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TRANSVERSAL SPACES

AND FIXED POINT THEOREMS

Sinǐsa N. Ješić, Milan R. Tasković, Nataša A. Babačev

In this paper we define Transversal functional probabilistic spaces (upper and
lower) as a natural extension of Metric spaces, Probabilistic metric spaces and
Fuzzy metric spaces. Also, we formulate and prove some fixed and common
fixed point theorems.

1. INTRODUCTION

Transversal spaces were introduced by Tasković in [11]. Some of the first
results in fixed point theory for mappings defined on transversal spaces are given
in [11] and [7].

Definition 1.1. Let X be a nonempty set and let P := (P,�) be a partially ordered

set. The function ρ : X × X → P is called an upper ordered transverse on X if

ρ(x, y) = ρ(y, x), and if there exists an upper bisection function g : P × P → P

such that

ρ(x, y) � sup
{

ρ(x, z), ρ(z, y), g
(

ρ(x, z), ρ(z, y)
)}

for all x, y, z ∈ X. An upper ordered transversal space is a triple (X, ρ, g).

Definition 1.2. The function ρ : X × X → P is called a lower ordered transverse

on X if ρ(x, y) = ρ(y, x) and if there exists a lower bisection function d : P×P → P

such that

inf
{

ρ(x, z), ρ(z, y), d
(

ρ(x, z), ρ(z, y)
)}

� ρ(x, y)

for all x, y, z ∈ X. A lower ordered transversal space is a triple (X, ρ, d).

For P = [0, +∞) the spaces (X, ρ, g) and (X, ρ, d) we will call upper and
lower transversal space.
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For P = [a, b], 0 < a < b these spaces we will call the upper or lower transver-
sal interval spaces (see [12]). Especially, for a = 0 and b = 1 we will call this spaces
upper and lower transversal probabilistic spaces.

Example 1.1. Every metric space (X, d) can be considered as an upper transversal space.

Indeed, for the upper bisection function g : [0, +∞) × [0, +∞) → [0, +∞) defined by

g(a, b) := a + b and the upper transverse function being the metric d of the metric space

(X, d), from d(x, y) ≤ d(x, z)+d(z, y) it follows that the metric space is an upper transver-

sal space. For this choise of the upper transversal function and the upper bisection function

we say that the upper transversal space is induced by the metric d.

Example 1.2. Every metric space (X, δ) can be considered as a lower transversal space,

too. For the lower bisection function d : [0, +∞)×[0,+∞) → [0, +∞) defined by d(a, b) :=
∣

∣|a| − |b|
∣

∣ and the lower transverse function being the metric of the metric space (X, δ),

from δ(x, y) ≥
∣

∣δ(x, z) − δ(z, y)
∣

∣ it follows that every metric space is a lower transversal

space. For this choise of the lower transversal function and the lower bisection function

we say that the lower transversal space is induced by the metric δ.

Example 1.3. Cicchese in [2] and [3] defines and considers generalized metric spaces.
Here the triangle inequality of the metric spaces is replaced by the following condition:

There exist subset A ⊆ [0, +∞) which contains an interval [0, a), for some a > 0,
and a function ϕ : A → [0, +∞) such that lim

x→0
ϕ(x) = 0 and for some fixed τ ≥ 1 and

every x, y, z ∈ X such that ρ(x, z) ∈ A holds :

ρ(x, y) ≤ ϕ[ρ(x, z)] + τρ(z, y).

It is easy to show that every generalized metric space can be considered as an upper

transversal space, where the upper bisection function g is given by g(p, q) = ϕ(p) + τq,

and P = A.

2. PRELIMINARIES

We give the definitions of upper and lower transversal functional probabilistic
spaces.

Definition 2.1. Let X be a nonempty set. The symmetric function ρ : X × X ×
[0, +∞) → [0, 1] is called an upper functional probabilistic transverse on X if there

exists a function g : [0, 1] × [0, 1] → [0, 1], called an upper probabilistic bisection

function, such that

(1) ρ(p, q)(x) ≤ max
{

ρ(p, s)(x), ρ(s, q)(x), g
(

ρ(p, s)(x), ρ(s, q)(x)
)}

for all p, q, s ∈ X and for each x ∈ [0, +∞). The triple (X, ρ, g) will be called an

upper transversal functional probabilistic space.

