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MULTIPLICITY OF SOLUTIONS FOR

SINGULAR SEMILINEAR ELLIPTIC

EQUATIONS WITH CRITICAL

HARDY-SOBOLEV EXPONENTS

Qianqiao Guo, Pengcheng Niu, Jingbo Dou

We consider the semilinear elliptic problem with critical Hardy-Sobolev

exponents and Dirichlet boundary condition. By using variational methods
we obtain the existence and multiplicity of nontrivial solutions and improve
the former results.

1. INTRODUCTION AND MAIN RESULTS

In this paper we consider the following wide class of semilinear elliptic prob-
lems,

(1.1)





−∆u − µ

u

|x|2 = g(x, u) + β
|u|2∗(s)−2

|x|s u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N(N ≥ 4) is an open bounded domain with smooth boundary, β >

0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) :=
2(N − s)

N − 2
is the critical Hardy-Sobolev exponent

and, when s = 0, 2∗(0) =
2N

N − 2
is the critical Sobolev exponent, 0 ≤ µ < µ :=

(N − 2)2

4
.

In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial
solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. Peng

2000 Mathematics Subject Classification. 35J20,47J30.
Keywords and Phrases. Critical Hardy-Sobolev exponents, Hardy potential, variational method.

The project is supported by Natural Science Basic Research Plan in Shaanxi Province of
China, Program No.2006A09.

158



Solutions for semilinear elliptic equations with critical exponents 159

dealt with (1.1) with β = 1 and g(x, t) = λ|t|q−2t and obtained the existence of
one positive solution for suitable q and λ. They also proved in [3] that (1.1) has
one nontrivial solution for g(x, t) = λt (λ > 0) and in [9] that (1.1) has one pair of
sign-changing solutions for g(x, t) = λt (λ > 0) with some additional assumptions.
Recently the results in [2, 3] were also improved by D. S. Kang in [4] and L. Ding

and C. L. Tang in [5], respectively. In this paper we discuss (1.1) with a more
general g(x, t) by the mountain-pass argument and a linking argument to improve
the main results in [2, 3, 9]. Roughly g(x, t) has subcritical Sobolev growth.

In view of [1, 6] the operator −∆ − µ

|x|2 (0 ≤ µ < µ) has discrete spectrum,

σµ, in H1
0 (Ω) and each eigenvalue, λk(k ≥ 1), of it is positive, isolated and has finite

multiplicity, the smallest eigenvalue λ1 being simple and λk → +∞ as k → +∞.
Furthermore all of its eigenfunctions belong to H1

0 (Ω).

As in [1] for 0 ≤ µ < µ we endow the Hilbert space, Hµ, with the scalar
product

(u, v)Hµ =

∫

Ω

(
∇u · ∇v − µ

uv

|x|2
)

dx ∀u, v ∈ Hµ

and define

‖u‖Hµ =

(∫

Ω

(
|∇u|2 − µ

u2

|x|2
)

dx

)1/2

.

We can infer that the norm ‖ · ‖Hµ is equivalent to the norm in H1
0 (Ω) by Hardy’s

inequality.

Define the constant

(1.2) Aµ,s(Ω) = inf
u∈H1

0 (Ω)\{0}

∫

Ω

(
|∇u|2 − µ

u2

|x|2
)

dx

(∫
Ω

( |u|2∗(s)

|x|s
)

dx

)2/2∗(s)
.

Then Aµ,s(Ω) is independent of Ω ⊂ R
N , see [7]. When s = 0, Aµ,0 is the best

Sobolev constant. For simplicity we denote Aµ,s(Ω) by A in the sequel.

In the paper we need some notation from [1]. For fixed k ∈ N we denote
an L2 normalized eigenfunction relative to λi ∈ σµ by ei, ∀i ∈ N. We also denote
by H− the space spanned by the eigenfunctions corresponding to λ1, . . . , λk and
H+ := (H−)⊥. Take m ∈ N such that B1/m ⊂ Ω (in the sequel we always assume
that), where B1/m = {x ∈ R

N : |x| < 1/m}. Define

ζm(x) :=






0 x ∈ B1/m,

m|x| − 1 x ∈ Am = B2/m\B1/m,

1 x ∈ Ω\B2/m,

and em
i := ζmei, H−

m := span{em
i ; i = 1, 2, . . . , k}.
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From [2] we know that the functions

u∗
ε(x) =

Kε
√

µ/(2−s)

|x|
√

µ−κ

(
ε + |x|

2−s√
µ

κ
)N−2

2−s

with K =
(

2(µ − µ)(N − s)√
µ

)
√

µ

2−s
and κ =

√
µ − µ, solve the equation −∆u −

µ
u

|x|2 =
|u|2∗(s)−2

|x|s u in R
N\{0} and ‖u∗

ε‖2
Hµ(RN ) =

∫

RN

|u∗
ε |2

∗(s)

|x|s dx = A(N−s)/(2−s).

Since u∗
ε(x) is a radial function, we can view it as a function defined on R

+. For
all m ∈ N and ε > 0 define the shifted functions as [1, 3]:

(1.3) um
ε (x) :=

{
u∗

ε(x) − u∗
ε(1/m) x ∈ B1/m\{0},

0 x ∈ Ω\B1/m.

