 0.

Remark. If u is Hq-semi-classical of class zero, we are dealing with Hq -classical forms

or classical functional [8, 13].

Lemma 2.2. Let u ∈ P ′ the following statements are equivalent :

(i) The form u satisfies

(2.4) Hq

(

xφ(x)u
)

+ ψ(x)u = 0.

(ii) The form u satisfies

(2.5) hq(φu) +
(

(1 − q)ψ − φ
)

u = 0.
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Proof. For f ∈ P we have
〈

Hq(xφ(x)u), f
〉

= −
〈

xφ(x)u,Hqf
〉

= −
〈

xφ(x)u,
hqf − f

(q − 1)x

〉

=
〈 1

1 − q
φu, hqf

〉

+
〈 −1

1 − q
φu, f

〉

=
〈 1

1 − q
hq(φu), f

〉

+
〈 −1

1 − q
φu, f

〉

.

Therefore

(2.6)
〈

Hq(xφ(x)u), f
〉

=
〈 1

1 − q

(

hq(φu) − φu
)

, f
〉

.

Indeed, from (2.6) we can deduce the desired results. �

3. THE q-EXTENSION OF THE SEQUENCE {Sn}
n≥0

We assume that u(α) is a symmetrical Hq-semi-classical form and {Pn}n≥0

its orthogonal sequence satisfying the following functional equation:

(3.1) Hq

(

x3u(α)
)

+

(

1 − q−2α−2

1 − q
x2 − 1

2

)

u(α) = 0, α ∈ C,

we have

(3.2)

{

P0(x) = 1, P1(x) = x,

Pn+2(x) = xPn+1(x) − γn+1Pn(x), n ≥ 0.

Let

(3.3) In,k(q) =
〈

u(α), xkPn(x)Pn(q−1x)
〉

, n ≥ 0, 0 ≤ k ≤ 2.

Lemma 3.1. We have the following result :

(3.4) In,2(q
−1) − q−2α−2In,2(q) +

q − 1

2
In,0(q) = 0, n ≥ 0.

Proof. By virtue of the Lemma 2.2, the functional equation (3.1) is equivalent to

hq(x
2u(α) +

(

− q−2α−2x2 +
q − 1

2

)

u(α) = 0,

then, we obtain

〈

hq(x
2u(α)) +

(

− q−2α−2x2 +
q − 1

2

)

u(α), Pn(x)Pn(q−1x)
〉

= 0, n ≥ 0,

it is equivalent to

〈

x2u(α), Pn(x)Pn(qx)
〉

+
〈(

−q−2α−2x2+
q − 1

2

)

u(α), Pn(x)Pn(q−1x)
〉

= 0, n ≥ 0.
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The previous equation can be written as the following:

〈

u(α), x2Pn(x)Pn(qx)
〉

− q−2α−2
〈

u(α), x2Pn(x)Pn(q−1x)
〉

+
q − 1

2

〈

u(α), Pn(x)Pn(q−1x)
〉

= 0, n ≥ 0.

Thus (3.4). �

We need the following result:

Lemma 3.2. [12] Let {an}n≥0 with an 6= 0, n ≥ 0, {bn}n≥0 two sequences and

{xn}n≥0 the sequence satisfying the recurrence relation :

xn+1 = anxn + bn, n ≥ 0, x0 = a ∈ C \ {0}.

We have

xn+1 =

n
∏

k=0

ak

(

a+

n
∑

k=0

( k
∏

µ=0
aµ

)−1

bk

)

, n ≥ 0.

Lemma 3.3. The sequences {In,k(q)}n≥0 are given by the following formulas :

(3.5) In,0(q) = q−n
〈

u(α), P 2
n

〉

, n ≥ 0,

(3.6) I0,2(q) = γ1,

(3.7) I1,2(q) = q−1γ1

(

γ1 + γ2),

(3.8) In,2(q) = q−n
〈

u(α), P 2
n

〉

( n+1
∑

ν=1

γν − q2
n−1
∑

ν=1

γν

)

, n ≥ 2.

Proof. We have In,0(q) =
〈

u(α), Pn(x)Pn(q−1x)
〉

, n ≥ 0, by the orthogonality of
{Pn}n≥0 (3.5) can be deduced.

Writing I0,2(q) =
〈

u(α), x2
〉

=
〈

u(α), P2 + γ1

〉

, then we obtain (3.6).

Also, we have

I1,2(q) =
〈

u(α), x2P1(x)P1(q
−1x)

〉

=
〈

u(α), x{P2(x) + γ1}P1(q
−1x)

〉

( by (2.2))

= q−1
〈

u(α), P 2
2

〉

+ q−1γ1I0,2(q) (by the orthogonality of {Pn}n≥0),

by (3.6), we get (3.7).