Definition 2.2. Let X be a nonempty set. The symmetric function ρ : X × X ×
[0, +∞) → [0, 1] is called a lower functional probabilistic transverse on X if there
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exists a function d : [0, 1] × [0, 1] → [0, 1], called a lower probabilistic bisection

function, such that

(2) ρ(p, q)(x) ≥ min
{

ρ(p, s)(x), ρ(s, q)(x), d
(

ρ(p, s)(x), ρ(s, q)(x)
)}

for all p, q, s ∈ X and for each x ∈ [0, +∞). The triple (X, ρ, d) we will call lower

transversal functional probabilistic space.

Example 2.1. Every metric space (X, δ) can be considered as a lower transversal func-

tional probabilistic space (X, ρ, d) with the lower probabilistic bisection function d(a, b) =

min{a, b} and the lower functional probabilistic transverse ρ(p, q)(x) =
θ(x)

θ(x) + δ(p, q)
where

θ : [0, +∞) → [0, +∞) and θ(0) = 0 is a bijection function such that lim
x→+∞

θ(x) = +∞.

The triple (X, ρ, d) we will call the lower transversal functional probabilistic space induced

by the metric δ.

Before we give few more examples of transversal spaces we introduce Menger

probabilistic spaces and Fuzzy metric spaces.

Definition 2.3. Let S denote the set of all distributions, i.e. the set of all non-

decreasing, left-continuous functions f : R → R
+, satisfying inf{f(x) : x ∈ R} = 0

and sup{f(x) : x ∈ R} = 1. A probabilistic metric space is a pair (X,F), where X

is a nonempty set, F : X × X → S a mapping that to every point (p, q) ∈ X × X

assignes a function from S, denoted as Fp,q(x), which satisfies

(a) Fp,q(x) = 1, for all x > 0 if and only if p = q,

(b) Fp,q(0) = 0,

(c) Fp,q(x) = Fq,p(x),

(d) From Fp,q(x) = 1 and Fq,s(y) = 1 follows that Fp,s(x + y) = 1,

for all p, q, s ∈ X and all x, y ∈ R.

Definition 2.4. A binary operation t : [0, 1]× [0, 1] → [0, 1] is a t-norm if t satisfies

the following conditions :

(1) t is commutative and associative,

(2) t(a, 1) = a for all a ∈ [0, 1],

(3) t(a, b) ≤ t(c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norms are t(a, b) = min{a, b} and t(a, b) = ab.

Definition 2.5. A triple (X,F , T ), where (X,F) is a probabilistic metric space

and T a t-norm which satisfies Menger’s inequality

Fp,q(x + y) ≥ T [Fp,s(x), Fs,q(y)]

for all p, q, s ∈ X and all x ≥ 0, y ≥ 0, is called a Menger probabilistic metric space.

Every metric space is a Menger probabilistic metric space when t-norm is
given with T (a, b) = min{a, b}. In that case Menger’s inequality follows from the
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triangular inequality, taking Fp,q(x) = H
(

x − d(p, q)
)

, where

H(x) =

{

0, for x ≤ 0

1, for x > 0
.

Example 2.2. Every Menger probabilistic metric space can be considered as a lower
transversal functional probabilistic space. In this case lower probabilistic bisection func-
tion is defined with d(ρ(p, s)(x), ρ(s, q)(x)) = T

(

ρ(p, s)(x/2), ρ(s, q)(x/2)
)

, where t-norm
satisfies Menger’s inequality. We define the lower functional probabilistic transverse
as ρ(p, q)(x) = Fp,q(x). Now the inequality that defines the lower transversal functional
probabilistic space follows from the next inequalities, since

ρ(p, q)(x) = Fp,q(x) ≥ T [Fp,s(x/2), Fs,q(x/2)]

≥ min
{

Fp,s(x), Fs,q(x),T [Fp,s(x/2), Fs,q(x/2)]
}

= min
{

ρ(p, s)(x), ρ(s, q)(x), d
(

ρ(p, s)(x), ρ(s, q)(x)
)}

for all p, q, s ∈ X and all x ≥ 0.

