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SOME FOX-WRIGHT GENERALIZED

HYPERGEOMETRIC FUNCTIONS

AND ASSOCIATED FAMILIES OF

CONVOLUTION OPERATORS

H. M. Srivastava

Here, in this lecture, we aim at presenting a systematic account of the ba-
sic properties and characteristics of several subclasses of analytic functions
(with Montel’s normalization), which are based upon some convolution op-
erators on Hilbert space involving the Fox-Wright generalization of the
classical hypergeometric qFs function (with q numerator and s denomina-
tor parameters). The various results presented in this lecture include (for
example) normed coefficient inequalities and estimates, distortion theorems,
and the radii of convexity and starlikeness for each of the analytic function
classes which are investigated here. We also briefly indicate the relevant con-
nections of the some of the results considered here with those involving the
Dziok-Srivastava operator.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Following the usual notations, we let A denote the class of functions f of the
form:

(1.1) f (z) =
∞∑

n=1
anz

n (a1 > 0) ,

which are analytic in U := U (1), where

U (r) := {z : z ∈ C and |z| < r} .
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For the class A, the normalization:

(1.2) f (0) = f ′ (0) − 1 = 0,

is classical. As already observed by Dziok and Srivastava [6], one can obtain
interesting results by applying Montel ’s normalization of the form (cf. Montel

[13]):

(1.3) f (0) = f ′ (ρ) − 1 = 0

or

(1.4) f (0) = f (ρ) − ρ = 0,

where ρ is a fixed point of the punctured unit disk

U∗ := U \{0} = {z : z ∈ C and 0 < |z| < 1} .

The classes of functions with the normalizations (1.3) and (1.4) will henceforth be
called the classes of functions with two fixed points (see Dziok and Srivastava

[6, p. 8]).

A function f belonging to the class A is said to be convex in U (r) if and only
if (cf. [17] and [18])

R

(
1 +

zf ′′ (z)

f ′ (z)

)
> 0

(
z ∈ U (r) ; 0 < r 5 1

)
.

On the other hand, a function f belonging to the class A is said to be starlike in
U (r) if and only if (cf. [17] and [18])

R

(
zf ′ (z)

f (z)

)
> 0

(
z ∈ U (r) ; 0 < r 5 1

)
.

Suppose now that B is a subclass of the class A. We define the radius of
starlikeness R∗ (B) and the radius of convexity Rc (B) for the class B by

R∗ (B) := inf
f∈B

(
sup {r ∈ (0, 1] : f is starlike in U (r)}

)

and

Rc (B) := inf
f∈B

(
sup {r ∈ (0, 1] : f is convex in U (r)}

)
,

respectively.

For two given analytic functions

f (z) =
∞∑

n=0
an zn and g (z) =

∞∑
n=0

bn zn,
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we denote by f ∗ g the Hadamard product (or convolution) of f and g defined by

(1.5) (f ∗ g) (z) :=
∞∑

n=0
an bn z

n =: (g ∗ f) (z) .

For complex parameters

α1, . . . , αq

(
αj

Aj
6= 0,−1,−2, . . . ; j = 1, . . . , q

)

and

β1, . . . , βs

(
βj

Bj
6= 0,−1,−2, . . . ; j = 1, . . . , s

)
,

we define the Fox-Wright generalization qΨs of the hypergeometric qFs function
by (cf. Fox [8] and Wright ([20] and [21]; see also [15, p. 21] and [14, p. 19])

(1.6) qΨs




(α1, A1) , . . . , (αq, Aq) ;

(β1, B1) , . . . , (βs, Bs) ;
z



 = qΨs

[
(αj , Aj)1,q ; (βj , Bj)1,s ; z

]

:=

∞∑

n=0

Γ (α1 +A1n) · · ·Γ (αq +Aqn)

Γ (β1 +B1n) · · ·Γ (βs +Bsn)

zn

n!
(
Aj > 0 (j = 1, . . . , q) ; Bj > 0 (j = 1, . . . , s) ; 1 +

s∑
j=1

Bj −
q∑

j=1

Aj = 0

)

for suitably bounded values of |z|. In particular, when

Aj = 1 (j = 1, . . . , q) and Bj = 1 (j = 1, . . . , s) ,

we have the following obvious relationship:

(1.7) qFs (α1, . . . , αq; β1, . . . , βs; z) = ω qΨs

[
(αj , 1)1,q ; (βj, 1)1,s ; z

]

(q 5 s+ 1; q, s ∈ N0 := N ∪ {0} ; z ∈ U) ,

where, and in what follows, N denotes the set of positive integers and

(1.8) ω :=
Γ (β1) · · ·Γ (βs)

Γ (α1) · · ·Γ (αq)
.

