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We define the notion of ¢-perturbation of a densely defined adjointable map-
ping and prove that any such mapping f between Hilbert A-modules over a
fixed C*-algebra A with densely defined corresponding mapping g is A-linear
and adjointable in the classical sense with adjoint g. If both f and g are every-
where defined then they are bounded. Our work concerns with the concept of
HYERS-ULAM—RASSIAS stability originated from the TH. M. RASSIAS’ stabil-
ity theorem that appeared in his paper [On the stability of the linear mapping
in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300]. We also
indicate complementary results in the case where the HILBERT C*-modules
admit non-adjointable C*-linear mappings.

1. INTRODUCTION

We say a functional equation (£) is stable if any function g approximately
satisfying the equation (£) is near to an exact solution of (£). The equation (£)
is called superstable if every approximate solution of (£) is indeed a solution (see
5] for another notion of superstability namely superstability modulo the bounded
functions). More than a half century ago, S. M. ULAM [23] proposed the first
stability problem which was partially solved by D. H. HYERS [10] in the frame-
work of BANACH spaces. Later, T. AOKI [3] proved the stability of the additive
mapping and TH. M. RAss1As [20] proved the stability of the linear mapping for
mappings f from a normed space into a BANACH space such that the norm of the
Cauchy difference f(z+y)— f(x)— f(y) is bounded by the expression e(||z||” +||y||?)
for some € > 0, for some 0 < p < 1 and for all z,y. The terminology “HYERS—
ULAM—RASSIAS stability” was indeed originated from TH. M. RASSIAS’s paper
[20]. In 1994, a further generalization was obtained by P. GAVRUTA [9], in which
he replaced the bound e(]|z||? + ||y||?) by a general control function ¢(z,y). This
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terminology can be applied to functional equations and mappings on various gen-
eralized notions of HILBERT spaces; see [1,2,4]. We refer the interested reader to
monographs [6,7,11,13,19, 22| and references therein for more information.

The notion of HILBERT C*-module is a generalization of the notion of HIiL-
BERT space. This object was first used by I. KAPLANSKY [14]. Interacting with
the theory of operator algebras and including ideas from non-commutative geome-
try it progresses and produces results and new problems attracting attention, see
[8,15,18].

Let A be a C*-algebra and X be a complex linear space, which is a right
A-module with a scalar multiplication satisfying A(za) = z(Aa) = (Ax)a for x €
X,a € A, XA € C. The space X is called a (right) pre-HILBERT .A-module if there
exists an A-inner product (.,.) : X x X — A satisfying

(i) (x,z) >0 and (z,z) =0 if and only if x = 0;
11) <Zay + )‘Z> = <Zay> + )\<£E,Z>;

(
(iii) (z,ya) = (z,y)a;
(iv)

v) (2, y)" = (y, x);
for all z,y,z € X, A € C, a € A. The pre-HILBERT module X is called a (right)
HILBERT A-module if it is complete with respect to the norm ||z|| = ||(x,z)|'/?%.

Left HILBERT A-modules can be defined in a similar way. Two typical examples
are

(I) Every inner product space is a left pre-Hilbert C-module.

(IT) Let A be a C*-algebra. Then every norm-closed right ideal I of A is a
HILBERT A-module if one defines (a,b) = a*b (a,b € I).

A mapping f : X — Y between HILBERT A-modules is called adjointable if there
exists a mapping g : ) — X such that (f(z),y) = (x,g(y)) for all x € D(f) C
X,y € D C Y. Throughout the paper, we assume that f and g are both everywhere
defined or both densely defined. The unique mapping ¢ is denoted by f* and is
called the adjoint of f.

An A-linear bounded operator K on a Hilbert A-module X is called “com-
pact” if it belongs to the norm-closed linear span of the set of all elementary oper-
ators 0y (z,y € X) defined by 0, ,(2) = z(y, 2) (2 € X).

In this paper, we prove the superstability of adjointable mappings on Hilbert
C*-modules in the spirit of HYERS-ULAM-RASSIAS and indicate interesting com-
plementary results in the case where the HILBERT C'*-modules admit non-adjointable
C*-linear mappings.