In this paper we assume:

(C1) g(x, t) =
g1(x, t)

|x|s : Ω × R → R is a Carathéodory function such that

lim
t→∞

g(x, t)

|t|2∗−2t
= 0 uniformly for a.e. x ∈ Ω;

(C2) G(x, t) ≥ 0 for a.e. x ∈ Ω and ∀t ∈ R, where G(x, t) =
G1(x, t)

|x|s =

∫ t

0
g(x, r) dr =

∫ t

0
g1(x, r) dr

|x|s ;

(C3) there exist positive constants T, a1, a2 and ρ satisfying
a2

β
+

1

2∗(s)
≤

1

ρ
<

1

2
such that

1

ρ
tg1(x, t) − G1(x, t) ≥ −a1|x|s − a2|t|2

∗(s), ∀ a.e. x ∈ Ω, |t| ≥ T ;

(C4) the following hold:

(i) for 0 ≤ µ < µ − 1 there exist t0 > δ0 > 0 and η > 0 such that

G1(x, t) ≥ η|x|st2 for a.e. x ∈ Ω and ∀ |t − t0| ≤ δ0;

(ii) for µ = µ − 1 there exist m0 ∈ N, t0 > δ0 > 0, 1 < `0 <

√
t0 + δ0

t0
and

η > 0 such that B1/m0
⊂ Ω and

G1(x, t) ≥ η|x|st2 for a.e. x ∈ Ω and ∀ |t − t0| ≤ δ0
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with
ηSN

4(
√

µ + κ)
1

β
N−2
2−s

K
2
(

t0 − δ0/2

t0

)2

ln
(

t0 + δ0

` 2
0 t0

)
> C0m

2∗(s)
0 , where C0 = SN

(
µK

2

2

+
K

2∗(s)

2∗(s)

)
·
(

1

2
√

µ − µ
+

2√
µ − κ

)
· 1

β
N−2
2−s

and SN is the surface measure of the unit

sphere of R
N ;

(iii) for µ − 1 < µ < µ there exist m0 ∈ N, M > 0 and η > 0 such that
B1/m0

⊂ Ω and

G1(x, t) ≥ η|x|stp for a.e. x ∈ B1/m0
and ∀ |t| ≥ M

with

ηSN

(
1 − 1

p

)p
K

p

(4β)
(N−2)p
4−2s

1

Np

N√
µ−κ

> C0m
2∗(s)

√
µ−µ

0 ,

where p = 2(N − 2
√

µ − µ )/(N − 2);

(C5) there exist α ≥ 0 and C̃ ≥ 0 such that

G1(x, t) ≤ C̃|x|s|t| + α

2∗(s)
|t|2∗(s) ∀ a.e. x ∈ Ω and ∀ t ∈ R;

(C5)′ there exist α ≥ 0, θ ∈ (2, 2∗), Ψ ∈ Lq(θ)(Ω) and ν ≥ 0 such that

G1(x, t) ≤ ν

2
|x|s|t|2 + Ψ(x)|x|s|t|θ +

α

2∗(s)
|t|2∗(s) ∀ a.e. x ∈ Ω and ∀ t ∈ R

with q(θ) =
2∗

2∗ − θ
;

(C6) there exist α ≥ 0, β ≥ β1 ≥ 0, θ ∈ (2, 2∗), Ψ ∈ Lq(θ)(Ω) and ν1 > 0,
ν2 > 0 such that ∀ a.e. x ∈ Ω and ∀ t ∈ R

ν1|x|s|t| − β1|t|2
∗(s)−1 ≤ |g1(x, t)| ≤ ν2|x|s|t| + Ψ(x)|x|s|t|θ−1 + α|t|2∗(s)−1

with q(θ) =
2∗

2∗ − θ
. Moreover tg1(x, t) ≥ 0.

The following technical condition is also needed:

(H)
(

1

2a(2∗(s) − 1)

)(N−2)/(4−2s)

· 2 − s

N + 2 − 2s
> b, where a =

α + β

2∗(s)A2∗(s)/2

and b =
( |Ω|

λ1

)1/2

· C̃, (C̃ as in (C5)).

It is well known that the nontrivial (weak) solutions of problem (1.1) are
equivalent to the nonzero critical points of the functional J ∈ C1(Hµ, R):

J(u) =
1

2

∫

Ω

|∇u|2 dx − µ

2

∫

Ω

u2

|x|2 dx −
∫

Ω

G(x, u) dx − β

2∗(s)

∫

Ω

|u|2∗(s)

|x|s dx.
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The main results in this paper are:

Theorem 1.1. Let Ω ⊂ R
N (N ≥ 4) be an open bounded domain with smooth

boundary. Assume that for 0 ≤ µ < µ

(I) (C1) − (C5) and (H)
or

(II) (C1) − (C4) and (C5)′ with 0 ≤ ν < λ1.

Then (1.1) admits one positive solution.

Moreover, if g(x, t) is odd with t, then (1.1) has one positive solution and one

negative solution.