Kramosil and Michalek ([9]) have defined a notion of fuzzy metric spaces.
George and Veeramani ([4, 5]) have modified this definition in the following
sense:

Definition 2.6. [13] A fuzzy set A in X is a function A : X → [0, 1].

In fuzzy metric spaces the usual notation of t-norm is ∗ i.e. a ∗ b = t(a, b).

Definition 2.7. [4] A triple (X, M, ∗) is said to be a fuzzy metric space if X is

an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞)
satisfying the following conditions :

(Fm-1) M(x, y, t) > 0,

(Fm-2) M(x, y, t) = 1 for all t > 0 if and only if x = y,

(Fm-3) M(x, y, t) = M(y, x, t),

(Fm-4) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and t, s > 0,

(Fm-5) M(x, y, ·) : (0,∞) → [0, 1] is continuous.

Example 2.3. Every fuzzy metric space can be considered as a lower transversal functional

probabilistic space. The proof of this fact is similar to the proof given in Example 2.2.

Definition 2.8. Let (X, ρ, d) be a lower transversal functional probabilistic space.

(a) A sequence (pn)n∈N in (X, ρ, d) converges to a point p ∈ X if for any ε > 0
and any λ ∈ (0, 1) there exists an integer n0 such that

ρ(p, pn)(ε) > 1 − λ for all n ≥ n0.

(b) A sequence (pn)n∈N is said to be Cauchy if for any ε > 0 and any λ ∈ (0, 1)
there exists an integer n0 such that

ρ(pm, pn)(ε) > 1 − λ for all m, n ≥ n0.
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(c) A lower transversal functional probabilistic space will be called complete if every

Cauchy sequence is convergent in X.

Throughout this paper we consider lower transversal functional probabilistic
spaces with the lower functional probabilistic transverse ρ(p, q)(x) which satisfies
the following conditions

(T1) ρ(p, q)(x) is a left-continuous function for x ∈ (0,∞)
and right-continuous at the point x = 0,

(T2) ρ(p, q)(x) = 1 for all x > 0 iff p = q,

(T3) ρ(p, q)(x) is a non-decreasing function,

(T4) lim
x→+∞

ρ(p, q)(x) = 1 for all p, q ∈ X.

Also, we assume that the lower probabilistic bisection function d(x, y) satis-
fies:

(B1) d(x, y) is a non-decreasing and continuous function,

(B2) d(x, x) ≥ x,

(B3) lim
x→1

d(a, x) = a.

Lemma 2.1. Let (X, ρ, d) be a lower transversal functional probabilistic space,

with the lower functional probabilistic transverse satisfying (T1)–(T4) and lower

bisection function satisfying (B1)–(B3), lim inf
n→+∞

pn = p, lim inf
n→+∞

qn = q, then

lim inf
n→+∞

ρ(pn, qn)(x) = ρ(p, q)(x).

Proof. The proof follows from the fact that ρ(p, q)(x) is a left-continuous function
and the fact that (T1)–(T4) and (B1)–(B3) are satisfied. The body of the proof is
similar to analogous result for probabilistic metric spaces (see [10]). �

Definition 2.9. Let (X, ρ, d) be a lower transversal functional probabilistic space

and A ⊆ X. Let the mappings δA(t) : (0,∞) → [0, 1] be defined as

δA(t) = inf
p,q∈A

sup
ε< t

ρ(p, q)(ε).

The constant δA = sup
t>0

δA(t) will be called lower transversal functional probabilistic

diameter of set A.

Definition 2.10. If δA = 1 we will call the set A strongly bounded set in lower

transversal functional probabilistic space.

Lemma 2.2. Let (X, ρ, d) be a lower transversal functional probabilistic space. A

set A ⊆ X is strongly bounded iff for each r ∈ (0, 1) there exists t > 0 such that

ρ(p, q)(t) > 1 − r for all p, q ∈ A.

Proof. The proof follows from the definitions of supA and inf A of non-empty sets.