2. MAIN RESULTS

Throughout this section, A denotes a C*-algebra, X and ) denote HILBERT
A-modules, and ¢ : X x Y — [0,00) is a function. We start our work with the
following definition.
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Definition 2.1. A (not necessarily linear) mapping f : X — Y is called a -
perturbation of an adjointable mapping if there exists a (not necessarily linear)
corresponding mapping g : Y — X such that

21)  {f@),y) — (=9 < plz,y)  (z€D(f) SX,y€D(g) CY).

To prove our main result, we need the following known lemma (cf. [15,p. 8])
that we prove it for the sake of completeness.

Lemma 2.2. Fvery densely defined adjointable mapping between Hilbert C*-modules
over a fixed C*-algebra A is A-linear. If the adjointable mapping is everywhere de-
fined then it is bounded.

Proof. Let f : X — Y and g : J — X be a pair of densely defined adjointable
mappings between two HILBERT C*-modules X and ). For every zi,z5,23 €
D(f) C X, every y € D(g) C Y, every A € C, every a € A the following equality
holds:

(f(Az1 + 22 + 230),9) = (A1 + 72 + 730, 9(Y))

Mz, 9(y)) + (2,9(y)) + a™(z3,9(y))
A f(@1),y) + (f(22), y) + a”(f(z3),y)
= (Af(@1) + f(z2) + f(23)a,y) .

By the density of the domain of ¢ in ) the equality yields the A-linearity of f.
Now, suppose f and g to be everywhere defined on X and ), respectively. For
each z in the unit sphere of X, define 7, : Y — A by 7,.(y) = (f(z),y) = (x, g(y)).
Then || ()] < ||zllllg()] < lg(y)|| for any = from the unit ball. By the BANACH—
STEINHAUS theorem we conclude that the set {||7.]| : * € X, ||z| < 1} is bounded.

Due to the equality || f(z)] = supy,j<i [[(f (@), )| = supj =1 [I72(»)] = [[72[ the
mapping f has to be bounded. (I

Theorem 2.3. Let f : X — )Y be a p-perturbation of an adjointable mapping
with corresponding mapping g : Y — X. Suppose that the mappings f and g
are everywhere defined on the respective Hilbert C*-modules. Furthermore, suppose
that for some sequence {c,} of non-zero complex numbers either both the conditions
(2.2) and (2.3) or both the conditions (2.4) and (2.5) below hold for the perturbation
bound mapping o(x,y) :

(2.2) ngrfoo |Cn|_1(p(cnx7y) =0 (xeX,ye)),

(2.3) lim |e,| to(z, cry) =0 (zxeX,ye)),
n—-+oo

(24) Jimenlp(e,'y) =0 (zeX,ye),

(2.5) lim |cu|o(z, ¢, ty) =0 (xeX,ye)).
n—-+00
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Then f is adjointable. In particular, f is bounded, continuous and A-linear,
as well as its adjoint is g.

Proof. Let A € C be an arbitrary number. Replacing = by Az in (2.1), we get

[(f(Az),y) — Az, g(y))]| < p(Az,y),

and since a multiplication of (2.1) by |A| yields

[Af (@), y) = O, g()) | < [Ae(, y)

we obtain

(2.6) 1{f(Az), y) — (Af (), 9) || < oAz, y) + [Ale(z, ).

If (2.3) holds, we take ¢,y instead y in (2.6) to get

ICFAz), ) = Af (@), )| < lenl ™ oAz, cny) + [M]len] ™ (@, cny)

and, as n — 0o, we obtain

(2.7) (fQz),y) = (Mf(2),y)  (weX,ye)).

If (2.5) holds, we take c;, 'y instead y in (2.6) and we arrive also at (2.7). Therefore,
(2.8) fx) = Af(2) (xeX,AeC).

If (2.2) holds, we take ¢, instead x in (2.1) to get

[(f(cn),y) — {cnz, g()) || < lcnz,y)

and, by (2.7), we obtain

(£ (@), 5) = (@, g < leal ™ olen, y).-

Taking the limit as n — oo we conclude that

(2.9) (f(x),y) =(z,9(y)) (reX,y€)).

Hence f is adjointable and admits the mapping g as its adjoint.

