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JENSEN’S FUNCTIONAL AND
POLYNOMIALS

Mirjana Pavlovié

We investigate some estimates of the JENSEN’s functional

27

J(p) = / log [p(e™)

0

%
o2’

if the polynomial p(z) has a concentration at low degrees measured by f2-
norm. We consider the constants involved, both from a theoretical and a
numerical point of view.

1. INTRODUCTION

Let p(z) =

n .
a;jz’ # 0 be a polynomial with complex coefficient and with

=0
y n 1/2
lo-norm: |ple, = < > |a]-|2) . Next, let d be a real number such that 0 < d < 1.
§=0

We say that p(z) has a concentration d of degrees at most k, measured by the
{o-norm, if the following inequality holds

1) (2 |aj|2)1/2 > (3 |aj|2)1/2 —d- lple,.

J<k Jj=0

There are other ways of measuring such a concentration. For instance,

(2) 2 lajl = d- 3 ayl,

i<k >0
or
(3) > lajl = d - |plls,
i<k
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where ||pl|oo = max Ip(e?)]. Tt is not hard to see that the condition (1) is of course

more general, since both (2) and (3) imply (1), that is, (2) = (3) = (1). This
concept was originally introduced by P. ENFLO [6], where it was used in order
to obtain, for products of polynomials, estimates from below independent of the
degrees; the concentration of the polynomial at low degrees measured by ¢1-norm
under ¢;-norm plays an important role in the construction of an operator on a
BANACH space with no non-trivial invariant subspace [6].

2. MAIN RESULTS

We investigate here some asymptotic estimates for the best lower bound of

de

i0
) — for a polynomials satisfying (1).

2m
the JENSEN’s functional J(p) = /log p|(e|
Ple,

In the sequel, we shall normalize p under ¢>-norm and assume that
(4) |p|€2 =1

Theorem 1. Let p(z) = Z a;jz? # 0 be a polynomial which satisfies (1) and (4).
]_
Then there exists a function

<t+1 2 1/2
_ _ t—l) 1,
far(t) =tlogd ) T N2 2t , t>1
B (t—l)

such that

27 de

70) = [1o8lp(e ) 52 > fanlt) for cacht > 1.
0

Proof. In the proof of the Theorem 1 we use the following well known relations:

27 i

o p(re) do
1 jE]No:'aj:/ rigid® o7
0

. 1.
2° laj| < [p(20)] - 5, Vj, where|p(z0)| = max{|p(2)| : 2] = 7};
3° The classical JENSEN’s inequality and the known transformation:

27
zot+e 7
ool < [ 1osp (25 ) |52 /|1 L loglple) o
0

where |zg| = 7;

1—r 1— 72 1+7r

4° If 0 1 th < . h =7
<r< en1+r\|1—z_oez9|2\1—r’w ere |zo| = 1;
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27

o de
5o 1 0 -
/Oglp(e )|27T / +
0

log |p|<0 log |p|>0
Now, according to (1), 1° and 2°, we have

1/2 27 (rei®) 6 2.1/2
5 d < Pl < pire ) &0
() <j<2k|a]|> (;c / ,r_]ez_]e 2

0
V2 1 1 \1/2
: - N =G
< | D Ip(z0)] 57| = le(zo) 2 .
i<k 1 T_Q
From (5) it follows:
1 1
1 S
(6) logd < log|p(20)| + 7 log %
1=
-
1
9 1. 1oy
=y op — 2D
/|1_ ¢9|2 og [p(e" )|7T+20g 1_l
7-2
1
1— ——
= 1 r2(kt1)
= [ [ g
log|p|>0  log|p|<0 2

Since p(z) satisfies (4), then

oode 1 ooode 1 o dh

1 0 I 02 - 02

(7) / og[p(e )|27T 5 / log [p(e™)] 5 <3 / Ip(e™)]
log |p|>0 log |p|>0 log |p|>0

2
1 ioy2 401 o 1 5 1
5 [ )P 57 = 3 bl = 3ol = 5.
0

Using 3°, 5° and the relation (7) we get:

0\, 4o

1 0y

og |p(zo)] / = 629|2 og|p(e”)] 5
1-— T2 . dé 1— T2 _ a0
- E=arh Bl ——] i0y) €2
[T =z e 2 og [p(e )|27r+ T2 og|p(e™) o

log [p[>0 log |p|<0
2

1 147 1—7 oo dO
<= 1 0y &
2 1—r+1+r/0g|p(e U

0
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Then the last relation and relation (6) yield

7 do _ 1 1 : - 1/1 2
i +7r 2 +7r
I i0 — > logd| ——XF— - = .
/og|p(e )|27T 1—r & <1 1 ) 2(1—7“>

0 r2(k+1)

Finally, putting ¢t = 1+ " in the previous inequality, we obtain the statement of
—-T

Theorem 1.
1
REMARK. Taking for instance r = 3 we obtain the rough estimate:

27

w0, O 2v/2d
/log|p(e ) 522@%%—2

which is a generalization of the classical JENSEN’s inequality, for polynomials satisfying
(1) and (4). From this it follows that there exists

0

27
C(d,k) :== inf{ /log Ip(e™®)| ? : p satisfies (1) and (4)}
7r
0

1 1
For k = 0, the function is f4,0(t) = tlogd — 3 t?, the maximum of which is logd — 5

Hence, C(d,0) > logd — % . In the meantime, in this case C(d,0) = logd. Otherwise, we

do not know the precise value of the best constant C(d, k), for k > 0, but we obtain some
asymptotic estimates, when k — +oo.

The precise value of C(d, k) is known only in two following cases:

1) For the HURWITZ polynomials (that is polynomials with real positive coefficient,
such that the roots have negative real part) which satisfies (2), the best constant

Cj'y was determined by RIGLER-TRIMBLE-VARGA [16]: CJf, = log W,

k k
. : . e 1 1 -1
where n is unique integer satisfying — Z (n) <d < Z (n ), and
—

on L 7 gn—1 ]
n—1 J=0 Y
")
P=

> <n3—1) ,d2n71'

Jj=0

2) For functions in H* which satisfy (3) the best constant C(ffo was determined

by BEauzAMY [3]: C’(ffo is the unique number ¢ < 0 solution of the equation
e’(1 —2¢) =d.
The following theorem provides a lower bound for the best constant C(d, k):

Theorem 2. The best constant C(d, k) satisfies

lim sup M

<1
k—+o00 —2k o



Jensen’s functional and polynomials 179

that is —2k < C(d, k) asymptotically when k — 400, for each fized d €]0, 1].
Proof. It is obvious that thrlﬂ+ far(t) = —oco and tliin far(t) = —oo; therefore a
— — 400

maximum exists.

We write the function fg ,(¢) in the form:

LN 20k41)
fak(t) = par(t) — %log <1 - <§+—1) )

where

2
t t—1 1
=tl — ktl 1 tlog(t — 1) + =1 1—(—— — =2,
war(t) =tlogd — ktlog(t + 1) + kt log( )+20g< (t+1)> 5

. t—1 t —1\2(k+1)
Since 0 < —— < 1, we have log | 1 — (—) < 0 and then
t+1 t+1

far(t) > oar(t), t>1.

Now, we shall prove that the function g x(t) takes its maximum value at
point t; such that ¢, — 400, when k& — +oo.
Let

gr(t) = ktlog(t — 1) — ktlog(t + 1),

t t—1\’ 1
= d+ =1 1-(— — =t
ha(t) = tlog 5 og< <t+1> ) 5

Now, taking the first and the second derivatives of gx (¢) and hg(t) with respect
to t, we get:
2kt
9i(t) = klog(t —1) — klog(t + 1) + 5—,

ry = 3k
i 1 2
hy(t) = logd + §1og(1—u ) —— —

4 w2 1—u? -2t
"
t) = . . _
hat) t2—-1)2 1—u2 1—u?