Theorem 1.2. Let Ω ⊂ R
N be an open bounded domain with smooth boundary

and assume one of the following three cases holds :

(I) N ≥ 5, 0 ≤ µ < µ−1 and (C1), (C3), (C4) (i), (C6) with λk < ν1 ≤ ν2 <
λk+1 (k = 1, 2, . . .) and 0 ≤ β1 ≤ β,

(II) N ≥ 8, 0 ≤ µ < µ −
(

N + 2

N

)2

and (C1), (C3), (C6) with λk = ν1 ≤
ν2 < λk+1 (k = 1, 2, . . .) and β1 = 0,

(III) N ≥ 8, 0 ≤ µ < µ −
(

2N + 2 − s

N + 2 − 2∗(s)

)2

and (C1), (C3), (C4) (i), (C6)

with λk = ν1 ≤ ν2 < λk+1 (k = 1, 2, . . .) and 0 < β1 < β.

Then (1.1) admits one solution which changes sign.

Moreover, if g(x, t) is odd with t, then (1.1) has one pair of sign-changing

solutions.

Remark 1.3. (1). Theorem 1.1 improves the results of [2, 3] and Theorem 1.2 improves

the results of [9].

(2). Here conditions (C4) (i) and (iii) are more general than (2.4) and (2.7) of [1].

(3). The condition (C3) is not the same as [12].

(4). We of course can assume β = 1 by the classical “stretching” argument.

2. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on the mountain-pass argument, see [1,

8]. In the sequel we always denote a positive constant by C.

A sequence {um} ⊂ Hµ is said to be a (PS)c sequence for the functional J(u)
if J(um) → c and J ′(um) → 0 in (Hµ)∗ (the dual space of Hµ).

Lemma 2.1. Assume (C1) and (C3). If {um} ⊂ Hµ is a (PS)c sequence for J,
then there exists u ∈ Hµ such that um ⇀ u up to a subsequence and J ′(u) = 0.

Moreover, if c ∈
(
0,

2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

)
, then u 6= 0 and hence u is a nontrivial

solution of (1.1).
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Proof. We just sketch the proof for it is similar to that in [1, 8]. Since {um} is a
(PS)c sequence, one can get

J(um) − 1

ρ
〈J ′(um), um〉 =

(1

2
− 1

ρ

)
‖um‖2

Hµ

+

∫

Ω

(1

ρ
g(x, um)um − G(x, um)

)
dx + β

(1

ρ
− 1

2∗(s)

) ∫

Ω

|u|2∗(s)

|x|s dx

= c + o(1).

When one takes (C3) into account, one obtains that {um} is bounded. There-
fore there exists u ∈ Hµ such that um ⇀ u up to a subsequence and J ′(u) = 0.

Now we prove the statement u 6= 0 if c ∈
(

0,
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

)
.

We assume that u ≡ 0. Then um ⇀ 0. Since J ′(um) → 0 in (Hµ)∗, by (C1),
one has

(2.1) ‖um‖2
Hµ

− β

∫

Ω

|um|2∗(s)

|x|s dx = o(1).

By (1.2) and using c > 0 one obtains ‖um‖2
Hµ

≥ A(N−s)/(2−s)

β(N−2)/(2−s)
+ o(1). Then (C1)

and (2.1) imply that

J(um) =
1

2
‖um‖2

Hµ
− β

2∗(s)

∫

Ω

|um|2∗(s)

|x|s dx+o(1) ≥ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
+o(1),

which contradicts c <
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
. �

Lemma 2.2. Write Γ = {P ∈ C([0, 1], Hµ)|P (0) = 0, J(P (1)) < 0}. If (C2), (C5)
and (H) hold or (C2) and (C5)′ with 0 ≤ ν < λ1 hold, then J admits a (PS)c

sequence in the cone of positive functions with c = infP∈Γ maxt∈[0,1] J(P (t)).

Proof. We prove the statement when (C2), (C5) and (H) hold. The second case
is similar. As in Lemma 3 of [1] we just need to show that there exist σ > 0 and
ρ > 0 such that J(v) ≥ σ ∀v ∈ ∂Bρ ∩ Hµ.

Indeed (1.2), (C5) and ‖v‖2
Hµ

≥ λ1‖v‖2
L2 (see [1]) give

J(v) =
1

2
‖v‖2

Hµ
−
∫

Ω

G(x, v) dx − β

2∗(s)

∫

Ω

|v|2∗(s)

|x|s dx

≥ 1

2
‖v‖2

Hµ
− α + β

2∗(s)

∫

Ω

|v|2∗(s)

|x|s dx − C̃

∫

Ω

|v| dx

≥ 1

2
‖v‖2

Hµ
− α + β

2∗(s)A2∗(s)/2
‖v‖2∗(s)

Hµ
− C̃

( |Ω|
λ1

)1/2

‖v‖Hµ

=
1

2
‖v‖2

Hµ
− a‖v‖2∗(s)

Hµ
− b‖v‖Hµ .
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Hence one can end the proof with (H). �

Lemma 2.3. For ε > 0 small enough and m ∈ N we have

(2.2) ‖um
ε ‖2

Hµ
≤ A(N−s)/(2−s) + C′ε

N−2
2−s m2

√
µ−µ,

(2.3)

∫

Ω

|um
ε |2∗(s)

|x|s dx ≥ A(N−s)/(2−s) − C′′ε
N−2
2−s m2∗(s)

√
µ−µ

with C′= µSNK
2
(

1

2
√

µ − µ
+

2√
µ − κ

)
and C′′ = SNK

2∗(s)
(

1

2∗(s)
√

µ − µ
+

2√
µ − κ

)
.

