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WEAK AND STRONG CONVERGENCE OF AN

ITERATIVE METHOD FOR NONEXPANSIVE

MAPPINGS IN HILBERT SPACES

Yu Miao, Junfen Li

In a real Hilbert space H , starting from an arbitrary initial point x0 ∈ H , an

iterative process is defined as follows: xn+1 = anxn +(1− an)T
λn+1

f yn, yn =

bnxn + (1 − bn)T βn
g xn, n ≥ 0, where T

λn+1

f x = Tx − λn+1µff(Tx), T βn
g x =

Tx − βnµgg(Tx), (∀ x ∈ H), T : H → H a nonexpansive mapping with
F (T ) 6= ∅ and f (resp. g) : H → H an ηf (resp. ηg)-strongly monotone and
kf (resp. kg)-Lipschitzian mapping, {an} ⊂ (0, 1), {bn} ⊂ (0, 1) and {λn} ⊂
[0, 1), {βn} ⊂ [0, 1). Under some suitable conditions, several convergence
results of the sequence {xn} are shown.

1. INTRODUCTION

Let H be a Hilbert space with inner product 〈· , ·〉 and norm ‖·‖. A mapping
T : H → H is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ H .
A mapping f : H → H is said to be η-strongly monotone if there exists constant
η > 0 such that 〈fx − fy, x − y〉 ≥ η‖x − y‖2 for any x, y ∈ H . f : H → H is said
to be k-Lipschitzian if there exists constant k > 0 such that ‖fx− fy‖ ≤ k‖x− y‖
for any x, y ∈ H .

The interest and importance of construction of fixed points of nonexpansive
mappings stem mainly from the fact that it may be applied in many areas, such
as image recovery and signal processing (see, e.g., [1,2,12]), solving convex min-
imization problems (see, e.g., [3,16–19]). Iterative techniques for approximating
fixed points of nonexpansive mappings have been studied by various authors (see,
e.g., [1,6–10,13,14], etc.), using famous Mann iteration method, Ishikawa itera-
tion method, and many other iteration methods such as, viscosity approximation
method [7] and CQ method [8].
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Let f : H → H be a nonlinear mapping and K a nonempty closed convex
subset of H . The variational inequality problem is formulated as finding a point
u∗ ∈ K such that

(1.1) (V I(f, K))〈f(u∗), ν − u∗〉 ≥ 0, ∀ν ∈ K.

The variational inequalities were initially studied by Kinderlehrer and
Stampacchia [5], and ever since have been widely studied. It is well known that
the V I(f, K) is equivalent to the fixed point equation

(1.2) u∗ = PK(u∗ − µf(u∗)),

where PK is the projection from H onto K and µ is an arbitrarily fixed constant.
In fact, when f is an η-strongly monotone and Lipschitzian mapping on K and
µ > 0 small enough, then the mapping defined by the right-hand side of (1.2) is a
contraction.

For reducing the complexity of computation caused by the projection PK ,
Yamada [18] proposed an iteration method to solve the variational inequalities
V I(f, K). For arbitrary u0 ∈ H ,

(1.3) un+1 = Tun − λn+1µf(T (un)), n ≥ 0,

where T is a nonexpansive mapping from H into itself, K is the fixed point set
of T , f is an η-strongly monotone and k-Lipschitzian mapping on K, {λn} is a
real sequence in [0, 1), and 0 < µ < 2η/k2. Then Yamada [18] proved that {un}
converges strongly to the unique solution of the V I(f, K) as {λn} satisfies the
following conditions:

(1) lim
n→+∞

λn = 0; (2)
+∞
∑

n=0
λn = ∞; (3) lim

n→+∞

(λn − λn+1)/λ2
n+1 = 0.

