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SOME PROPERTIES OF THE SEQUENCE

OF PRIME NUMBERS

Vlad Copil, Laurenţiu Panaitopol

Let pn be the n-th prime number and xn = p n+1

n+1 /p n
n . We show that the

sequence (xn)n≥N is not monotonic for any integer N > 1 and that the series
+∞
∑

n=1

1/xn is divergent. Related series are studied as well.

1. INTRODUCTION

We use the well-known notation

• π(x) – the number of prime numbers ≤ x,

• pn – the n-th prime number,

• dn = pn+1 − pn, for n ≥ 1,

• f(n) � g(n) if there exist 0 < c1 < c2 such that c1f(n) < g(n) < c2f(n) for
n large enough,

• f(n) ∼ g(n) if lim
n→+∞

f(n)

g(n)
= 1.

The following results are also well known:

(1) pn ∼ n log n,

(2)

n
∑

k=1

1

pk
= log log n + O(1).

Moreover, we need the following results.

I. We have

(3) lim sup
n→+∞

pn+1 − pn

log n
= +∞.
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This result can be found in [6], but [4] contains sharper results, which were
later proved.

Erdős and Prachar proved in [1] the following theorem:

II. Let A(x) be the number of indices k such that x/2 < pk ≤ x and pk+1−pk <
(1 − δ) log x, then

(4) A(x) > c1
x

log x

for some δ ∈ (0, 1) and c1 > 0, and for all x > 0 large enough.

Erdős shows in [3] the following fact:

III. There exists c > 1 such that the inequality

(5) dn > cdn+1

holds for infinitely many values of n, and the inequality

(6) dn+1 > cdn

holds for infinitely many values of n as well.

The following result is proved in [5].

IV. If the sequence (un)n≥1 is decreasing and consists only of positive numbers,
and the sequence (αn)n≥1 has the property that there exist M ≥ m > 0 such that

M ≥
α1 + α2 + · · · + αn

n
≥ m for every n, then

M

n
∑

k=1

uk ≥

n
∑

k=1

αkuk ≥ m

n
∑

k=1

uk,

and thus the series
+∞
∑

n=1
un and

+∞
∑

n=1
αnun are equiconvergent.

We shall denote xn =
p n+1

n+1

p n
n

and we are going to point out some properties of

the sequence (xn)n≥1.

2. THE MONOTONICITY OF THE SEQUENCE (xn)
n≥1

It immediately follows from Theorem III that the sequence (dn)n≥1 is not
monotonic. It is also known that the sequence (pn+1/pn)n≥1 is not monotonic.
Thus the monotonicity problem for the sequence (xn)n≥1 arises in a natural way.
Since xn > pn+1, it follows that lim

n→+∞
xn = +∞, hence the sequence (xn)n≥1

cannot be decreasing. The complete result in this connection is given by

Theorem 1. The sequence (xn)n≥N is not monotonic for any integer N ≥ 1.
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Proof. It suffices to show that the sequence is nonincreasing. To this end, we show
that xn+1 < xn for infinitely many values of n.

We consider only the indices n such that dn−1 > cdn with c > 1 ( see the

theorem III above) and moreover n >
c + 1

c − 1
. We have

(7) xn < xn−1 ⇐⇒ p n+1
n+1 p n−1

n−1 < p 2n
n .

Since dn−1 > cdn we deduce pn >
cpn+1 + pn−1

c + 1
. To prove (7), it suffices to

show that
(

cpn+1 + pn−1

c + 1

)2n

> p n+1
n+1 p n−1

n−1 . If we denote
pn+1

pn−1

= x > 1, then it

remains to show that
(

cx + 1

c + 1

)2n

> xn+1, that is,

(8) cx − (c + 1)x
n+1

2n + 1 > 0.

For x>1 let f(x)= cx−(c+1)x
n+1

2n +1. Then f ′(x) = c−
n + 1

2n
(c+1)x

1−n
2n > 0

because x > 1 implies x
1−n
2n ≤ 1 while n >

c + 1

c − 1
implies

(n + 1)(c + 1)

2n
< c.

Consequently, the function f is increasing for x > 1. Since lim
x→1

f(x) = 0, the

desired inequality (8) follows. �

3. THE SERIES
+∞
∑

n=1

1/xn

The series
+∞
∑

n=1

1

pn
is divergent, but (2) shows that the sequence

n
∑

k=1

1

pk
tends

to infinity fairly slowly. Since
1

xn
<

1

pn+1

, the series
+∞
∑

n=1

1

xn
could be convergent.

Moreover we have

(9)
1

xn
=

1

pn+1
·

(

pn

pn+1

)n

=
1

pn+1
·

1
(

(1 + dn/pn)pn/dn

)ndn/pn

.

It now follows by (1) and the result in I that lim sup
n→+∞

ndn

pn
= +∞.

Since lim
n→∞

dn

pn
= 0, we have lim

n→+∞

(

1 +
dn

pn

)

pn

dn

= e, so lim inf
n→+∞

1/xn

1/pn+1

= 0.

This could mislead us to conclude that the series
+∞
∑

n=1

1

xn
is convergent. But, we

prove the opposite

Theorem 2. The series
+∞
∑

n=1

1

xn
is divergent.
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We first need the following auxiliary result.

Lemma 1. We have
n
∑

k=1

e−kdk/pk � n.

Proof. Let sn =
n
∑

k=1

e−kdk/pk . Since −kdk/pk < 0, we have sn < n.

We put x = pn in the theorem II, and it follows that there exist A(pn) indices

k such that pn/2 < pk ≤ pn and dk < (1 − δ) log pn. We have A(pn) > c1
pn

log pn

and (1) implies that there exists c2 > 0 such that A(pn) > c2n. For these indices k
we have

(10) e−kdk/pk > e−(1−δ)k log pn/pk .

We have that pk ∼ k log k ∼ k log pk and, since pn/2 < pk ≤ pn, it follows

that log pk ∼ log pn, hence
k log pn

pk
∼ 1. Consequently

k log pn

pk
< c3 and then by

(10) we have e−kdk/pk > e−c3(1−δ) = c4. This implies sn ≥ A(pn) · c4 > c2c4n and,
since sn < n, we get sn � n. �

Proof of Theorem 2. Let αk = e−kdk/pk and uk = 1/pk+1. Since
n
∑

k=1

αk � n and

the series
+∞
∑

n=1

1

pn+1

is divergent, the property IV implies that the series
+∞
∑

n=1

e−ndn/pn

pn+1

is divergent.

Since for x > 0 we have (1 + x)1/x < e, we get from (9)

(11)
1

xn
>

1

pn+1
·

1

endn/pn

and the divergence of the series
+∞
∑

n=1

1

xn
follows. �

Remark 1. The above result can be stated in a more precise form. With the above
notation we have sn/n > c2c4. It follows by IV that

n
∑

k=1

e−kdk/pk

pk+1

> c2c4

n
∑

k=1

1

pk+1

hence by (2) and (10) we have Sn =
n
∑

k=1

1

xk
> c5 log log n with c5 > 0.

Since
1

xk
<

1

pk+1

, it follows that Sn <
n
∑

k=1

1

pk
< c6 log log n. Thus we have

Sn � log log n.

Remark 2. Since
p n

n+1

p n+1
n

>
1

xn
, we conclude that the series

+∞
∑

n=1

p n
n+1

p n+1
n

is divergent. We

denote σn =
n
∑

k=1

p k
k+1

p k+1

k

and it follows that σn > Sn > c5 log log n. In this this regard we
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may raise the following

Open Problem. Is it true that σn � log log n ?
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