. t—1
whereisu=——, 0 <u < 1.
t+1

Setting A(t) = 1 — u? — 2t we obtain A’(t) = —2 (u2 7 i Tt 1) < 0. Since

tlir{1+A(t) < 0, it follows that A(t) < 0 for each ¢ > 1. From this and from (8), we

get ¢ 1.(t) <0 for each ¢ > 1.
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Since tlir{1+ @ (t) = +0o0 and tiigrnoo @ 1(t) = —oo, there exists ¢, > 1 such

that ¢, ;. (t) = 0. From the equality ¢y, (t) = 0 for t = tx, we get

( — i)
(2 —1log(t+1)— (#2 —1)log(t — 1) — 2t
) 0
log(t +1) —log(t — 1) —

kj:

2t
t2—1

from which we easily deduce that ¢ — +oco if and only if kK — +oc.

2
Indeed, writing log(t + 1) = logt + log (1 + %) , (£ 1)2 =1¢2 (1 + %) and

substituting the TAYLOR expansion of order 3 when ¢ — 400, we obtain:

log(t +1)— log(t -1) - t22——t1 [ %(1 + 0(1)) ~ _%,
Wy(t) = —t(1+o(1)) ~ —t.

4
It follows that k ~ 3% when ¢ — +o0.

- - t t—1)\2(k+1)
From this it follows that the remaining term 3 log|1— (H—1> can

be neglected, for t = t;, when £ — 4o00. So we have shown that at the point t,
the value of fg4(t) and the value of ¢q(t) are asymptotically the same. All we
have to do now is to compute fq x(tx):

fak(te) ~ @ar(te) = gr(te) + ha(tr)

1 1
= kty log (1 — —) — kit log (1 + —) + ty logd
tr ik

2 2
th 1 1 1 1,
| 1+—) —(1=—=) | —trlog(14+—)—=t
+2 og(( +tk> ( tk)) kOg( +tk) 5 'k

tr 1 tr tr
— ok (11— Erogd+ — — Eoga+ Eogt
( ok B¢tz T qp OB g 0BT

1 1 1 t2 1
*o -zttt (i)
= —2k(1+4o(1)) ~ —2k,
Ak 1/4
because t ~ <?) when k — +o0.
This proves the asymptotic estimate: C(d, k) > fqr(ty) ~ —2k, k — 400,

for each fixed d €]0, 1], that is lim sup Cld. k) <1
k—4o00 —2k

In the sequel we obtain an upper bound for the best constant C(d, k):
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Theorem 3. The best constant C(d, k) satisfies

.. . C(dk)
— >
lim inf ok = log 2,

k—+oo0 —

that is C(d, k) < —2klog2, asymptotically, when k — 400, for each fixed d €
10,1/2].
Proof. Now, let us consider the polynomial p(z) =

= T - p1(z), where p1(z) =
1+Z 2k+1 2
(=)

. The polynomial p(z) satisfies (4) and by the properties of the binomial

coefficients it has a concentration d < 1/ V2 at degrees k, measured by the />-norm.
Indeed, from

\/2
1 <2k+1)
L >d-|ple, =d-1

]2 Ip1le, - 221\ Ples
2k+1 2 1/2
— | |p1]e, - 22FFLN g ’
7=0

it follows
1 2% + 11 |° 1 2% + 1\ |*
- - > 2. d? 7( , ) ;
Sl ()] e e D

that is d < 1/v/2.

. 1 .
But the constant term is —— - ———, the only root is —1, so JENSEN’s
Iprle, 22K

formula says that:

2

oo do
/log |p(e“9)| o = (2k + 1)log 2 — log |p1le,
0

(—2klog2)(1 4+ o(1)) ~ —2klog2, k — +oc.

Hence, we have asymptotically: C(d, k) < —2klog2, when k — +o0, for each
fixed d €]0,1/v/2].
According to theorems 2 and 3 it follows that for a fixed d € ]0,1/v/2 ]

C(d, k)
k

—2 < liminf Cld, k) < Cd. k) < lim sup

< —2log?2.
k—4o0 k = k k— 400 = 8

The above result can be compared with [16], (2.18).
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