Moreover, in terms of Fox’s H-function [9], we have (cf., e.g., [14, p. 19])

qΨs




(α1, A1) , . . . , (αq, Aq) ;

(β1, B1) , . . . , (βs, Bs) ;
z





= H1,q
q,s+1



−z

∣∣∣∣∣∣

(1 − α1, A1) , . . . , (1 − αq, Aq)

(0, 1) , (1 − β1, B1) , . . . , (1 − βs, Bs)



 .
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It should be remarked in passing that a further generalization of Fox’s H-
function is provided by the H̄-function which was encountered in the physics lit-
erature while investigating and illustrating the use of certain Feynman integrals
that arise naturally in perturbation calculations of the equilibrium properties of a
magnetic model of phase transitions (see, for example, [16]).

Other interesting and useful special cases of the Fox-Wright generalized
hypergeometric qΨs function defined by (1.6) include (for example) the generalized
Bessel function Jµ

ν (z) defined by (cf. Wright [19])

Jµ
ν (z) :=

∞∑

n=0

(−z)n
n! Γ (µn+ ν + 1)

= 0Ψ1 [ ; (ν + 1, µ) ;−z] ,

which, for µ = 1, corresponds essentially to the classical Bessel function Jν (z),
and the generalized Mittag-Leffler function Eλ,µ (z) defined by

Eλ,µ (z) :=
∞∑

n=0

zn

Γ (λn+ µ)
= 1Ψ1 [(1, 1) ; (µ, λ) ; z] ,

whose further special cases appeared recently as solutions of several families of frac-
tional differential equations with physical applications (see, for details, Gorenflo

et al. [10]; see also the recent monograph on the subject of Fractional Differential
Equations [11]).

Now let q, s ∈ N and suppose that the parameters α1, . . . , αq and β1, . . . , βs

are also positive real numbers. Then, corresponding to a function

ϑ
[
(αj , Aj)1,q ; (βj , Bj)1,s ; z

]

defined by

ϑ
[
(αj , Aj)1,q ; (βj , Bj)1,s ; z

]
:= ωz qΨs

[
(αj , Aj)1,q ; (βj , Bj)1,s ; z

]
,

we consider a linear operator

Θ
[
(αj , Aj)1,q ; (βj, Bj)1,s

]
: A −→ A

defined by the following Hadamard product (or convolution) (cf. Dziok et al. [3,
p. 45 et seq.]):

(1.9) Θ
[
(αj , Aj)1,q ; (βj , Bj)1,s

]
f (z) := ϑ

[
(αj , Aj)1,q ; (βj , Bj)1,s ; z

]
∗ f (z) .

Remark 1. The linear operator Θ
[
(αj , Aj)1,q ; (βj , Bj)1,s

]
includes (as its special

cases) various other linear operators which were investigated, in a unified manner,
by Dziok and Srivastava ([4], [5] and [6]), who made appropriate use of the
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hypergeometric qFs function (in place of the Fox-Wright qΨs function) in the
definition (1.9) (see also [2] and [12]). Indeed, by setting

Aj = 1 (j = 1, . . . , q) and Bj = 1 (j = 1, . . . , s)

in the definition (1.9), we are led immediately to the aforementioned Dziok-

Srivastava operator

Θ
[
(αj , 1)1,q ; (βj , 1)1,s

]
,

which contains, as its further special cases, such other linear operators of Geometric
Function Theory as the Hohlov operator, the Carlson-Shaffer operator, the Ru-
scheweyh derivative operator, the generalized Bernardi-Libera-Livingston operator,
the fractional derivative operator, and so on (see, for the precise relationships,
Dziok and Srivastava [4, pp. 3-4]).

For convenience, we write

(1.10) Θ [α1] f (z) := Θ [(α1, A1) , . . . , (αq, Aq) ; (β1, B1) , . . . , (βs, Bs)] f (z) .

