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A NEW CRITERION FOR MULTIVALENT

STARLIKE FUNCTIONS

Zhi-Gang Wang, Neng Xu

The main purpose of the present paper is to derive a new criterion for mul-
tivalent starlike functions by applying Jack’s lemma.

1. INTRODUCTION

Let Ap denote the class of functions of the form:

f(z) = zp +

+∞
∑

n=p+1

anzn (p ∈ N := {1, 2, 3, . . .}),

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

A function f ∈ Ap is said to be in the class S∗
p (ρ) of p-valent starlike functions

of order ρ in U, if it satisfies the inequality:

<

(

zf ′(z)

f(z)

)

> ρ (0 5 ρ < p ; z ∈ U).

For simplicity, we write
S∗

p (0) =: S∗
p .

In recent years, Nunokawa et al. [2], Xu [3], Yang [4,5,6], Yang and
Xu [7] and other authors obtained some criteria for multivalent starlikeness. In
the present paper, we derive a new criterion for multivalent starlike functions by
applying Jack’s lemma.
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2. PRELIMINARY RESULTS

In order to establish our main result, we need the following lemmas.

Lemma 1. (Jack’s lemma [1]) Let ω(z) be a non-constant analytic function in U

with w(0) = 0. If |ω(z)| attains its maximum value on the circle |z| = r < 1 at z0,

then

z0ω
′(z0) = kω(z0),

where k = 1 is a real number.

Lemma 2. (see [2]) If f ∈ Ap satisfies the inequality :

<

(

zf (p)(z)

f (p−1)(z)

)

> α (0 5 α < 1; z ∈ U),

then

f ∈ S∗
p (p + α − 1).

Lemma 3. (see [2]) If f ∈ Ap satisfies the inequality :

<

(

1 +
zf (p+1)(z)

f (p)(z)

)

> α (0 5 α < 1; z ∈ U),

then

<

(

zf ′(z)

f(z)

)

> γ(α) + p − 1 (z ∈ U),

where

γ(α) :=











1 − 2α

22−2α(1 − 22α−1)

(

α 6=
1

2

)

,

1

2 log 2

(

α =
1

2

)

.

Lemma 4. Let

(2.1) |λ − 1| < b (λ ∈ C ; 0 < b 5 1).

Then

<

(

1

λ

)

>
1

1 + b
.

Proof. From the condition (2.1), it easily follows that

(2.2) |λ − 1|2 < b2 =⇒ <(λ) >
1

2

(

1 + |λ|2 − b2
)

and |λ|2 < (1 + b)2.

We thus find from (2.2) that

<

(

1

λ

)

=
<(λ)

|λ|2
>

1

2

(

1 − b2

|λ|2
+ 1

)

>
1

2

(

1 − b2

(1 + b)2
+ 1

)

=
1

1 + b
. �
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3. MAIN RESULT

We now give our main theorem below.

Theorem. If f ∈ Ap satisfies the inequality :

(3.1)

∣

∣

∣

∣

zf (p)(z)

f (p−1)(z)
−

zf (p+1)(z)

f (p)(z)
− 1

∣

∣

∣

∣

< γ

(

0 < γ 5
1

2
; z ∈ U

)

,

then

f ∈ S∗
p (p − γ) ⊂ S∗

p .

Proof. Let

(3.2) ω(z) :=
(1 − γ)

f (p−1)(z)

zf (p)(z)
− 1

−γ
− 1

(

0 < γ 5
1

2
; z ∈ U

)

.

Then the function ω is analytic in U with ω(0) = 0. We now rewrite (3.2) as follows:

(3.3)
f (p−1)(z)

zf (p)(z)
=

(−γ)ω(z) + 1 − γ

1 − γ
.

Differentiating both sides of (3.3) with respect to z logarithmically, we get

(3.4)
zf (p)(z)

f (p−1)(z)
−

zf (p+1)(z)

f (p)(z)
− 1 =

(−γ) zω′(z)

(−γ)ω(z) + 1 − γ
.

Since 0 < γ 5
1

2
, combining (3.1) and (3.4), we find that

(3.5)

∣

∣

∣

∣

zf (p)(z)

f (p−1)(z)
−

zf (p+1)(z)

f (p)(z)
− 1

∣

∣

∣

∣

= γ

∣

∣

∣

∣

zω′(z)

(−γ)ω(z) + 1 − γ

∣

∣

∣

∣

< γ.

Now, we can claim that |ω(z)| < 1. Indeed, if not, there exists a point z0 ∈ U such
that

max
|z|5|z0|

|ω(z)| = |ω(z0)| = 1.