Example 2.4. Let (X, ρ, d) be a lower transversal functional probabilistic space induced

by the metric δ introduced in the Example 2.1. A ⊆ X is metrically bounded if and only if
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it is strongly bounded in the lower transversal functional probabilistic space (X, ρ, d). To

prove that, suppose that A ⊆ X is metrically bounded, i.e. δ(p, q) < k, for some k ∈ R and

all p, q ∈ A. Let r ∈ (0, 1) be arbitrary. For the lower functional probabilistic transverse

ρ(p, q)(x) it follows that ρ(p, q)(x) >
θ(x)

θ(x) + k
for all p, q ∈ A. From

θ(x)

θ(x) + k
> 1 − r

we get that θ(x) >
k(1 − r)

r
. Since θ is a bijection function it follows that there exists

x ∈ (0, +∞) such that θ(x) >
k(1 − r)

r
, i.e. ρ(p, q)(x) > 1 − r. From Lemma 2.2. it

follows that A is strongly bounded set in the lower transversal functional probabilistic

space (X, ρ, d). Conversely, if A is a strongly bounded set in (X, ρ, d) then for arbitrary

r ∈ (0, 1) there exists x > 0 such that ρ(p, q)(x) =
θ(x)

θ(x) + δ(p, q)
> 1 − r for all p, q ∈ A.

From these inequalities it follows that δ(p, q) <
r

1 − r
θ(x) for all p, q ∈ A i.e. the set A is

metrically bounded. This completes the proof. �

Definition 2.11. Let (X, ρ, d) be a lower transversal functional probabilistic space.

A subset F ⊆ X will be called closed if for every sequence {pn}n∈N ⊆ F such that

pn → p0 as n → ∞ it follows that p0 ∈ F. The minimal closed set containing F

will be called the closure of F and it will be denoted by F .

Definition 2.12. Let (X, ρ, d) be a lower transversal functional probabilistic space.

A collection of sets {Fn}n∈N is said to have lower transversal diameter zero iff for

each pair λ ∈ (0, 1) and x > 0 there exists n ∈ N such that ρ(p, q)(x) > 1 − λ for

all p, q ∈ Fn.

Theorem 2.1. Let (X, ρ, d) be a complete lower transversal functional probabilistic

space and let {Fn}n∈N be a nested sequence of nonempty closed sets. If this sequence

of sets has lower transversal diameter zero then it has a nonempty intersection.

Proof. Let {Fn}n∈N be a nested sequence of nonempty closed sets with a lower
transversal diameter zero. Let pn ∈ Fn, n ∈ N. Since {Fn}n∈N has lower transversal
diameter zero, for λ ∈ (0, 1) and x > 0 there exists n0 ∈ N such that ρ(p, q)(x) >

1 − λ for all p, q ∈ Fn0
. Therefore, ρ(pn, pm)(x) > 1 − λ for all n, m ≥ n0. Since

pn ∈ Fn ⊂ Fn0
and pm ∈ Fm ⊂ Fn0

it follows that {pn}n∈N is a Cauchy sequence.
Because (X, ρ, d) is a complete lower transversal functional probabilistic space then
pn converges to some p ∈ X. Now for each n it follows that pk ∈ Fn for all k ≥ n.

Therefore p ∈ Fn = Fn for every n and hence p ∈ ∩
n∈N

Fn. This completes the proof.

Remark 2.1. If the space (X, ρ, d) satisfies (T2) then the element p ∈ ∩
n∈N

Fn is unique.

Let us suppose that there exist p, q ∈ ∩
n∈N

Fn. From the fact that the family {Fn}n∈N has

lower transversal diameter zero it follows that ρ(p, q)(x) > 1−1/n for each n and for fixed

x > 0. this implies that ρ(p, q)(x) = 1. From (T2) it follows that p = q.

Definition 2.13. Two self-mappings S and T defined on a lower transversal func-

tional probabilistic space (X, ρ, d) are compatible if

lim
n→+∞

ρ(STpn, TSpn)(x) = 1 for all x > 0,
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whenever (pn)n∈N is a sequence in X such that sequences (Spn)n∈N and (Tpn)n∈N

converge to some point p ∈ X. Than we say that the pair {S, T } is compatible.