Proof. The proof is more accurate than the one in Lemma 2.2 of [9]. Firstly, if
µ 6= 0,

∫

Ω

(um
ε )2

|x|2 dx

≥
∫

RN

(u∗
ε)

2

|x|2 dx − SNK
2

∫ ∞

1/m

ε
2
√

µ
2−s

r2(
√

µ−κ)
(
ε + r

2−s√
µ

κ
)2(N−2)

2−s

rN−3 dr

−2SNK
2

∫ 1/m

0

ε
2
√

µ
2−s

r
√

µ−κ
(
ε + r

2−s√
µ

κ
)N−2

2−s
(

1

m

)√µ−κ(
ε +

(
1

m

)2−s√
µ

κ)N−2
2−s

rN−3 dr.

Since

SNK
2

∫ ∞

1/m

ε
2
√

µ
2−s

r2(
√

µ−κ)
(
ε + r

2−s√
µ

κ
)2(N−2)

2−s

rN−3 dr ≤ SNK
2

2
√

µ − µ
ε

N−2
2−s m2

√
µ−µ,

2SNK
2

∫ 1/m

0

ε
2
√

µ
2−s

r
√

µ−κ
(
ε + r

2−s√
µ

κ
)N−2

2−s
(

1

m

)√µ−κ(
ε +

(
1

m

) 2−s√
µ

κ)N−2
2−s

rN−3dr

≤ 2SNK
2

√
µ − κ

ε
N−2
2−s m2

√
µ−µ

and we have

∫

Ω

(um
ε )2

|x|2 dx ≥
∫

RN

(u∗
ε)

2

|x|2 dx − SNK
2
( 1

2
√

µ − µ
+

2√
µ − κ

)
ε

N−2
2−s m2

√
µ−µ

.

With
∫
Ω |∇um

ε |2 dx ≤
∫

RN |∇u∗
ε|2 dx (2.2) follows.
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Concerning the second inequality one has

∫

Ω

|um
ε |2∗(s)

|x|s dx ≥
∫

RN

|u∗
ε|2

∗(s)

|x|s dx −
∫

RN\B1/m

|u∗
ε|2

∗(s)

|x|s dx

−
∫

B1/m

2∗(s)|u∗
ε|2

∗(s)−1
K ε

√
µ

2−s

|x|s
(

1

m

)√µ−κ(
ε +

(
1

m

) 2−s√
µ

κ)N−2
2−s

dx

with

∫

RN\B1/m

|u∗
ε|2

∗(s)

|x|s dx = SNK
2∗(s)

∫ ∞

1/m

ε
N−s
2−s

r(
√

µ−κ)2∗(s)
(
ε + r

2−s√
µ

κ
)2(N−s)

2−s

rN−s−1 dr

≤ SNK
2∗(s)

2∗(s)
√

µ − µ
ε

N−s
2−s m2∗(s)

√
µ−µ

and

∫

B1/m

2∗(s)|u∗
ε|2

∗(s)−1
K ε

√
µ

2−s

|x|s
(

1

m

)√µ−κ(
ε +

(
1

m

) 2−s√
µ

κ)N−2
2−s

dx

≤ 2∗(s)SNK
2∗(s)ε

N−s
2−s m

√
µ+κ

∫ 1/m

0

rN−1−s

r(
√

µ−κ)(2∗(s)−1)
(
ε + r

2−s√
µ

κ
)N−2s+2

2−s

dr

≤ 2∗(s)SNK
2∗(s)ε

N−s
2−s m

√
µ+κ

∫ 1/m

0

r
√

µ+(2∗(s)−1)
√

µ−µ−1

N − 2s + 2

2 − s
ε r2∗(s)

√
µ−µ

dr

≤ 2SNK
2∗(s)

√
µ − κ

ε
N−2
2−s m2

√
µ−µ,

where we use the elemental inequality (a + b)t ≥ tabt−1, a, b > 0, t ≥ 1. Hence

∫

Ω

|um
ε |2∗(s)

|x|s dx

≥
∫

RN

|u∗
ε|2

∗(s)

|x|s dx − SNK
2∗(s)

( 1

2∗(s)
√

µ − µ
+

2√
µ − κ

)
ε

N−2
2−s m2∗(s)

√
µ−µ.

�

Remark 2.4. If
√

µ > (2∗(s) − 1)κ, according to [9] inequality (2.3) can be written as

∫

Ω

|um
ε |2∗(s)

|x|s dx ≥ A(N−s)/(2−s) − C′′ε
N−s
2−s m2∗(s)

√
µ−µ.
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We only prove case (I) since the proof of case (II) is
similar to the proof of the first. Firstly we show that problem (1.1) admits one
positive solution. By Lemma 2.1 and Lemma 2.2 it is enough to show that there
exist ε > 0 small enough and some m ∈ N such that

(2.4) max
t≥0

J(tum
ε ) <

2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
.