By Lemma 1, we have
z0ω

′(z0) = kω(z0) = keiθ

for 0 < θ < 2π, where k = 1. With z = z0, from (3.4), we have

(3.6)

∣

∣

∣

∣

z0f
(p)(z0)

f (p−1)(z0)
−

z0f
(p+1)(z0)

f (p)(z0)
− 1

∣

∣

∣

∣

= γ

∣

∣

∣

∣

k

−γ + (1 − γ)e−iθ

∣

∣

∣

∣

= γ

∣

∣

∣

∣

1

−γ + (1 − γ)e−iθ

∣

∣

∣

∣

.
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It follows from (3.6) and 0 < γ 5
1

2
that

∣

∣

∣

∣

z0f
(p)(z0)

f (p−1)(z0)
−

z0f
(p+1)(z0)

f (p)(z0)
− 1

∣

∣

∣

∣

2

= γ2

∣

∣

∣

∣

1

−γ + (1 − γ)e−iθ

∣

∣

∣

∣

2

=
γ2

(

− γ − (1 − γ)
)2 = γ2,

this contradicts to (3.5). Thus, we conclude that |ω(z)| < 1, which implies that
∣

∣

∣

∣

∣

∣

∣

∣

(1 − γ)
f (p−1)(z)

zf (p)(z)
− 1

−γ
− 1

∣

∣

∣

∣

∣

∣

∣

∣

< 1 (z ∈ U),

or equivalently,

(3.7)

∣

∣

∣

∣

f (p−1)(z)

zf (p)(z)
− 1

∣

∣

∣

∣

< 1 −
1 − 2γ

1 − γ

(

0 < γ 5
1

2
; z ∈ U

)

.

It now follows from (3.7) and Lemma 4 that

<

(

zf (p)(z)

f (p−1)(z)

)

> 1 − γ

(

0 < γ 5
1

2
; z ∈ U

)

.

Thus, by Lemma 2, we know that

f ∈ S∗
p (p − γ) ⊂ S∗

p . �

Our main result yields

Corollary 1. If f ∈ Ap satisfies the inequality :

∣

∣

∣

∣

zf (p)(z)

f (p−1)(z)
−

zf (p+1)(z)

f (p)(z)
− 1

∣

∣

∣

∣

< γ

(

0 < γ 5
1

2
; z ∈ U

)

,

also let f = zp−1f1, where

f1(z) = z +
+∞
∑

n=p+1

anzn−p+1 (p ∈ N \ {1}),

then

f1 ∈ S∗
1 (1 − γ) .

Corollary 2. If f ∈ Ap satisfies the inequality :

(3.8)

∣

∣

∣

∣

∣

zf (p+1)(z)

f (p)(z)
−

z
(

2f (p+1)(z) + zf (p+2)(z)
)

f (p)(z) + zf (p+1)(z)

∣

∣

∣

∣

∣

< γ

(

0 < γ 5
1

2
; z ∈ U

)

,
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then

f ∈ S∗
p

(

1 − 2δ

22−2δ(1 − 22δ−1)
+ p − 1

)

⊂ S∗
p

(

δ := 1 − γ; 0 < γ <
1

2

)

,

and

f ∈ S∗
p

(

1

2 log 2
+ p − 1

)

⊂ S∗
p

(

γ =
1

2

)

.

Proof. It follows from (3.8) and the proof of our main theorem that

<

(

1 +
zf (p+1)(z)

f (p)(z)

)

> 1 − γ

(

0 < γ 5
1

2
; z ∈ U

)

.

By noting that
1

2
5 1 − γ < 1

for 0 < γ 5
1

2
. Thus, by Lemma 3, we conclude that the assertions of Corollary 2

hold true. �

Finally, we give an example to illustrate our criterion for multivalent starlike
functions.

Example. We consider the function h defined by:

h(z) = −
2(1 − γ)

γ
z −

2(1 − γ)2

γ2
log

(

1 −
γ

1 − γ
z

)

= z
2 +

2γ

3(1 − γ)
z
3 + · · ·

(

0 < γ 5
1

2
; z ∈ U

)

.

It is easy to verify that

(3.9)
zh′′(z)

h′(z)
=

1

1 −
γ

1 − γ
z

.

Differentiating both sides of equation (3.9) with respect to z logarithmically, we get

(3.10) 1 +
zh′′′(z)

h′′(z)
−

zh′′(z)

h′(z)
=

γ

1 − γ
z

1 −
γ

1 − γ
z

.

It follows from (3.10) that
∣

∣

∣

∣

zh′′(z)

h′(z)
−

zh′′′(z)

h′′(z)
− 1

∣

∣

∣

∣

< γ.

By virtue of our criterion for multivalent starlike functions, we conclude that

h ∈ S
∗

2 (2 − γ)

(

0 < γ 5
1

2

)

.
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