Let H be a complex Hilbert space and let L (H) denote the algebra of all
bounded linear operators on H. For a complex-valued function f analytic in a
domain E of the complex z-plane containing the spectrum σ (P) of the bounded
linear operator P, let f (P) denote the operator on H defined by [1, p. 568]

f (P) =
1

2πi

∫

C

(zI − P)−1 f (z) dz,

where I is the identity operator on H and C is a positively-oriented simple rectifiable
closed contour containing the spectrum σ (P) in the interior domain. The operator
f (P) can also be defined by the following series:

f (P) =
∞∑

n=0

f (n) (0)

n!
Pn,

which converges in the normed topology (cf. [7]).

Let E (q, s;A,B; P) denote the class of functions f of the form:

(1.11) f (z) = a1z −
∞∑

n=2
an zn

(
a1 > 0; an = 0; n ∈ N \{1}

)
,

which also satisfy the following subordination condition:

(1.12) α1
Θ [α1 + 1] f (P)

Θ [α1] f (P)
+A1 − α1 ≺ A1

1 +AP
1 +BP

(0 5 B 5 1; −B 5 A < B)

for all operators P such that P 6= O and ‖P‖ < 1, O being the null operator on H.
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Finally, for a real parameter ρ (0 < |ρ| < 1), we define the following subclasses
of the class E (q, s;A,B; P):

(1.13) Eρ (q, s;A,B; P) := {f : f ∈ E (q, s;A,B; P) and satisfies (1.4)}

and

(1.14) E∗
ρ (q, s;A,B; P) := {f : f ∈ E (q, s;A,B; P) and satisfies (1.3)} .

In particular, for q = s+ 1 and αs+1 = As+1 = 1, we write

E (s;A,B; P) = E (s+ 1, s;A,B; P) ,

Eρ (s;A,B; P) = Eρ (s+ 1, s;A,B; P) ,

and

(1.15) E∗
ρ (s;A,B; P) = E∗

ρ (s+ 1, s;A,B; P) .

In this lecture, we propose to present a systematic investigation of such ba-
sic properties and charateristics of each of the analytic function classes which we
have introduced here as (for example) the normed coefficient estimates, distortion
theorems, and the radii of convexity and starlikeness. We also briefly indicate the
relevant connections of some of the results considered here with those involving the
aforementioned Dziok-Srivastava operator.

2. A SET OF COEFFICIENT INEQUALITIES AND COEFFICIENT

ESTIMATES

We begin by stating and proving the following result involving coefficient
inequalities and estimates (cf. Dziok et al. [3]).

Theorem 1. A function f of the form (1.11) belongs to the class E (q, s;A,B; P)
if and only if

(2.1)
∞∑

n=2
δn an 5 a1 δ1

(
δn := [(B + 1)n− (A+ 1)]σn

)
,

where σn is given by

(2.2) σn :=
Γ [α1 +A1 (n− 1)] · · ·Γ [αq +Aq (n− 1)]

(n− 1)! · Γ [β1 +B1 (n− 1)] · · ·Γ [βs +Bs (n− 1)]
(n ∈ N) .

Proof. Let a function f of the form (1.11) belong to the class E (q, s;A,B; P).
Then, in view of (1.12), we have

α1
Θ [α1 + 1] f (P)

Θ [α1] f (P)
+A1 − α1 = A1

1 +Aw (P)

1 +Bw (P)
(0 5 B 5 1; −B 5 A < B) ,
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where w (O) = O (O being the null operator on H) and ‖w (P)‖ < 1 for all operators
P 6= O. It follows that

(2.3)

∥∥∥∥
α1 {Θ [α1 + 1] f (P) − Θ [α1] f (P)}

α1 BΘ [α1 + 1] f (P) − {AA1 + (α1 −A1)B}Θ [α1] f (P)

∥∥∥∥ < 1.

Making use of (1.6), (1.9), and (1.10), the normed inequality (2.3) simplifies
to the form:

(2.4)

∥∥∥∥∥∥∥∥

∞∑
n=2

(n− 1)σn an Pn−1

a1 δ1 −
∞∑

n=2
(Bn−A) σn an Pn−1

∥∥∥∥∥∥∥∥
< 1,

where δ1 and σn are defined by (2.1) and (2.2), respectively.