For n ≥ 0, we can write

In+1,2(q) =
〈

u(α), x2Pn+1(x)Pn+1(q
−1x)

〉

=
〈

u(α), x{Pn+2(x) + γn+1Pn(x)}Pn+1(q
−1x)

〉

(by (3.2))

=
〈

u(α), xPn+2(x)Pn+1(q
−1x)

〉

+ γn+1

〈

u(α), xPn(x)Pn+1(q
−1x)

〉

,

by the orthogonality of {Pn}n≥0, we obtain

(3.9) In+1,2(q) = q−n−1
〈

u(α), P 2
n+2

〉

+ γn+1

〈

u(α), xPn(x)Pn+1(q
−1x)

〉

.
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On the other hand we have

〈

u(α), xPn(x)Pn+1(q
−1x)

〉

=
〈

u(α), xPn(x){q−1xPn(q−1x) − γnPn−1(q
−1x)}

〉

= q−1
〈

u(α), x2Pn(x)Pn(q−1x)
〉

− γn

〈

u(α), xPn(x)Pn−1(q
−1x)

〉

, n ≥ 1,

on account of the orthogonality of {Pn}n≥0, we can deduce that

(3.10)
〈

u(α), xPn(x)Pn+1(q
−1x)

〉

= q−1In,2(q) − q−n+1γn

〈

u(α), P 2
n

〉

, n ≥ 1.

By virtue of (3.10), equation (3.9) becomes

In+1,2(q) = q−1γn+1In,2(q) + q−n−1
〈

u(α), P 2
n+2

〉

− q−n+1γnγn+1

〈

u(α), P 2
n

〉

= q−1γn+1In,2(q) + q−n−1
〈

u(α), P 2
n+2

〉

− q−n+1γn

〈

u(α), P 2
n+1

〉

, n ≥ 1.

Using Lemma 3.2 and the relation (3.7), we get (3.8). �

Proposition 3.4. The sequence {γn+1}n≥0 given in (3.2) is defined by the following

formulas :

(3.11)



















γ2n+1 =
1 − q

2

q2n+2α − 1
(

q4n+2α − 1
)(

q4n+2α+2 − 1
) q2n+2α+2, n ≥ 0,

γ2n+2 =
q − 1

2

q2n+2 − 1
(

q4n+2α+2 − 1
)(

q4n+2α+4 − 1
)q4n+4α+4, n ≥ 0.

Proof. Letting n = 0 and n = 1 in (3.4), we obtain respectively:

I0,2(q
−1) − q−2α−2I0,2(q) +

q − 1

2
I0,0(q) = 0,

I1,2(q
−1) − q−2α−2I1,2(q) +

q − 1

2
I1,0(q) = 0.

On account of (3.5), (3.6) and (3.7), it follows that

(3.12) γ1 =
1

2

1 − q

q2α+2 − 1
q2α+2,

(3.13) γ1 + γ2 =
1

2

1 − q

q2α+4 − 1
q2α+2.

Taking into account the relations (3.5)and (3.8), equation (3.4) becomes

(3.14) (q2n − q−2α−2)

n+1
∑

ν=1

γν − q2(q2n−4 − q−2α−2)

n−1
∑

ν=1

γν +
q − 1

2
= 0, n ≥ 2.

Let

(3.15) Tn =

n
∑

ν=1

γν , n ≥ 1.
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Then the system (3.12)–(3.14) can be written:

(3.16) T1 =
1

2

1 − q

q2α+2 − 1
q2α+2,

(3.17) T2 =
1

2

1 − q

q2α+4 − 1
q2α+2,

(3.18) (q2n − q−2α−2)Tn+1 − q2(q2n−4 − q−2α−2)Tn−1 +
q − 1

2
= 0, n ≥ 2.

Moreover, letting n→ 2n and n→ 2n+ 1 in (3.18), we get respectively:

(3.19) (q4n − q−2α−2)T2n+1 − q2(q4n−4 − q−2α−2)T2n−1 +
q − 1

2
= 0, n ≥ 1,

(3.20) (q4n+2 − q−2α−2)T2n+2 − q2(q4n−2 − q−2α−2)T2n +
q − 1

2
= 0, n ≥ 1.

By virtue of (3.19), (3.16) and the Lemma 3.2, we get

(3.21) T2n+1 =
1

2(q + 1)

1 − q2n+2

q4n − q−2α−2
, n ≥ 0.

Likewise, by (3.20), (3.18) and the lemma 3.2, we obtain

(3.22) T2n =
1

2(q + 1)

1 − q2n

q4n−2 − q−2α−2
, n ≥ 1.

From (3.15), we get respectively γ2n+1 = T2n+1 − T2n, n ≥ 1 and γ2n+2 =
T2n+2 − T2n+1, n ≥ 0, then by (3.21), (3.22) and (3.16), we can deduce (3.11). �

Remarks. 1. The form u(α) is quasi-definite if and only if n + α 6= 0, n ≥ 0. u(α) is not
positive definite.

