# Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu 

# SOME PROPERTIES OF THE SEQUENCE OF PRIME NUMBERS 

Vlad Copil, Laurenţiu Panaitopol

Let $p_{n}$ be the $n$-th prime number and $x_{n}=p_{n+1}^{n+1} / p_{n}^{n}$. We show that the sequence $\left(x_{n}\right)_{n \geq N}$ is not monotonic for any integer $N>1$ and that the series $\sum_{n=1}^{+\infty} 1 / x_{n}$ is divergent. Related series are studied as well.

## 1. INTRODUCTION

We use the well-known notation

- $\pi(x)$ - the number of prime numbers $\leq x$,
- $p_{n}$ - the $n$-th prime number,
- $d_{n}=p_{n+1}-p_{n}$, for $n \geq 1$,
- $f(n) \asymp g(n)$ if there exist $0<c_{1}<c_{2}$ such that $c_{1} f(n)<g(n)<c_{2} f(n)$ for $n$ large enough,
- $f(n) \sim g(n)$ if $\lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)}=1$.

The following results are also well known:

$$
\begin{gather*}
p_{n} \sim n \log n,  \tag{1}\\
\sum_{k=1}^{n} \frac{1}{p_{k}}=\log \log n+O(1) . \tag{2}
\end{gather*}
$$

Moreover, we need the following results.
I. We have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{p_{n+1}-p_{n}}{\log n}=+\infty \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification. 11N05, 11A41.
Keywords and Phrases. Prime numbers, sequences, series.

This result can be found in [6], but [4] contains sharper results, which were later proved.

Erdős and Prachar proved in [1] the following theorem:
II. Let $A(x)$ be the number of indices $k$ such that $x / 2<p_{k} \leq x$ and $p_{k+1}-p_{k}<$ $(1-\delta) \log x$, then

$$
\begin{equation*}
A(x)>c_{1} \frac{x}{\log x} \tag{4}
\end{equation*}
$$

for some $\delta \in(0,1)$ and $c_{1}>0$, and for all $x>0$ large enough.
Erdős shows in [3] the following fact:
III. There exists $c>1$ such that the inequality

$$
\begin{equation*}
d_{n}>c d_{n+1} \tag{5}
\end{equation*}
$$

holds for infinitely many values of $n$, and the inequality

$$
\begin{equation*}
d_{n+1}>c d_{n} \tag{6}
\end{equation*}
$$

holds for infinitely many values of $n$ as well.
The following result is proved in [5].
IV. If the sequence $\left(u_{n}\right)_{n \geq 1}$ is decreasing and consists only of positive numbers, and the sequence $\left(\alpha_{n}\right)_{n \geq 1}$ has the property that there exist $M \geq m>0$ such that $M \geq \frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{n} \geq m$ for every $n$, then

$$
M \sum_{k=1}^{n} u_{k} \geq \sum_{k=1}^{n} \alpha_{k} u_{k} \geq m \sum_{k=1}^{n} u_{k},
$$

and thus the series $\sum_{n=1}^{+\infty} u_{n}$ and $\sum_{n=1}^{+\infty} \alpha_{n} u_{n}$ are equiconvergent.
We shall denote $x_{n}=\frac{p_{n+1}^{n+1}}{p_{n}^{n}}$ and we are going to point out some properties of the sequence $\left(x_{n}\right)_{n \geq 1}$.

## 2. THE MONOTONICITY OF THE SEQUENCE $\left(x_{n}\right)_{n \geq 1}$

It immediately follows from Theorem III that the sequence $\left(d_{n}\right)_{n \geq 1}$ is not monotonic. It is also known that the sequence $\left(p_{n+1} / p_{n}\right)_{n \geq 1}$ is not monotonic. Thus the monotonicity problem for the sequence $\left(x_{n}\right)_{n \geq 1}$ arises in a natural way. Since $x_{n}>p_{n+1}$, it follows that $\lim _{n \rightarrow+\infty} x_{n}=+\infty$, hence the sequence $\left(x_{n}\right)_{n \geq 1}$ cannot be decreasing. The complete result in this connection is given by

Theorem 1. The sequence $\left(x_{n}\right)_{n \geq N}$ is not monotonic for any integer $N \geq 1$.

Proof. It suffices to show that the sequence is nonincreasing. To this end, we show that $x_{n+1}<x_{n}$ for infinitely many values of $n$.