Putting P = rI (0 < r < 1), we find from (2.4) that

∞∑
n=2

(n− 1)σn an rn−1 5 a1 δ1 −
∞∑

n=2
(Bn−A)σn an rn−1 (0 < r < 1) ,

which, upon letting r → 1−, yields the assertion (2.1) of Theorem 1.

Conversely, let a function f of the form (1.11) satisfy the condition (2.1).
Then it is sufficient to prove that

‖α1Θ [α1 + 1] f (P) − Θ [α1] f (P)‖
− ‖α1BΘ [α1 + 1] f (P) − {AA1 + (α1 −A1)B}Θ [α1] f (P)‖ < 0.

Choosing P = rI (0 < r < 1), we have

‖α1Θ [α1 + 1] f (P) − Θ [α1] f (P)‖
− ‖α1BΘ [α1 + 1] f (P) − {AA1 + (α1 −A1)B}Θ [α1] f (P)‖

=

∥∥∥∥
∞∑

n=2
(n− 1)σn an Pn

∥∥∥∥−
∥∥∥∥a1 δ1 −

∞∑
n=2

(Bn−A) σn an Pn

∥∥∥∥

5
∞∑

n=2
(n− 1)σn an r

n −
(
a1 δ1 −

∞∑
n=2

(Bn−A) σn an rn

)

=
∞∑

n=2
δn an rn − a1 δ1

<
∞∑

n=2
δn an − a1 δ1 5 0,

which shows that f belongs to the class E (q, s;A,B; P). This evidently completes
the proof of Theorem 1.

Corollary 1. A function f of the form (1.11) belongs to the class Eρ (q, s;A,B; P)
if and only if it satisfies (1.4) and

(2.5)
∞∑

n=2

(
δn − δ1 ρ

n−1
)
an 5 δ1,
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where δn is defined by (2.1).

Corollary 2. A function f of the form (1.11) belongs to the class E∗
ρ (q, s;A,B; P)

if and only if it satisfies (1.3) and

(2.6)
∞∑

n=2

(
δn − n δ1 ρ

n−1
)
an 5 δ1,

where δn is defined by (2.1).

Corollary 1 and Corollary 2 can be obtained by observing that, for a function
f of the form (1.11) with the normalization (1.4), we have

(2.7) a1 = 1 +
∞∑

n=2
an ρ

n−1,

and that, for a function f of the form (1.11) with the normalization (1.3), we have

(2.8) a1 = 1 +
∞∑

n=2
nan ρ

n−1.

By applying (2.7) and (2.8), the inequality (2.1) yields the assertions (2.5) and
(2.6), respectively.

The following lemmas are easy consequences of Corollary 1 and Corollary 2.

Lemma 1. If there exists a positive integer n0 (n0 ∈ N \ {1}) such that

(2.9) δn0
− δ1 ρ

n0−1 5 0,

then the function
fn0

(z) =
(
1 + aρn0−1

)
z − azn0

belongs to the class Eρ (q, s;A,B; P) for any positive real number a. Moreover, for
all n (n ∈ N \{1}) such that

δn − δ1 ρ
n−1 > 0,

the functions

(2.10) fn (z) =
(
1 + aρn0−1 + bρn−1

)
z − azn0 − bzn

(
n ∈ N \{1} ; b :=

δ1 + a
(
δ1 ρ

n0−1 − δn0

)

δn − δ1 ρn−1

)

belong to the class Eρ (q, s;A,B; P).

Lemma 2. If there exists a positive integer n0 (n0 ∈ N \{1}) such that

δn0
− n0 δ1 ρ

n0−1 5 0,
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then the function
fn0

(z) =
(
1 + an0 ρ

n0−1
)
z − azn0

belongs to the class Eρ (q, s;A,B; P) for any positive real number a. Moreover, for
all n (n ∈ N \{1}) such that

δn − nδ1 ρ
n−1 > 0,

the functions

(2.11) fn (z) =
(
1 + an0 ρ

n0−1 + bnρn−1
)
z − azn0 − bzn

(
n ∈ N \{1} ; b :=

δ1 + a
(
n0 δ1 ρ

n0−1 − δn0

)

δn − nδ1 ρn−1

)

belong to the class E∗
ρ (q, s;A,B; P).