Remark 2.2. Let S and T be compatible self-mappings defined on a lower transversal

functional probabilistic space (X, ρ, d). From Definition 2.13. by taking pn = z for all

n ∈ N and for some point z ∈ X it follows: If Sz = Tz for some z ∈ X then STz = TSz.

Lemma 2.3. Let S and T be compatible self-mappings defined on a lower transver-

sal functional probabilistic space (X, ρ, d) with the lower bisection function which

satisfies (B1)–(B3) and let Spn and Tpn converge to some point z ∈ X for a se-

quence {pn}n∈N in X. If S is continuous then

lim
n→+∞

TSpn = Sz for all x > 0.

Proof. Let λ ∈ (0, 1) and x > 0 be arbitrary. Since S and T are compatible then
ρ(TSpn, STpn)(x) > 1−λ. Also, Spn and Tpn converge to z, so ρ(Tpn, z)(x) > 1−λ

and ρ(Spn, z)(x) > 1 − λ. From (B1)–(B3) and continuity of S, using (2) we have
that the following inequalities hold.

ρ(TSpn, Sz)(x) ≥ min
{

ρ(TSpn, STpn)(x), ρ(STpn, Sz)(x),

d
(

ρ(TSpn, STpn)(x), ρ(STpn, Sz)(x)
)}

> min
{

1 − λ, d(1 − λ, 1 − λ)
}

= 1 − λ.

Taking that λ → 0 and n → +∞ we get

lim inf
n→+∞

ρ(TSpn, Sz)(x) = 1

i.e. lim
n→+∞

TSpn = Sz. This completes the proof.

3. MAIN RESULTS

In this section we present a common fixed point theorem for compatible map-
pings, with nonlinear contractive conditions. One of the first results that includes
nonlinear contractive conditions for mappings defined on metric spaces was given
by Boyd and Wong in [1]. Also, nonlinear contractive conditions for mappings
defined on intuitionistic fuzzy metric spaces are obtained by Ješić and Babačev

in [8]. These results are proved for commuting mappings and R-weakly commuting
mappings (see [8]). It is easy to see that compatible mappings define a larger class
of functions than the class of R-weakly commuting mappings. Indeed, every pair
of commuting or R-weakly commuting mappings is compatible, but the converse is
not true. We start this section with one lemma.

Lemma 3.1. Let (X, ρ, d) be a lower transversal functional probabilistic space

with the lower functional probabilistic transverse satisfying (T1)–(T4). Let ϕ :
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(0, +∞) → (0, +∞) be a continuous, non-decreasing function which satisfies ϕ(x) <

x for all x > 0. Then the following statement holds.

If for p, q ∈ X it holds that ρ(p, q)
(

ϕ(x)
)

≥ ρ(p, q)(x) for all x > 0 then

p = q.

Proof. First, note that lim
n→+∞

ϕn(x) = 0 for all x ∈ (0, 1) where ϕn denotes the

n-th iteration of ϕ. For fixed p, q ∈ X there exists

lim
x→0+

ρ(p, q)(x) = ρ(p, q)(0).

Suppose ρ(p, q)
(

ϕ(x)
)

≥ ρ(p, q)(x) for all x > 0. Because ρ(p, q)
(

ϕ(x)
)

≤ ρ(p, q)(x),

by induction it follows that ρ(p, q)
(

ϕn(x)
)

= ρ(p, q)(x) for all x > 0. Taking limits
as n → +∞ we have that ρ(p, q)(x) = ρ(p, q)(0) for all x > 0 and lim

x→+∞

ρ(p, q)(x) =

ρ(p, q)(0). From (T4) it follows that ρ(p, q)(0) = 1 i.e. ρ(p, q)(x) = 1 for all x > 0.

This means that p = q.

Theorem 3.1. Let A, B, S and T be self-mappings defined on complete lower

transversal functional probabilistic space (X, ρ, d) such that A(X) and B(X) are

strongly bounded sets, with the lower functional probabilistic transverse which sat-

isfies (T1)–(T4) and lower bisection function which satisfies (B1)–(B3), satisfying

the conditions :

(a) A(X) ⊆ T (X), B(X) ⊆ S(X),

(b) one of A, B, S, T is continuous,

(c) the pairs {A, S} and {B, T } are compatible,

(d) there exists a continuous, non-decreasing function ϕ : (0,∞) → (0, +∞)
which satisfies ϕ(x) < x for all x > 0 and

(3) ρ(Ap, Bq)
(

ϕ(x)
)

≥ ρ(Sp, T q)(x), for all x > 0 and p, q ∈ X.

