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AN EQUIVALENT FORM OF YOUNG’S

INEQUALITY WITH UPPER BOUND

E. Minguzzi

Young’s integral inequality is complemented with an upper bound to the re-
mainder. The new inequality turns out to be equivalent to Young’s inequali-
ty, and the cases in which the equality holds become particularly transparent
in the new formulation.

1. FORMULATION OF THE THEOREM

Let φ : [α1, α2] → [β1, β2] be a continuous increasing function and let ψ :
[β1, β2] → [α1, α2] be its inverse, ψ(φ(α)) = α (so that φ(αi) = βi, i = 1, 2). Define

(1) F (a, b) =
∫ a

α1

φdx+
∫ b

β1

ψ dx− ab+ α1β1.

Young’s inequality [2, 1, 4] states that for every a ∈ [α1, α2] and b ∈ [β1, β2]

(2) 0 ≤ F (a, b),

where the equality holds iff φ(a) = b (or, equivalently, ψ(b) = a).

Among the classical inequalities Young’s inequality is probably the most
intuitive. Indeed, its meaning can be easily grasped once the integrals are regarded
as areas below and on the left of the graph of φ (see, for instance, [5]). Despite its
simplicity, it has profound consequences. For instance, the Cauchy, Holder and
Minkowski inequalities can be easily derived from it [5].

In this work I am going to improve Young’s inequality as follows

Theorem 1.1. Under the assumptions of Young’s inequality, we have for every

a ∈ [α1, α2] and b ∈ [β1, β2],

(3) 0 ≤ F (a, b) ≤ −
(
ψ(b) − a)(φ(a) − b

)
,
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where the former equality holds if and only if the latter equality holds.

Note that the theorem contains Young’s inequality as a special case, with
the advantage that the equality case is naturally taken into account by the special
form of the upper bound. For instance, if ψ(b) = a then F (a, b) = 0 which is
one of the additional statements contained in the classical formulation of Young’s
inequality. Nevertheless, I will not prove again Young’s inequality, instead I will
use it repeatedly to obtain the extended version given by theorem 1.1.

Remark 1.2. Over the years several extensions of Young’s inequality have been con-
sidered. A good account is given by [4]. Among those only M. Merkle’s contribution
[3] seems to go in the same direction considered by this work. Theorem 1.1 improves
Merkle’s result, which in the case α1 = β1 = 0 states that (notation of this work)

F (a, b) ≤ max{aφ(a), bψ(b)} − ab.

Indeed, the last term of (3) can be rewritten
(
aφ(a) + bψ(b) − φ(a)ψ(b)

)
− ab,

and we have only to show that

aφ(a) + bψ(b) − φ(a)ψ(b) ≤ max{aφ(a), bψ(b)},

and that for some a, b, the inequality is strict. Indeed, if φ(a) > b then, since φ and ψ are
one the inverse of the other, a > ψ(b) and thus aφ(a) > bψ(b). Then

aφ(a) + bψ(b) − φ(a)ψ(b) = aφ(a) +
(
b− φ(a)

)
ψ(b) < aφ(a) = max{aφ(a), bψ(b)}.

The case φ(a) < b gives again a strict inequality while the case φ(a) = b gives an equality.

2. THE PROOF

The proof of theorem 1.1 is based on the next lemma

Lemma 2.1. For every a, ã ∈ [α1, α2] and b, b̃ ∈ [β1, β2], we have

(4) F (a, b) + F (ã, b̃) ≥ −(ã− a)(̃b − b),

where the equality holds iff ã = ψ(b) and b̃ = φ(a).

Proof. Young’s inequality gives

∫ a

α1

φdx +
∫ b̃

β1

ψ dx+ α1β1 ≥ ab̃(5)

∫ ã

α1

φdx +
∫ b

β1

ψ dx+ α1β1 ≥ ãb(6)

then
(∫ a

α1

φdx+
∫ b

β1

ψ dx− ab+ α1β1

)
+

(∫ ã

α1

φdx+
∫ b̃

β1

ψ dx− ã b̃+ α1β1

)

=

(∫ a

α1

φdx+
∫ b̃

β1

ψ dx+ α1β1

)
+

(∫ ã

α1

φdx+
∫ b

β1

ψ dx+ α1β1

)
− ab− ã b̃

≥ ab̃+ ã b− ab− ã b̃ = −(ã− a)(̃b− b).
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The equality holds iff it holds in (5) and (6), that is iff ã = ψ(b) and b̃ = φ(a).
�

We are ready to prove the theorem.

Proof of theorem 1.1. Consider (4) with ã = ψ(b) and b̃ = φ(a)

F (a, b) + F
(
ψ(b), φ(a)

)
= −

(
ψ(b) − a

)(
φ(a) − b

)
.

By Young’s inequality, since ψ(b) ∈ [α1, α2] and φ(a) ∈ [β1, β2], F
(
ψ(b), φ(a)

)
≥ 0,

thus
F (a, b) ≤ −

(
φ(a) − b

)(
ψ(b) − a

)
.

The equality holds iff F
(
ψ(b), φ(a)

)
= 0 which holds, again by the usual Young’s

inequality, iff φ
(
ψ(b)

)
= φ(a) i.e. b = φ(a) (or equivalently a = ψ(b)), which holds

iff the inequality F (a, b) ≥ 0 is actually an equality. �

3. THE LEGENDRE TRANSFORM

It is worthwhile to recall the connection with the Legendre transform. If
Φ : [α1, α2] → R and Ψ : [β1, β2] → R are two C1 functions with increasing
derivatives such that they are the Legendre transform of each other then it is
well known that they admit the integral representation Φ(a) = Φ(α1) +

∫ a

α1

φdx,

Ψ(b) = Ψ(β1) +
∫ b

β1

ψ dx where φ and ψ are two C0 increasing function which are

one the inverse of the other, β1 = φ(α1) and Φ(α1) + Ψ(β1) = α1β1. Thus the
theorem for the Legendre transforms case takes the following form:

Theorem 3.1. If Φ : [α1, α2] → R and Ψ : [β1, β2] → R are two C1 functions with

increasing derivatives such that they are the Legendre transform of each other, then

for every a ∈ [α1, α2], b ∈ [β1, β2]

(7) 0 ≤ Φ(a) + Ψ(b) − ab ≤ −
(
Φ′(a) − b

)(
Ψ′(b) − a

)
,

where the former equality holds iff the latter equality holds.

Example 3.2. Take Φ(a) =
aα

α
and Ψ(b) =

bβ

β
with

1

α
+

1

β
= 1, and α, β > 1, then we

obtain the inequalities

(8) 0 ≤
aα

α
+
bβ

β
− ab ≤ −(aα−1 − b)(bβ−1 − a),

in particular the last inequality can be rewritten

b
β−1

a
α−1 ≤

1

α
b
β +

1

β
a

α =
1

α
(bβ−1)α +

1

β
(aα−1)β

,

that is, it has as expected the same form of Young’s inequality.
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4. D. S. Mitrinović, J. E. Pečarić, A. M. Fink: Classical and new inequalities in

analysis. Kluwer Academic Publishers, Dordrecht, 1993.

5. E. Tolsted: An elementary derivation of the Cauchy, Holder, and Minkowski inequal-

ities from Young’s inequality. Math. Mag., 37 (1964), 2–12.

Department of Applied Mathematics, (Received February 11, 2008)

Florence University, Via S. Marta 3, (Revised July 26, 2008)

I-50139 Florence, Italy

E–mail: ettore.minguzzi@unifi.it