Applying Lemma 1 and Corollary 1, we obtain

Corollary 3. If there exists a positive integer n0 (n0 ∈ N \{1}) such that

δn0
− δ1 ρ

n0−1 < 0,

then the coefficients an of a function f of the form (1.11) and belonging to the class
Eρ (q, s;A,B; P) are unbounded. Moreover, all of these coefficients an are unbounded
also when

δn − δ1 ρ
n−1 = 0 (n ∈ N \{1}) .

In all other cases, if a function f of the form (1.11) belongs to the class Eρ (q, s;A,B; P) ,
then

(2.12) an 5
δ1

δn − δ1 ρn−1
(n ∈ N \{1}) .

The result is sharp for the functions given by

(2.13) fn (z) =
δn z − δ1 z

n

δn − δ1 ρn−1
(n ∈ N \{1}) .

Applying Lemma 2 and Corollary 2, we have

Corollary 4. If there exists a positive integer n0 (n0 ∈ N \{1}) such that

δn0
− n0 δ1 ρ

n0−1 < 0,

then the coefficients an of a function f of the form (1.11) and belonging to the
class E∗

ρ (q, s;A,B; P) are unbounded. Moreover, all of these coefficients an are
unbounded also when

δn − nδ1 ρ
n−1 = 0 (n ∈ N \{1}) .
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In all other cases, if a function f of the form (1.11) belongs to the class
E∗

ρ (q, s;A,B; P) , then

(2.14) an 5
δ1

δn − nδ1 ρn−1
(n ∈ N \{1}) .

The result is sharp for the functions given by

(2.15) fn (z) =
δn z − δ1 z

n

δn − nδ1 ρn−1
(n ∈ N \{1}) .

Each of the following results (Corollary 5 and Corollary 6) follows from Corol-
lary 3 and Corollary 4 above.

Corollary 5. For δn given by (2.1), let the sequence
{
δn − δ1 ρ

n−1
}∞

n=2
be posi-

tive. If a function f of the form (1.11) belongs to the class Eρ (q, s;A,B; P) , then
the assertion (2.12) holds true for all n (n ∈ N \{1}). The result is sharp for the
functions given by (2.13).

Corollary 6. For δn given by (2.1), let the sequence
{
δn − nδ1 ρ

n−1
}∞

n=2
be posi-

tive. If a function f of the form (1.11) belongs to the class E∗
ρ (q, s;A,B; P) , then

the assertion (2.14) holds true for all n (n ∈ N \{1}). The result is sharp for the
functions given by (2.15).

Remark 2. For

q = s+ 1, αs+1 = As+1 = 1, β1 5 α1 + 1, A1 5 α1,

βj 5 αj (j = 2, . . . , s) , and Bj = Aj (j = 1, . . . , s) ,

the sequences
{
δn − δ1 ρ

n−1
}∞

n=2
and

{
δn − nδ1 ρ

n−1
}∞

n=2

are positive and nondecreasing. Moreover, if β1 5 α1, then the sequences
{
δn − nδ1 ρ

n−1

n

}∞

n=2

and

{
δn − δ1 ρ

n−1

n

}∞

n=2

are positive and nondecreasing.

3. DISTORTION THEOREMS AND THEIR APPLICATIONS

In this section, we first state and prove the following distortion theorem (cf.
Dziok et al. [3]).

Theorem 2. Let a function f of the form (1.11) belong to the class Eρ (q, s;A,B; P).
Also let δn be defined by (2.1). If the sequence

{
δn − δ1 ρ

n−1
}∞

n=2
is positive and

nondecreasing, then

(3.1) J (r) 5 ‖f (P)‖ 5
δ2 r + δ1 r

2

δ2 − δ1 ρ

(
‖P‖ = r (0 < r < 1)

)
,
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where

(3.2) J (r) =






r (r 5 ρ)

δ2 r − δ1 r
2

δ2 − δ1 ρ
(r > ρ) .

If the sequence {
δn − δ1 ρ

n−1

n

}∞

n=2

is positive and nondecreasing, then

(3.3) a1 −
2δ1 r

δ2 − δ1 ρ
5 ‖f ′ (P)‖ 5

δ2 r + 2δ1 r

δ2 − δ1 ρ

(
‖P‖ = r (0 < r < 1)

)
.