We proceed by contradiction. Assume that for any ε > 0 and m ∈ N, there
exists tmε > 0 such that

(2.5) J(tmε um
ε ) ≥ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
.

By an argument similar to that in Lemma 5 of [1] for any m ∈ N we deduce that
tmε is bounded as ε → 0 and tmε → tm0 > 0 up to a subsequence.

Claim: tm0 =
1

β(N−2)/(4−2s)
. In fact in the spirit of [11] by the contrary,

if tm0 6= 1

β(N−2)/(4−2s)
, the function f(t) =

1

2
t2 − β

2∗(s)
t2

∗(s) (t > 0) reaches its

maximum at t =
1

β(N−2)/(4−2s)
and f

(
1

β(N−2)/(4−2s)

)
=

2 − s

2(N − s)
· 1

β(N−2)/(2−s)
. By

Lemma 2.3 and (C2) for ε > 0 small enough

J(tmε um
ε ) ≤ 1

2
(tmε )2‖um

ε ‖2
Hµ

− β

2∗(s)
(tmε )2

∗(s)

∫

Ω

|um
ε |2∗(s)

|x|s dx

≤
(1

2
(tmε )2 − β

2∗(s)
(tmε )2

∗(s)
)
A(N−s)/(2−s)

+ ε
N−2
2−s

(
C′ · 1

2
(tmε )2m2

√
µ−µ + C′′ · β

2∗(s)
(tmε )2

∗(s)m2∗(s)
√

µ−µ
)

<
2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
,

which contradicts (2.5).

The claim above implies

1

2
(tmε )2‖um

ε ‖2
Hµ

− β

2∗(s)
(tmε )2

∗(s)

∫

Ω

|um
ε |2∗(s)

|x|s dx

≤ 2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
+
(
C′ · 1

2
(tmε )2+ C′′ · β

2∗(s)
(tmε )2

∗(s)
)

ε
N−2
2−s m2∗(s)

√
µ−µ

<
2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
+ C0 ε

N−2
2−s m2∗(s)

√
µ−µ

for ε > 0 small enough.
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On the other hand we prove that
∫
Ω

G(x, tmε um
ε ) dx > C0ε

N−2
2−s m2∗(s)

√
µ−µ for

ε > 0 small enough and some m ∈ N.

In order to verify this we distinguish three cases:

(1). 0 ≤ µ < µ − 1. By (C4)(i) to ensure tmε um
ε (x) ∈ [t0 − δ0, t0 + δ0] firstly

we require that

(2.6) tmε um
ε (x) ≤ tmε u∗

ε(x) ≤ `0

β
N−2
4−2s

· K ε
√

µ/(2−s)

|x|
√

µ+κ
≤ t0 + δ0 ∀x ∈ B1/m

for ε > 0 small enough, where 1 < `0 <

√
t0 + δ0

t0
. Hence, if

|x| ≥
(

`0

β
N−2
4−2s

· K

t0 + δ0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) ,

then tmε um
ε (x) ≤ t0 + δ0.

Next for |x| ≥
(

`0

β
N−2
4−2s

· K

t0 + δ0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) one has

(2.7) ε|x|
(2−s)(

√
µ−κ)

N−2 + |x|
(2−s)(

√
µ+κ)

N−2 ≤
( t0

t0 − δ0/2

) 2−s
N−2 |x|

(2−s)(
√

µ+κ)
N−2 .

Since
1

`0β
N−2
4−2s

u∗
ε

(
1

m

)
+ t0 − δ0 < t0 − δ0/2 for small ε > 0, by (2.7) one can get

that, if

(
`0

β
N−2
4−2s

· K

t0 + δ0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s) ≤ |x| ≤
(

1

`0β
N−2
4−2s

· K

t0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) ,

then

tmε um
ε (x) = tmε

(
u∗

ε(x) − u∗
ε

(
1

m

))
≥ 1

`0β
N−2
4−2s

(
Kε

√
µ/(2−s)

(
t0

t0 − δ0/2

)
|x|

√
µ+κ

− u∗
ε

( 1

m

))

≥ t0 − δ0/2 − 1

`0β
N−2
4−2s

u∗
ε

( 1

m

)

≥ t0 − δ0.

Having the previous work in hand we have that, if

(2.8)

(
`0

β
N−2
4−2s

· K

t0 + δ0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) ≤ |x| ≤
(

1

`0β
N−2
4−2s

·K
t0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) ,

then tmε um
ε (x) ∈ [t0 − δ0, t0 + δ0]. Note that from (2.7), (2.8) and u∗

ε

(
1

m

)
≤
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1

2
u∗

ε(|x|)∀|x| ≤
(

1

`0β(N−2)/(4−2s)
· K

t0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) for ε > 0 small enough

∫

Ω

G(x, tmε um
ε ) dx ≥ C

∫
(

1

`0β(N−2)/(4−2s)
· K

t0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(
`0

β(N−2)/(4−2s)
· K

t0+δ0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(u∗
ε(r))

2rN−1 dr

≥ Cε
N−2
2−s

∫
(

1

`0β(N−2)/(4−2s)
· K

t0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(
`0

β(N−2)/(4−2s)
· K

t0+δ0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s)

r1−2
√

µ−µ dr

= Cε
N−2
2−s ε

√
µ(2−2

√
µ−µ)

(
√

µ+κ)(2−s)

> C0ε
N−2
2−s m2∗(s)

√
µ−µ

for ε > 0 small enough.