Based on the idea of iterative process (1.3), recently, Wang [15] discussed
the more general Mann iteration scheme and gave the following results: Let H be
a Hilbert space, T : H → H a nonexpansive mapping with F (T ) := {x ∈ H, Tx =
x} 6= ∅, and f : H → H an η-strongly monotone and k-Lipschitzian mapping. For
any x0 ∈ H , {xn} is defined by

(1.4) xn+1 = anxn + (1 − an)T λn+1xn, n ≥ 0,

where

(1.5) T λx = Tx − λµf(Tx), ∀ x ∈ H,

where {an} ⊂ (0, 1) and {λn} ⊂ [0, 1), then under some suitable conditions, the
sequence {xn} is shown to converge strongly to a fixed point of T and the necessary
and sufficient conditions that {xn} converges strongly to a fixed point of T are
obtained.

Motivated by the above works, we will generalize the scheme (1.4) as follows.
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Let H be a Hilbert space, T : H → H a nonexpansive mapping with F (T ) 6= ∅
and f(resp. g) : H → H an ηf (resp. ηg)-strongly monotone and kf (resp. kg)-
Lipschitzian mapping. For any x0 ∈ H, {xn} is defined by

(1.6)
xn+1 = anxn + (1 − an)T

λn+1

f yn,

yn = bnxn + (1 − bn)T βn

g xn, n ≥ 0,

where

(1.7)
T

λn+1

f x = Tx − λn+1µff(Tx), ∀ x ∈ H,

T βn

g x = Tx − βnµgg(Tx), ∀ x ∈ H,

and {an} ⊂ (0, 1), {bn} ⊂ (0, 1) and {λn} ⊂ [0, 1), {βn} ⊂ [0, 1) satisfy the follow-

ing conditions :

(i) α ≤ an ≤ 1 − α, β ≤ bn ≤ 1 − β for some α, β ∈ (0, 1/2);

(ii)
+∞
∑

n=1
λn < +∞,

+∞
∑

n=1
βn < +∞;

(iii) 0 < µf < 2ηf/k2
f , 0 < µg < 2ηg/k2

g.

2. PRELIMINARIES

In this section we will state some useful notations and lemmas.

A Banach space E is said to satisfy Opial’s condition if for any sequence
{xn} in E, xn ⇀ x implies that lim sup

n→+∞

‖xn − x‖ < lim sup
n→+∞

‖xn − y‖ for all y ∈ E

with y 6= x, where xn ⇀ x denotes that {xn} converges weakly to x. It is well
known that every Hilbert space satisfies Opial’s condition.

A mapping T with domain D(T ) and range R(T ) in E is said to be demiclosed
at p; if whenever {xn} is a sequence in D(T ) such that {xn} converges weakly to
x∗ ∈ D(T ) and {Txn} converges strongly to p, then Tx∗ = p.

A mapping T : K → E is said to be demicompact if, for any sequence {xn}
in K such that ‖xn − Txn‖ → 0 (n → ∞), there exists subsequence {xnj

} of {xn}
such that {xnj

} converges strongly to x∗ ∈ K.

Lemma 2.1. [18]. Let T λx = Tx−λµf(Tx), where T : H → H is a nonexpansive

mapping from H into itself and f is an η-strongly monotone and k-Lipschitzian

mapping from H into itself. If 0 ≤ λ < 1 and 0 < µ < 2η/k2, then T λ is a

contraction and satisfies

(2.1) ‖T λx − T λy‖ ≤ (1 − λτ)‖x − y‖, ∀ x, y ∈ H,

where τ = 1 −
√

1 − µ(2η − µk2).
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Lemma 2.2. [14]. Let {sn}, {tn} be two nonnegative sequence satisfying for some

real number N0 ≥ 1,

sn+1 ≤ sn + tn ∀n ≥ N0.

If
+∞
∑

n=1
tn < +∞, then lim

n→+∞

sn exists.

Lemma 2.3. [4]. Let K be a nonempty closed convex subset of a real Hilbert space

H and T a nonexpansive mapping from K into itself. If T has a fixed point, then

I − T is demiclosed at zero, where I is the identity mapping of H.

3. MAIN RESULTS

First we give the following key lemma.

Lemma 3.1. For the iterative process (1.6), we have

(1) lim
n→+∞

‖xn − p‖ exists for each p ∈ F (T );

(2) lim
n→+∞

‖xn − Txn‖ = 0.