2. When q → 1 in (3.1) and(3.11), we meet again the MOPS {Sn}n≥0.

3. Let w(α) be the form defined by (w(α))n = (w(α))2n, n ≥ 0.

We have
(

h
τ−1w(α)

)

n
=

1

(−aq2; q2)n

, n ≥ 0, a = −q
2α

.

Then, h
τ−1w(α) it is the alternative q2-Charlier form [8, pp 98].

Corollary 3.5. When u(α) is quasi-definite it is Hq-semi-classical of class one.

Proof. Let φ(x) = x3 and ψ(x) =
1 − q−2α−2

1 − q
x2 − 1

2
.

We have qhq
̂ψ(0) + Hq

̂φ(0) = − q

2
6= 0. According to the proposition 2.1

we see that the functional equation in (3.1) can not be simplified by the factor x.
Therefore we get the desired result. �
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4. MOMENTS AND DISCRETE REPRESENTATION

4.1 We are going to use the following notations:[4, 5, 11]

(4.1) (a; q)n =











1, n = 0,

n−1
∏

k=0

(1 − aqk), n ≥ 1,

(4.2) (a; q)∞ =
+∞
∏

k=0

(1 − aqk), | q |< 1.

We have [5]

(4.3) (a; q)n =
(a; q)∞

(aqn; q)∞
, | q |< 1,

(4.4) (z; q)∞ =

+∞
∑

k=0

(−1)kq
k(k−1)

2

(q; q)k

zk, | q |< 1.

We need the following results:

Lemma 4.1. Let u ∈ P ′ be a symmetrical form such that

(4.5) (u)2n =

+∞
∑

k=0

ak(ck)2n, n ≥ 0.

Then

(4.6) u =
1

2

+∞
∑

k=0

ak

(

δck
+ δ−ck

)

,

with 〈δc, f〉 = f(c), f ∈ P .
Proof. We have 〈δck

, x2n〉 = 〈δ−ck
, x2n〉, and 〈δck

, x2n〉 = −〈δ−ck
, x2n〉. Therefore

(u)n = 〈u, xn〉 =
〈1

2

+∞
∑

k=0

ak

(

δck
+ δ−ck

)

, xn
〉

, n ≥ 0.

Consequently, we get the desired result. �

4.2. Now we are able to calculate the moments and to give a discrete representation
for the canonical case.

Proposition 4.2. The moments of the form u(α), α 6= −n, n ≥ 0 defined in (3.1)
are given by the following formulas :

(4.7)
(

u(α)
)

2n
=

τn

(q2α+2; q2)n

, , n ≥ 0;
(

u(α)
)

2n+1
= 0, n ≥ 0,

where

(4.8) τ =
1

2
q2α+2(q − 1).



86 M. Mejri

Proof. Indeed, by the Lemma 2.2, the functional equation (3.1) can be written

hq

(

x2u(α)
)

+
(

− q−2α−2x2 +
q − 1

2

)

u(α) = 0.

From the previous equation, we get

〈

hq

(

x2u(α)
)

+
(

− q−2α−2x2 +
q − 1

2

)

u(α), x2n
〉

= 0, n ≥ 0,

then

q2n
〈

u(α), x2n+2
〉

+
〈

u(α),
(

− q−2α−2x2 +
q − 1

2

)

x2n
〉

= 0, n ≥ 0.

Consequently, we are to the following equation:

(

u(α)
)

2n+2
=

τ

1 − q2n+2α+2

(

u(α)
)

2n
, n ≥ 0.

Therefore
(

u(α)
)

2n
=

τn

(q2α+2; q2)n

, n ≥ 0.

The form u(α) is symmetrical, then
(

u(α)
)

2n+1
= 0, n ≥ 0. Hence the desired

results. �

Proposition 4.3. When 0 < q < 1, α = −n, n ≥ 0, the form u(α) possesses the

following discrete representation :

(4.9) u(α) =
1

2(q2α+2; q2)∞

+∞
∑

k=0

q2k(α+1) (−1)kqk(k−1)

(q2; q2)k

(

δ−ξqk + δξqk

)

,

with

(4.10) ξ =
i√
2
qα+1

√

1 − q.

Proof. On account of the Proposition 4.2 and the relation (4.3) we can deduce the
following result:

(

u(α)
)

2n
= τn (q2α+2q2n; q2)∞

(q2α+2; q2)∞
, n ≥ 0.

By virtue of (4.4), the previous equation becomes

(

û(α)
)

2n
=

1

(q2α+2; q2)∞

+∞
∑

k=0

q2k(α+1) (−1)kqk(k−1)

(q2; q2)k

τnq2n, n ≥ 0.

From (4.8), we get τn = ξ2n. Then, the last equation becomes

(

û(α)
)

2n
=

1

(q2α+2; q2)∞

+∞
∑

k=0

q2k(α+1) (−1)kqk(k−1)

(q2; q2)k

(ξq)2n, n ≥ 0.

On account of lemma 4.1, we get (4.9). �
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