(2). µ = µ − 1. Case (1) shows that, if

(2.9)

(
`0

β
N−2
4−2s

· K

t0 + δ0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) ≤ |x| ≤
(

1

`0β
N−2
4−2s

· K

t0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s)

for ε > 0 small enough, then tm0
ε um0

ε (x) ∈ [t0 − δ0, t0 + δ0]. Therefore, noting (2.7)

and u∗
ε

(
1

m0

)
≤ 1

2
u∗

ε(|x|)∀|x| ≤
(

1

`0β(N−2)/(4−2s)
· K

t0

) 1√
µ+κ

ε

√
µ

(
√

µ+κ)(2−s) for ε > 0

small enough, by (C4)(ii), one has
∫

Ω

G(x, tm0
ε um0

ε ) dx

≥ ηSN

4

(
1

β
N−2
2−s

+ o(1)

)∫
(

1
`0β(N−2)/(4−2s) · K

t0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(
`0

β(N−2)/(4−2s) · K

t0+δ0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(u∗
ε(r))

2rN−1 dr

≥ ηSN

4

(
1

β
N−2
2−s

+ o(1)

)
K

2
( t0 − δ0/2

t0

)2

ε
N−2
2−s

∫
(

1

`0β
N−2
4−2s

· K

t0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

(
`0

β
N−2
4−2s

· K

t0+δ0

) 1√
µ+κ

ε
√

µ

(
√

µ+κ)(2−s)

r−1dr

=
ηSN

4(
√

µ + κ)

( 1

β(N−2)(2−s)
+ o(1)

)
K

2
( t0 − δ0/2

t0

)2

ln
( t0 + δ0

` 2
0 t0

)
ε(N−2)/(2−s)

> C0ε
(N−2)/(2−s)m

2∗(s)
√

µ−µ
0

for ε > 0 small enough.
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(3). µ − 1 < µ < µ. The proof is similar to the former part of Lemma 6 in

[1] and we simply sketch it here. Let κ′ =
√

µ

κ(2 − s)
. Then

(2.10) ε|x|
(2−s)(

√
µ−κ)

N−2 + |x|
(2−s)(

√
µ+κ)

N−2 ≤ 2 ε
(2−s)(

√
µ+κ)

N−2
κ′

∀x ∈ Bεκ′ ⊂ B1/m0

for ε > 0 small enough. On the other hand we have

(2.11) tm0
ε um0

ε (x) ≥ M ∀x ∈ Bεκ′

and

(2.12) u∗
ε(x) ≥ pu∗

ε(1/m0)∀x ∈ Bεκ′/q′

with q′ = p1/(
√

µ−κ) for ε > 0 small enough.

Combining (2.10), (2.11), (2.12) and (C4)(ii) we obtain

∫

Ω

G(x, tm0
ε um0

ε ) dx ≥ ηSN

(
1 − 1

p

)p
(

1

β
(N−2)p
4−2s

+ o(1)

)∫ εκ′
/q′

0

(u∗
ε(r))

prN−1 dr

≥ ηSN

(
1 − 1

p

)p
(

1

β
(N−2)p
4−2s

+ o(1)

)
K

p

2
(N−2)p

2−s

ε
−p µ

κ(2−s)

∫ εκ′
/q′

0

rN−1 dr

= ηSN

(
1 − 1

p

)p
(

1

β
(N−2)p
4−2s

+ o(1)

)
K

p

2
(N−2)p

2−s

1

Np
N√
µ−κ

ε
N−2
2−s

> C0 ε
N−2
2−s m

2∗(s)
√

µ−µ
0

for ε > 0 small enough.

We now conclude that problem (1.1) admits one positive solution since

J(tmε um
ε ) =

1

2
‖tmε um

ε ‖2
Hµ

−
∫

Ω

G(x, tmε um
ε ) dx − β

2∗(s)

∫

Ω

|tmε um
ε |2∗(s)

|x|s dx

<
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

for ε > 0 small enough(m = m0 in case (2) and case (3)), which contradicts (2.5).

Moreover, if g(x, t) is odd with t, then −u is one negative solution of (1.1).
�

3. PROOF OF THEOREM 1.2

We begin this Section with two lemmas.

Lemma 3.1 Assume (C6) with ν1 > λ1 or ν1 = λ1 and 0 ≤ β1 < β. Then every

nontrivial solution of (1.1) must be sign-changing.
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Proof. By the contrary we assume that u ≥ 0 is a nontrivial solution of (1.1). We
have

−
∫

Ω

∆ue1 − µ

∫

Ω

u

|x|2 e1 =

∫

Ω

g(x, u)e1 + β

∫

Ω

|u|2∗(s)−2

|x|s ue1

and

−
∫

Ω

∆ue1 − µ

∫

Ω

u

|x|2 e1 =

∫

Ω

u
(
− ∆e1 −

µ

|x|2 e1

)
= λ1

∫

Ω

ue1.