Proof. At first we recall the well known identity in Hilbert space H : for any
x, y ∈ H and t ∈ [0, 1],

(3.1) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2.

For any p ∈ F (T ), from Lemma 2.1, we have

(3.2)
‖T βn

g xn − p‖ = ‖T βn

g xn − T βn

g p + T βn

g p − p‖

≤ (1 − βnτg)‖xn − p‖ + βnµg‖g(p)‖,

and

(3.3)

‖T
λn+1

f yn − p‖ = ‖T
λn+1

f yn − T
λn+1

f p + T
λn+1

f p − p‖

≤ ‖T
λn+1

f yn − T
λn+1

f p‖ + ‖T
λn+1

f p − p‖

≤ (1 − λn+1τf )‖yn − p‖ + λn+1µf‖f(p)‖,

where

τg = 1 −
√

1 − µg(2ηg − µgk2
g), τf = 1 −

√

1 − µf (2ηf − µfk2
f ).

Furthermore, by the elementary inequality,

2ab ≤ ta2 + (1/t)b2, for any a, b ∈ R, t > 0,
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we obtain

(3.4)

‖T βn

g xn − p‖2 ≤ (1 +
βnτg

1 − βnτg

)(1 − βnτg)
2‖xn − p‖2

+ (1 +
1 − βnτg

βnτg

)β2
nµ2

g‖g(p)‖2

= (1 − βnτg)‖xn − p‖2 +
βnµ2

g

τg

‖g(p)‖2

and

(3.5) ‖T
λn+1

f yn − p‖2 ≤ (1 − λn+1τf )‖yn − p‖2 +
λn+1µ

2
f

τf

‖f(p)‖2.

From (3.1) and (3.4), it follows

(3.6)

‖yn − p‖2 = ‖bn(xn−p) + (1−bn)(T βn

g xn−p)‖2

= bn‖xn−p‖2 + (1−bn)‖T βn

g xn−p‖2−bn(1−bn)‖T βn

g xn−xn‖
2

≤ [bn + (1 − bn)(1 − βnτg)]‖xn − p‖2 + (1 − bn)
βnµ2

g

τg

‖g(p)‖2

− bn(1 − bn)‖T βn

g xn − xn‖
2.

Thus by (3.5) and (3.6), we have

(3.7)

|xn+1 − p‖2

= ‖an(xn − p) + (1 − an)(T
λn+1

f yn − p)‖2

= an‖xn − p‖2 + (1 − an)‖T
λn+1

f yn − p‖2 − an(1 − an)‖T
λn+1

f yn − xn‖
2

≤ {an + (1 − an)(1 − λn+1τf )[bn + (1 − bn)(1 − βnτg)]}‖xn − p‖2

+ (1−an)(1−λn+1τf )(1−bn)
βnµ2

g

τg

‖g(p)‖2 + (1−an)
λn+1µ

2
f

τf

‖f(p)‖2

− (1−an)(1−λn+1τf )bn(1−bn)‖T βn

g xn−xn‖
2

−an(1−an)‖T
λn+1

f yn−xn‖
2,

which implies

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
βnµ2

g

τg

‖g(p)‖2 +
λn+1µ

2
f

τf

‖f(p)‖2.

From Lemma 2.2 and the conditions:
+∞
∑

n=1

λn < +∞,
+∞
∑

n=1

βn < +∞, it follows that

lim
n→+∞

‖xn − p‖ exists for each q ∈ F (T ). It follows that {xn} is bounded. From

the iterative process (1.6) we have

(3.8) ‖xn+1 − xn‖ = (1 − an)‖T
λn+1

f yn − xn‖
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and

(3.9) ‖yn − xn‖ = (1 − bn)‖T βn

g xn − xn‖.