We consider only the indices $n$ such that $d_{n-1}>c d_{n}$ with $c>1$ (see the theorem III above) and moreover $n>\frac{c+1}{c-1}$. We have

$$
\begin{equation*}
x_{n}<x_{n-1} \Longleftrightarrow p_{n+1}^{n+1} p_{n-1}^{n-1}<p_{n}^{2 n} . \tag{7}
\end{equation*}
$$

Since $d_{n-1}>c d_{n}$ we deduce $p_{n}>\frac{c p_{n+1}+p_{n-1}}{c+1}$. To prove (7), it suffices to show that $\left(\frac{c p_{n+1}+p_{n-1}}{c+1}\right)^{2 n}>p_{n+1}^{n+1} p_{n-1}^{n-1}$. If we denote $\frac{p_{n+1}}{p_{n-1}}=x>1$, then it remains to show that $\left(\frac{c x+1}{c+1}\right)^{2 n}>x^{n+1}$, that is,

$$
\begin{equation*}
c x-(c+1) x^{\frac{n+1}{2 n}}+1>0 \tag{8}
\end{equation*}
$$

For $x>1$ let $f(x)=c x-(c+1) x^{\frac{n+1}{2 n}}+1$. Then $f^{\prime}(x)=c-\frac{n+1}{2 n}(c+1) x^{\frac{1-n}{2 n}}>0$ because $x>1$ implies $x^{\frac{1-n}{2 n}} \leq 1$ while $n>\frac{c+1}{c-1}$ implies $\frac{(n+1)(c+1)}{2 n}<c$.

Consequently, the function $f$ is increasing for $x>1$. Since $\lim _{x \rightarrow 1} f(x)=0$, the desired inequality (8) follows.

## 3. THE SERIES $\sum_{n=1}^{+\infty} 1 / x_{n}$

The series $\sum_{n=1}^{+\infty} \frac{1}{p_{n}}$ is divergent, but (2) shows that the sequence $\sum_{k=1}^{n} \frac{1}{p_{k}}$ tends to infinity fairly slowly. Since $\frac{1}{x_{n}}<\frac{1}{p_{n+1}}$, the series $\sum_{n=1}^{+\infty} \frac{1}{x_{n}}$ could be convergent. Moreover we have

$$
\begin{equation*}
\frac{1}{x_{n}}=\frac{1}{p_{n+1}} \cdot\left(\frac{p_{n}}{p_{n+1}}\right)^{n}=\frac{1}{p_{n+1}} \cdot \frac{1}{\left(\left(1+d_{n} / p_{n}\right)^{p_{n} / d_{n}}\right)^{n d_{n} / p_{n}}} \tag{9}
\end{equation*}
$$

It now follows by (1) and the result in I that $\limsup _{n \rightarrow+\infty} \frac{n d_{n}}{p_{n}}=+\infty$.
Since $\lim _{n \rightarrow \infty} \frac{d_{n}}{p_{n}}=0$, we have $\lim _{n \rightarrow+\infty}\left(1+\frac{d_{n}}{p_{n}}\right)^{\frac{p_{n}}{d_{n}}}=e$, so $\liminf _{n \rightarrow+\infty} \frac{1 / x_{n}}{1 / p_{n+1}}=0$. This could mislead us to conclude that the series $\sum_{n=1}^{+\infty} \frac{1}{x_{n}}$ is convergent. But, we prove the opposite
Theorem 2. The series $\sum_{n=1}^{+\infty} \frac{1}{x_{n}}$ is divergent.

We first need the following auxiliary result.
Lemma 1. We have $\sum_{k=1}^{n} e^{-k d_{k} / p_{k}} \asymp n$.
Proof. Let $s_{n}=\sum_{k=1}^{n} e^{-k d_{k} / p_{k}}$. Since $-k d_{k} / p_{k}<0$, we have $s_{n}<n$.
We put $x=p_{n}$ in the theorem II, and it follows that there exist $A\left(p_{n}\right)$ indices $k$ such that $p_{n} / 2<p_{k} \leq p_{n}$ and $d_{k}<(1-\delta) \log p_{n}$. We have $A\left(p_{n}\right)>c_{1} \frac{p_{n}}{\log p_{n}}$ and (1) implies that there exists $c_{2}>0$ such that $A\left(p_{n}\right)>c_{2} n$. For these indices $k$ we have

$$
\begin{equation*}
e^{-k d_{k} / p_{k}}>e^{-(1-\delta) k \log p_{n} / p_{k}} \tag{10}
\end{equation*}
$$