(C6) and the above two equations imply that

λ1

∫

Ω

ue1 ≥ ν1

∫

Ω

ue1 + (β − β1)

∫

Ω

|u|2∗(s)−2

|x|s ue1.

Therefore, if ν1 > λ1 or ν1 = λ1 and 0 ≤ β1 < β, we can get a contradiction.
Then (1.1) has no nontrivial positive solutions. Similar arguments show that (1.1)
has no nontrivial negative solutions. �

By (C6) we find that for a.e.x ∈ Ω and ∀t ∈ R

(3.1)
ν1

2
|x|s|t|2 − β1

2∗(s)
|t|2

∗(s) ≤ |G1(x, t)| ≤ ν2

2
|x|s|t|2 +

Ψ(x)

θ
|x|s|t|θ +

α

2∗(s)
|t|2

∗(s).

Lemma 3.2. Assume (C6) with λk < ν1 ≤ ν2 < λk+1 or λk = ν1 ≤ ν2 < λk+1 and

0 ≤ β1 < β. Let Qε
m := [(BR ∩ H−

m)
⊕

[0, R]{um
ε }] and Γ := {h ∈ C(Qε

m, Hµ) :
h(v) = v, ∀v ∈ ∂Qε

m}. Then J admits a (PS)c sequence at level

c = inf
h∈Γ

max
v∈Qε

m

J(h(v)).

Proof. See the proof of Lemma 4 in [1] (see also [3, 4]). �

The proof of Theorem 1.2 is the following.

Proof of Theorem 1.2. Since the identity Id ∈ Γ, we have

inf
h∈Γ

max
v∈Qε

m

J(h(v)) ≤ max
v∈Qε

m

J(v).

Theorem 1.2 follows from Lemma 2.1, Lemma 3.1 and Lemma 3.2 if one can prove
that for some ε > 0 and m ∈ N

(3.2) sup
v∈Qε

m

J(v) <
2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
.

On the contrary we assume that

(3.3) ∀ε > 0 and∀m ∈ N sup
v∈Qε

m

J(v) ≥ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
.
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One notes that {v ∈ Qε
m; J(v) ≥ 0} is compact. The supremum in (3.3) is attained.

Thus for all ε > 0 and m ∈ N there exists wm
ε ∈ H−

m and tmε ≥ 0 such that for
vm

ε = wm
ε + tmε um

ε we have

(3.4) J(vm
ε ) = max

v∈Qε
m

J(v) ≥ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
.

Similarly to [1,4], for any m ∈ N, {tmε } ⊂ R
+ and {wm

ε } ⊂ H−
m are bounded. Up

to subsequences we assume that tmε → tm ≥ 0, wm
ε → wm ∈ H−

m .

To obtain a contradiction to (3.4) we distinguish three cases according to the
assumptions of Theorem 1.2.

Case (I). Using max
{u∈H−

m;‖u‖L2(Ω)=1}
‖u‖2

Hµ
≤ λk + Cm−2

√
µ−µ (for details see

[10]) and (3.1) we know that

J(wm
ε ) =

1

2
‖wm

ε ‖2
Hµ

−
∫

Ω

G(x, wm
ε ) dx − β

2∗(s)

∫

Ω

|wm
ε |2∗(s)

|x|s dx

≤ λk + Cm−2
√

µ−µ

2
‖wm

ε ‖2
L2 − ν1

2
‖wm

ε ‖2
L2 − β − β1

2∗(s)

∫

Ω

|wm
ε |2∗(s)

|x|s dx ≤ 0

for m large enough. On the other hand, as we see in the proof of Theorem 1.1, we
have

J(tmε um
ε ) <

2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

for ε > 0 small enough and m large enough. Then the above two inequalities with
J(vm

ε ) = J(wm
ε ) + J(tmε um

ε ) imply a contradiction to (3.4).

Case (II). By max
{u∈H−

m;‖u‖L2(Ω)=1}
‖u‖2

Hµ
≤ λk + Cm−2

√
µ−µ and (3.1), noting

H−
m is finite dimensional and then the convergence of wm

ε can be viewed as in any
norm topology, we see that

J(wm
ε ) =

1

2
‖wm

ε ‖2
Hµ

−
∫

Ω

G(x, wm
ε ) dx − β

2∗(s)

∫

Ω

|wm
ε |2∗(s)

|x|s dx

≤ Cm−2
√

µ−µ

2
‖wm

ε ‖2
L2 − β

2∗(s)

∫

Ω

|wm
ε |2∗(s)

|x|s dx

= C1m
−2

√
µ−µ‖wm

ε ‖2
L2 − C2‖wm

ε ‖2∗(s)
L2

≤ C3m
− 2(N−s)

2−s

√
µ−µ.

As was done in [3, 9], setting ε = m− (N+2)(2−s)κ
N−2 we denote vm

ε , tmε , um
ε , wm

ε

by vm, tm, um, wm, respectively, in the sequel. Now we estimate J(tmum). Clearly
tm is bounded and tm → t0 > 0 up to a subsequence. Moreover (2.2) and (2.3)
become

(3.5) ‖um
ε ‖2

Hµ
≤ A(N−s)/(2−s) + C′m−N

√
µ−µ,
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(3.6)

∫

Ω

|um
ε |2∗(s)

|x|s dx ≥ A(N−s)/(2−s) − C′′m−((N+2)−2∗(s))
√

µ−µ.