Then A, B, S and T have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. From (a) it follows that there exists
x1 ∈ X such that A(x0) = T (x1) and for this point x1 we have that there exists
x2 ∈ X such that B(x1) = S(x2). By induction we can construct a sequence
{zn}n∈N as follows

(4) z2n−1 = Tx2n−1 = Ax2n−2, z2n = Sx2n = Bx2n−1.

Let us consider nested sequence of nonempty closed sets defined by

Fn = {zn, zn+1, . . .}, n ∈ N.

We shall prove that the family {Fn}n∈N has a lower transversal diameter zero.

To this end, let λ ∈ (0, 1) and x > 0 be arbitrary. From Fk ⊆ A(X)∪B(X) it
follows that Fk is an strongly bounded set for arbitrary k ∈ N. Hence, there exists
x0 > 0 such that

(5) ρ(p, q)(x0) > 1 − λ for all p, q ∈ Fk.
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From lim
n→+∞

ϕn(x0) = 0 we conclude that there exists m ∈ N such that

ϕm(x0) < x. Let n = m + k and p, q ∈ Fn be arbitrary. There exist sequences
{zn(i)}, {zn(j)} in Fn (n(i), n(j) ≥ n i, j ∈ N) such that lim

i→+∞

zn(i) = p and

lim
j→+∞

zn(j) = q.

Case I. Suppose that n(i) ∈ 2N − 1 and n(j) ∈ 2N or vice versa for i, j ∈ N large
enough i.e. zn(i) = Axn(i)−1 and zn(j) = Bxn(j)−1.

From (3) we have that

(6) ρ(zn(i), zn(j))
(

ϕ(x)
)

= ρ(Axn(i)−1, Bxn(j)−1)
(

ϕ(x)
)

≥ ρ(Sxn(i), Txn(j))(x)

= ρ(Axn(i)−1, Bxn(j)−1)(x) = ρ(zn(i)−1, zn(j)−1)(x).

Thus, by induction we get

ρ(zn(i), zn(j))
(

ϕm(x)
)

≥ ρ(zn(i)−m, zn(j)−m)(x).

Since ϕm(x0) < x and because ρ(p, q)(·) is a non-decreasing function, from
the last inequalities it follows that

ρ(zn(i), zn(j))(x) ≥ ρ(zn(i), zn(j))
(

ϕm(x0)
)

≥ ρ(zn(i)−m, zn(j)−m)(x0).

As {zn(i)−m}, {zn(j)−m} are sequences in Fk from (5) it follows that

(7) ρ(zn(i)−m, zn(j)−m)(x0) > 1 − r for all i, j ∈ N.

Case II. If both of n(i) and n(j) are from set 2N − 1 we have

ρ(zn(i), zn(j))
(

ϕ(x)
)

= ρ(Axn(i)−1, Axn(j)−1)
(

ϕ(x)
)

≥ min
{

ρ(Axn(i)−1, Bxn(`)−1)
(

ϕ(x)
)

, ρ(Bxn(`)−1, Axn(j)−1)
(

ϕ(x)
)

,

d
(

ρ(Axn(i)−1, Bxn(`)−1)
(

ϕ(x)
)

, ρ(Bxn(`)−1, Axn(j)−1)
(

ϕ(x)
))}

for arbitrary n(`) ≥ n and n(`) ∈ 2N. Since d is non-decreasing and satisfies (B2)
it follows that d(x, y) ≥ min{x, y}. Applying this fact in previous inequalities we
get

ρ(zn(i), zn(j))
(

ϕ(x)
)

≥ min
{

ρ(Axn(i)−1, Bxn(`)−1)
(

ϕ(x)
)

, ρ(Bxn(`)−1, Axn(j)−1)
(

ϕ(x)
)}

≥ min
{

ρ(Sxn(i), Txn(`))(x), ρ(Sxn(`), Txn(j))(x)
}

≥ min
{

ρ(Axn(i)−1, Bxn(`)−1)(x), ρ(Axn(`)−1, Bxn(j)−1)(x)
}

= min
{

ρ(zn(i)−1, zn(`)−1)(x), ρ(zn(`)−1, zn(j)−1)(x)
}

.