Alternatively, if (2.4) holds, we take c,, 'z instead x in (2.6) and arrive at the
same conclusion (2.9). By Lemma 2.2 the mapping f is A-linear and bounded with
the adjoint g. O

Using the sequence ¢, = 2" we get the following results.
Corollary 2.4. If f : X — )Y is an everywhere defined p-perturbation of an

adjointable mapping, where p(x,y) = € ||z||P [|y]|? (« > 0,p # 1,q # 1), then f is
adjointable and hence a bounded C*-linear mapping.
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Corollary 2.5. If f : X — Y is an everywhere defined @-perturbation of an ad-
jointable mapping, where p(x,y) =1 ||z||P +e2|ly||? (61 > 0,62 >0,p# 1,9 # 1),
then f is adjointable and hence a bounded C*-linear mapping.

We would like to point out that the proof of Theorem 2.3 works equally well
in the case that the functions f and g are well-defined merely on norm-dense subsets
of X and ), respectively. This case covers the situation of pairs of adjoint to each
other, densely defined A-linear operators between pairs of HILBERT .A-modules.
However, since boundedness cannot be demonstrated, in general, in that case we
arrive at the following statement:

Theorem 2.6. Let f : X — Y be a p-perturbation of an adjointable mapping with
corresponding mapping g : Y — X. Suppose, that the mappings f and g are densely
defined on the respective Hilbert C*-modules. Furthermore, suppose that for the
perturbation bound mapping p(x,y) either both the conditions (2.2) and (2.3), or
both the conditions (2.4) and (2.5) hold. Then f is adjointable. In particular, f is
A-linear, as well as its adjoint is g.

Corollary 2.7 The equation f(x)*y = xzg(y)* (z € Z,y € J) is superstable,
where f:Z — T and g : J — I are adjoint to each other, densely defined A-linear
mappings between right ideals T, J of A.

The critical case of ¢-perturbations is that one where the function ¢ satisfies
neither the pair of conditions (i) and (ii), nor the pair of conditions (i) and (ii’).
We demonstrate that there may exist p-perturbed bounded C*-linear mappings
f on certain types of HILBERT C*-modules X over certain C*-algebras A which
are not adjointable. Moreover, any non-adjointable bounded C*-linear mapping
f on suitably selected HILBERT C*-modules X can be @-perturbed by “compact”
operators on X using this type of perturbation functions.

Proposition 2.8. Let X be a Hilbert A-module over a given C*-algebra A. Suppose
there exists a non-adjointable bounded A-linear mapping f : X — X, (so X cannot
be self-dual by [8,15]). Then there exist (at least countably many) positive constants
Co and respective “compact” A-linear operators Ko : X — X («a € I) such that f
is ¢-perturbed for a function ¢(x,y) = cq - ||2] - |y|| and for g = K.

Proof. By results of HUAXIN LIN [16] and [17, Theorem 1.5], the BANACH algebra
End4(X) of all bounded A-linear mappings on X is the left multiplier algebra of
the C*-algebra K 4(X) of all “compact” A-linear operators on X. Since End4(X)
is the completion of K 4(X) with respect to the left strict topology defined by the
set of semi-norms {|| - K|| : K € K4(X)}, there exists a bounded net {K,, : a € I}
of “compact” operators such that the set { K,K : « € I'} converges with respect to
the operator norm to fK for any single “compact” operator K. Therefore,

0= lim [{(fK — KoK)(2),9)|| = lim [[{((f — Ka)K(2), )]

for any “compact” operator K. However, the set {K(z) : K € K4(X),z € X} is
norm-dense in X', hence

1/ (@), y) = (Ko@), )| < If = Kall - [[z] - [ly]]
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for any z,y € X and any o € I. Setting ¢, = ||f — K, for any fixed index «
and taking into account the adjointability of the operators {K,} we arrive at the
desired result. O

Corollary 2.9. Let X be a Hilbert A-module over a given C*-algebra A. Suppose
there exists a non-adjointable bounded A-linear mapping f : X — X. Then there
does not exist any p-perturbation of f such that p(xz,y) satisfies either both the
conditions (2.2) and (2.3) or both the conditions (2.4) and (2.5).
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