When
√

µ > (2∗(s) − 1)κ, that is µ > µ − (N − 2)4

4(N + 2 − 2s)2
, according to [9] (3.6)

can be replaced by

(3.7)

∫

Ω

|um
ε |2∗(s)

|x|s dx ≥ A(N−s)/(2−s) − C′′m
−N(N−s)

N−2

√
µ−µ.

By (3.1) one has

(3.8) J(tmum) ≤ 1

2
‖tmum‖2

Hµ
− ν1

2

∫

Ω

|tmum|2 dx − β

2∗(s)

∫

Ω

|tmum|2∗(s)

|x|s dx.

With ν1

∫
Ω
|um|2 dx ≥ C4m

−(N+2) (for details see [1, 9]) we know:

(i). For µ − (N − 2)4

4 (N + 2 − 2s)2
< µ < µ −

(
N + 2

N

)2

J(tmum) ≤ 1

2
‖tmum‖2

Hµ
− ν1

2

∫

Ω

|tmum|2 dx − β

2∗(s)

∫

Ω

|tmum|2∗(s)

|x|s dx

≤ 1

2
(tm)2(A(N−s)/(2−s) + C′m−N

√
µ−µ − C4m

−(N+2))

− β

2∗(s)
(tm)2

∗(s)
(
A(N−s)/(2−s) − C′′m

−N(N−s)
N−2

√
µ−µ

)

≤ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C5m

−(N+2).

With J(vm) = J(wm) + J(tmum) (by the fact |supp(um) ∩ supp(wm)| = 0) we get

J(vm) ≤ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C5m

−(N+2) + C3m
− 2(N−s)

2−s

√
µ−µ

<
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

for m large enough, which implies a contradiction to (3.4).

(ii). For 0 ≤ µ ≤ µ − (N − 2)4

4(N + 2 − 2s)2

J(tmum) ≤ 1

2
‖tmum‖2

Hµ
− ν1

2

∫

Ω

|tmum|2 dx − β

2∗(s)

∫

Ω

|tmum|2∗(s)

|x|s dx

≤ 1

2
(tm)2(A(N−s)/(2−s) + C′m−N

√
µ−µ − C4m

−(N+2))

− β

2∗(s)
(tm)2

∗(s)(A(N−s)/(2−s) − C′′m−(N+2−2∗(s))
√

µ−µ)

≤ 2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C6m

−(N+2).
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Then, as we did for (i), one obtains

J(vm) ≤ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C6m

−(N+2) + C3m
− 2(N−s)

2−s

√
µ−µ

<
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)

for m large enough, which contradict (3.4).

Case (III). When we use (C4)(i), the proof of case (1) of Theorem 1.1 gives

(3.9)

∫

Ω

G(x, tmε um
ε ) dx ≥ C7 ε

N−2
2−s ε

√
µ(2−2

√
µ−µ)

(
√

µ+κ)(2−s)

for ε > 0 small enough.

Setting ε = m− (N+2)(2−s)κ
N−2 as in Case (II), since 0 ≤ µ < µ−

(
2N + 2 − s

N + 2 − 2∗(s)

)2

,

we have

J(tmum) ≤ 1

2
‖tmum‖2

Hµ
−
∫

Ω

G(x, tmum) dx − β

2∗(s)

∫

Ω

|tmum|2∗(s)

|x|s dx

≤ 1

2
(tm)2

(
A(N−s)/(2−s) + C′m−N

√
µ−µ

)
− C7m

−N(N+2)κ
N−2+2κ

− β

2∗(s)
(tm)2

∗(s)
(
A(N−s)/(2−s) − C′′m−(N+2−2∗(s))

√
µ−µ

)

≤ 2 − s

2 (N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C8m

−N(N+2)κ
N−2+2κ .

On the other hand Case (II) shows that

(3.10) J(wm) ≤ C9m
−2(N−s)

2−s
κ.

The above two inequalities with J(vm) = J(wm) + J(tmum) imply

J(vm) ≤ 2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
− C8m

−N(N+2)κ
N−2+2κ + C9m

− 2(N−s)
2−s

κ

<
2 − s

2(N − s)

A(N−s)/(2−s)

β(N−2)/(2−s)
,

which implies a contradiction to (3.4) for m large enough.

In conclusion (1.1) admits one sign-changing solution u. Moreover, if g(x, t)
is odd in t, then −u is also a sign-changing solution of (1.1). �

Remark 3.3. (1). From the proof of (II)(ii) we know that the theorem still holds for N =

5, 6, 7 if µ−
( N + 2

N + 2 − 2∗(s)

)2

> 0 for some 0 ≤ s < 2 and µ ∈
[
0, µ−

( N + 2

N + 2 − 2∗(s)

)2)
.
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(2). From the proof of (III) we see that the theorem also holds for N = 5, 6, 7 if

µ −
( 2N + 2 − s

N + 2 − 2∗(s)

)2

> 0 for some 0 ≤ s < 2 and µ ∈
[
0, µ −

( 2N + 2 − s

N + 2 − 2∗(s)

)2)
.
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