By induction we conclude that

ρ(zn(i), zn(j))
(

ϕm(x)
)

≥ min
{

ρ(zn(i)−m, zn(`)−m)(x), ρ(zn(`)−m, zn(j)−m)(x)
}

.
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Finally, we get that

ρ(zn(i), zn(j))(x) ≥ ρ(zn(i), zn(j))
(

ϕm(x0)
)

≥ min
{

ρ(zn(i)−m, zn(`)−m)(x0), ρ(zn(`)−m, zn(j)−m)(x0)
}

.

Since {zn(i)−m}, {zn(j)−m} and {zn(`)−m} are sequences from Fk we have

(8) ρ(zn(i)−m, zn(`)−m)(x0) > 1 − λ and ρ(zn(`)−m, zn(j)−m)(x0) > 1 − λ.

Analogous, we can prove the inequality (7) in the case when n(i), n(j) ∈ 2N.

Finally, from (7) and (8) we conclude that in both cases it is satisfied

ρ(zn(i), zn(j))(x) > 1 − r

for all i, j ∈ N. Taking the lim inf as i, j → +∞, and applying Lemma 2.1. we get
that ρ(p, q)(x) > 1 − λ for all p, q ∈ Fn i.e. family {Fn}n∈N has lower transversal
diameter zero.

Applying Theorem 2.1. we conclude that this family has nonempty intersec-
tion, which consists of exactly one point z. Since the family {Fn}n∈N has lower
transversal diameter zero and z ∈ Fn for all n ∈ N then for each λ ∈ (0, 1) and each
x > 0 there exists n0 ∈ N such that for all n ≥ n0 it holds that ρ(zn, z)(x) > 1−λ.

From the last it follows that for each λ ∈ (0, 1) it holds

lim inf
n→+∞

ρ(zn, z)(x) > 1 − λ

Letting λ → 0 we get
lim inf
n→+∞

ρ(zn, z)(x) = 1

i.e. lim
n→+∞

zn = z. From the definition of sequences {Ax2n−2}, {Sx2n}, {Bx2n−1}

and {T2n−1} it follows that all these sequences converge to z.

Let us prove that z is a common fixed point of mappings A, B, S and T.

For this purpose, let us first suppose that S is continuous. Then it holds that
lim

n→+∞

SSx2n = Sz. From compatibility of {A, S} and Lemma 2.3. it follows that

lim
n→+∞

ASx2n = Sz. Using the condition (3) we get that the following inequality

holds.
ρ(ASx2n, Bx2n−1)

(

ϕ(x)
)

≥ ρ(SSx2n, Tx2n−1)(x).

Taking the lim inf as n → +∞ we get

ρ(Sz, z)
(

ϕ(x)
)

≥ ρ(Sz, z)(x).

From the Lemma 3.1., it follows that Sz = z. Using the condition (3) again we
have that

ρ(Az, Bx2n−1)
(

ϕ(x)
)

≥ ρ(Sz, Tx2n−1)(x)

and taking the lim inf as n → ∞ we get

ρ(Az, z)
(

ϕ(x)
)

≥ ρ(Sz, z)(x) = ρ(z, z)(x) = 1.
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This implies Az = z. Since A(X) ⊆ T (X), there exists a point u ∈ X such that
z = Az = Tu and it holds that

ρ(z, Bu)
(

ϕ(x)
)

= ρ(Az, Bu)
(

ϕ(x)
)

≥ ρ(Sz, Tu)(x) = ρ(z, z)(x) = 1,

which means that Bu = z. From the compatibility of {B, T } and Remark 2.2 it
follows that Tz = TBu = BTu = Bz. Also, from (3) it holds that

ρ(Ax2n, Bz)
(

ϕ(x)
)

≥ ρ(Sx2n, T z)(x).