We have that $p_{k} \sim k \log k \sim k \log p_{k}$ and, since $p_{n} / 2<p_{k} \leq p_{n}$, it follows that $\log p_{k} \sim \log p_{n}$, hence $\frac{k \log p_{n}}{p_{k}} \sim 1$. Consequently $\frac{k \log p_{n}}{p_{k}}<c_{3}$ and then by (10) we have $e^{-k d_{k} / p_{k}}>e^{-c_{3}(1-\delta)}=c_{4}$. This implies $s_{n} \geq A\left(p_{n}\right) \cdot c_{4}>c_{2} c_{4} n$ and, since $s_{n}<n$, we get $s_{n} \asymp n$.
Proof of Theorem 2. Let $\alpha_{k}=e^{-k d_{k} / p_{k}}$ and $u_{k}=1 / p_{k+1}$. Since $\sum_{k=1}^{n} \alpha_{k} \asymp n$ and the series $\sum_{n=1}^{+\infty} \frac{1}{p_{n+1}}$ is divergent, the property IV implies that the series $\sum_{n=1}^{+\infty} \frac{e^{-n d_{n} / p_{n}}}{p_{n+1}}$ is divergent.

Since for $x>0$ we have $(1+x)^{1 / x}<e$, we get from (9)

$$
\begin{equation*}
\frac{1}{x_{n}}>\frac{1}{p_{n+1}} \cdot \frac{1}{e^{n d_{n} / p_{n}}} \tag{11}
\end{equation*}
$$

and the divergence of the series $\sum_{n=1}^{+\infty} \frac{1}{x_{n}}$ follows.
Remark 1. The above result can be stated in a more precise form. With the above notation we have $s_{n} / n>c_{2} c_{4}$. It follows by IV that

$$
\sum_{k=1}^{n} \frac{e^{-k d_{k} / p_{k}}}{p_{k+1}}>c_{2} c_{4} \sum_{k=1}^{n} \frac{1}{p_{k+1}}
$$

hence by (2) and (10) we have $S_{n}=\sum_{k=1}^{n} \frac{1}{x_{k}}>c_{5} \log \log n$ with $c_{5}>0$.
Since $\frac{1}{x_{k}}<\frac{1}{p_{k+1}}$, it follows that $S_{n}<\sum_{k=1}^{n} \frac{1}{p_{k}}<c_{6} \log \log n$. Thus we have $S_{n} \asymp \log \log n$.
REMARK 2. Since $\frac{p_{n+1}^{n}}{p_{n}^{n+1}}>\frac{1}{x_{n}}$, we conclude that the series $\sum_{n=1}^{+\infty} \frac{p_{n+1}^{n}}{p_{n}^{n+1}}$ is divergent. We denote $\sigma_{n}=\sum_{k=1}^{n} \frac{p_{k+1}^{k}}{p_{k}^{k+1}}$ and it follows that $\sigma_{n}>S_{n}>c_{5} \log \log n$. In this this regard we
may raise the following
Open Problem. Is it true that $\sigma_{n} \asymp \log \log n$ ?

## REFERENCES

1. P. Erdős, K. Prachar: Sätze und Probleme über $p_{k} / k$. Abh. Math. Sem. Univ. Hamburg, 25 (1961/1962), 251-256.
2. P. Erdős, P. Turán: On some new question on the distribution of prime numbers. Bulletin Amer. Math. Soc., 54 (1948), 371-378.
3. P. Erdős: On the difference of consecutive primes. Bull. Amer. Math. Soc., 44 (1948), 885-889.
4. D. S. Mitrinović, J. Sándor, B. Crstici: Handbook of Number Theory. Kluwer Academic Publishers, Dordrecht - Boston - London, (1996).
5. L. Panaitopol: Generalization of an inequality of Tchebysheff and some applications. Gaz. Mat. XCVII, No. 4 (2000), 324-327 (in Romanian).
6. B. Westzynthuis: Über die Verteilung der Zahlen die zu den $n$ ersten Primzahlen teilerfremd. Comm. Phys. math. Soc. Sci. Fenn. Helsingfors, 5 (1931), 1-37.

University "Spiru Haret",
Department of Mathematics,
(Revised June 27, 2008)
Str. Ion Ghica, 13, 030045,
Bucharest, Romania
E-mail: vladcopil@gmail.com
University of Bucharest,
Department of Mathematics,
Str. Academiei 14, 010014,
Bucharest, Romania,
E-mail: pan@fmi.unibuc.ro