By (3.7), (3.8) and the condition an ∈ [α, 1 − α], it follows that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 +
βnµ2

g

τg

‖g(p)‖2 +
λn+1µ

2
f

τf

‖f(p)‖2 −
α

1 − α
‖xn+1 − xn‖

2,

that is to say that

α

1 − α
‖xn+1 − xn‖

2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 +
βnµ2

g

τg

‖g(p)‖2 +
λn+1µ

2
f

τf

‖f(p)‖2

which implies that

(3.10) lim
n→+∞

‖xn+1 − xn‖ = 0.

In addition, from (3.8), we know that

(3.11) lim
n→+∞

‖T
λn+1

f yn − xn‖ = 0.

From (3.9), (3.7) and similar proof as (3.10) and (3.11), we have

(3.12) lim
n→+∞

‖yn − xn‖ = 0

and

(3.13) lim
n→+∞

‖T βn

g xn − xn‖ = 0.

Thus

(3.14)
‖xn − Txn‖ = ‖xn − T βn

g xn + T βn

g xn − Txn‖

≤ ‖xn − T βn

g xn‖ + βnµg‖g(Txn)‖.

Since {xn} is bounded, then {Txn} and {g(Txn)} are bounded as well. Therefore
limn→∞ ‖xn − Txn‖ = 0. �

Theorem 3.2. The iterative process {xn}, which is taken as in (1.6), converges

weakly to a fixed point of T .

Proof. The proof is normal. It follows from Lemma 3.1 that lim
n→+∞

‖xn−p‖ exists

and {xn} is bounded. Now we prove that {xn} has a unique weak subsequential
limit in F (T ). To prove this, let p1 and p2 be weak limits of subsequences {xnk

}
and {xnj

} of {xn}, respectively. It follows from Lemma 2.3 and Lemma 3.1 that
lim

n→+∞

‖xn − Txn‖ = 0 and I − T is demiclosed with respect to zero, therefore
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we obtain Tp1 = p1. Similarly Tp2 = p2, i.e., p1, p2 ∈ F (T ). Next we prove the
uniqueness. For this purpose that p1 6= p2. then by Opial’s condition, we obtain

lim
n→+∞

‖xn − p1‖ = lim
k→+∞

‖xnk
− p1‖ < lim

k→+∞

‖xnk
− p2‖

= lim
n→+∞

‖xn − p2‖ = lim
j→+∞

‖xnj
− p2‖

< lim
j→+∞

‖xnj
− p1‖ = lim

n→+∞

‖xn − p1‖.

This is a contradiction. Hence {xn} converges weakly to a point in F (T ). �

Theorem 3.3. Let T be completely continuous, then the iterative process {xn},
which is taken as in (1.6), converges strongly to a fixed point of T .

Proof. By Lemma 3.1, {xn} is bounded and lim
n→+∞

‖xn−Txn‖ = 0, then {Txn} is

also bounded. Since T is completely continuous, there exists subsequence {Txnj
}

of {Txn} and p ∈ H , such that ‖Txnj
− p‖ → 0 as nj → +∞. It follows from

Lemma 3.1 that lim
nj→+∞

‖xnj
− Txnj

‖ = 0. So by the continuity of T and Lemma

3.1, we have lim
nj→+∞

‖xnj
− p‖ = 0 and p ∈ F (T ). Furthermore by Lemma 3.1

again, we get that lim
n→+∞

‖xn − p‖ exists. Thus lim
n→+∞

‖xn − p‖ = 0 which implies

the desired result. �

Theorem 3.4. Let T be demicompact, then the iterative process {xn}, which is

taken as in (1.6), converges strongly to a fixed point of T .

Proof. Since T is demicompact, {xn} is bounded and lim
n→+∞

‖xn − Txn‖ = 0,

then there exists subsequence {xnj
} of {xn} such that {xnj

} converges strongly to
p ∈ H . It follows from Lemma 2.3 that p ∈ F (T ). Since the subsequence {xnj

}
of {xn} such that {xnj

} converges strongly to p and lim
n→+∞

‖xn − p‖ exists for all

p ∈ F (T ) by Lemma 3.1, then {xn} converges strongly to the common fixed point
p ∈ F (T ). The proof is completed. �
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