Taking the lim inf as n → +∞ and using Lemma 3.1., we get that Bz = z. There-
fore, z is a common fixed point of A, B, S and T. If T is a continuous function then
the proof that z is a common fixed point of A, B, S and T is analogue to previous.

Now, suppose that A is a continuous function. Then ρ(AAx2n, Az)(x) > 1−λ.

From compatibility of {A, S} and Lemma 2.3. it follows that ρ(SAx2n, Az)(x) >

1 − λ. Using the condition (3) we get that

ρ(AAx2n, Bx2n−1)
(

ϕ(x)
)

≥ ρ(SAx2n, Tx2n−1)(x).

Taking the lim inf as n → +∞ we obtain

ρ(Az, z)
(

ϕ(x)
)

≥ ρ(Az, z)(x).

From the Lemma 3.1., it follows that Az = z. Since A(X) ⊆ T (X), there exists a
point v ∈ X such that z = Az = Tv. From ρ(Az, Bv)

(

ϕ(x)
)

we have that

ρ(AAx2n, Bv)
(

ϕ(x)
)

≥ ρ(SAx2n, T v)(x).

Taking the lim inf as n → ∞ we get

ρ(z, Bv)
(

ϕ(x)
)

= ρ(Az, Bv)
(

ϕ(x)
)

≥ ρ(Az, T v)(x) = ρ(z, z)(x) = 1,

and so z = Bv. Since pair {B, T } is compatible, using the Remark 2.2. we get
Tz = TBv = BTv = Bz. Also, using (3) we get that

ρ(Ax2n, Bz)
(

ϕ(x)
)

≥ ρ(Sx2n, T z)(x).

Taking the lim inf as n → ∞ we obtain

ρ(z, Bz)
(

ϕ(x)
)

≥ ρ(z, T z)(x) = ρ(z, Bz)(x).

Hence, that z = Bz = Tz. Since B(X) ⊆ S(X), there exists a point w ∈ X such
that z = Bz = Sw. Using (3) we get that

ρ(Aw, z)(ϕ(x)) = ρ(Aw, Bz)
(

ϕ(x)
)

≥ ρ(Sw, T z)(x) = ρ(Sw, Bz)(x) = ρ(z, z)(x) = 1,
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which means that Aw = z. Since {A, S} are compatible and z = Aw = Sw, from
the Remark 2.2. we have that Az = ASw = SAw = Sz. Therefore, z is a common
fixed point of A, B, S and T. If B is continuous then the proof is analogous.

Let us prove that z is a unique common fixed point. For this purpose let
us suppose that there exists another common fixed point, denoted by y. From (3)
follows that

ρ(z, y)
(

ϕ(x)
)

= ρ(Az, By)
(

ϕ(x)
)

≥ ρ(Sz, T y)(x) = ρ(z, y)(x).

Finally, applying Lemma 3.1. it follows that z = y. This completes the proof. �

As a consequence of the previous theorem we get a version of the Banach

contraction theorem with nonlinear contractive conditions for mappings defined on
lower transversal functional probabilistic spaces.

Theorem 3.2. Let A be a self-mapping defined on a complete lower transversal

functional probabilistic space (X, ρ, d) such that A(X) is strongly bounded set, with

the lower functional probabilistic transverse which satisfies (T1)–(T4) and lower

bisection function which satisfies (B1)–(B3) and there exists some continuous, non-

decreasing function ϕ : (0, +∞) → (0, +∞), which satisfies ϕ(x) < x for all x > 0
and

(9) ρ(Ap, Aq)
(

ϕ(x)
)

≥ ρ(p, q)(x), for all x > 0 and p, q ∈ X.

Then A has a unique fixed point.

Proof. Taking that A = B and S = T = I identical mapping, since A commutes
with I all the conditions of Theorem 3.1 are satisfied, i.e. the statement follows
from Theorem 3.1. �

Also, since fuzzy metric spaces and probabilistic Menger metric spaces are
transversal, from Theorem 3.1 we get similar results for mappings defined on these
spaces, which are improvements of results in fixed point theory with linear contrac-
tive conditions (see [6]).
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