The result is sharp, with the extremal function f2 given by (2.13) (with n = 2)
and f (z) = z.

Proof. Let a function f of the form (1.11) belong to the class Eρ (q, s;A,B; P). If
the sequence

{
δn − δ1 ρ

n−1
}∞

n=2
is positive and nondecreasing, by Corollary 1, we

have

(3.4)

∞∑

n=2

an 5
δ1

δ2 − δ1 ρ
.

Moreover, if the sequence {
δn − δ1 ρ

n−1

n

}∞

n=2

is positive and nondecreasing, by Corollary 2, we have

(3.5)

∞∑

n=2

nan 5
2δ1

δ2 − 2δ1 ρ
.

Using (2.7) and (3.4), we find for

P = rI (0 < r < 1)

that

(3.6) ‖f (P)‖ =

∥∥∥∥a1 P −
∞∑

n=2
an Pn

∥∥∥∥ 5 r

(
a1 +

∞∑
n=2

an rn−1

)

5 r

(
1 +

∞∑
n=2

an ρn−1 +
∞∑

n=2
an rn−1

)

5 r

(
1 + (ρ+ r)

∞∑
n=2

an

)
5
δ2 r + δ1 r

2

δ2 − δ1 ρ
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and

(3.7) ‖f (P)‖ =

∥∥∥∥a1 P −
∞∑

n=2
an Pn

∥∥∥∥ = r

(
a1 −

∞∑
n=2

an r
n−1

)

= r

(
1 +

∞∑
n=2

an

(
ρn−1 − rn−1

))
.

If r 5 ρ, then we have ‖f (P)‖ = r. If r > ρ, then the sequence
{
ρn−1 − rn−1

}∞
n=2

is negative and decreasing. Hence, by (3.7), we obtain

‖f (P)‖ = r

(
1 + (ρ− r)

∞∑
n=2

an

)
=
δ2 r − δ1 r

2

δ2 − δ1 ρ
,

which, in conjunction with (3.6), yields the assertion (3.1) of Theorem 2.

Similarly, by using (3.5) in conjunction with (2.7), we arrive at the assertion
(3.3) of Theorem 2.

The proof of the following result is analogous to that of Theorem 2.

Theorem 3. Let a function f of the form (1.11) belong to the class E∗
ρ (q, s;A,B; P).

Also let δn be defined by (2.1). If the sequence
{
δn − nδ1 ρ

n−1
}∞

n=2
is positive and

nondecreasing, then

(3.8) a1 r −
δ1 r

2

δ2 − δ1 ρ
5 ‖f (P)‖ 5

δ2 r + δ1 r
2

δ2 − nδ1 ρ

(
‖P‖ = r (0 < r < 1)

)
.

If the sequence {
δn − nδ1 ρ

n−1

n

}∞

n=2

is positive and nondecreasing, then

(3.9) J ′ (r) 5 ‖f ′ (P)‖ 5
δ2 + 2δ1 r

δ2 − nδ1 ρ

(
‖P‖ = r (0 < r < 1)

)
,

where J (r) is defined by (3.2). The result is sharp, with the extremal function f2
given by (2.15) with n = 2 and f (z) = z.

Applying Lemma 1, we deduce the following result.

Corollary 7. If there exists an integer n0 (n0 ∈ N \{1}) such that (2.9) holds

true, then ‖f (P)‖ and ‖f ′ (P)‖
(
‖P‖ = r (0 < r < 1)

)
for functions of the class

Eρ (q, s;A,B; P) are unbounded.

Next, by applying Lemma 2, we have

Corollary 8. If there exists an integer n0 (n0 ∈ N \{1}) such that (2.10) holds

true, then ‖f (P)‖ and ‖f ′ (P)‖
(
‖P‖ = r (0 < r < 1)

)
for functions of the class

E∗
ρ (q, s;A,B; P) are unbounded.
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By virtue of Remark 2, Theorem 2 and Theorem 3 give the following results.

Corollary 9. Let a function f of the form (1.11) belong to the class Eρ (s;A,B; P).
If

β1 5 α1 + 1, A1 5 α1, βj 5 αj (j = 2, . . . , s) , and Bj = Aj (j = 1, . . . , s) ,

then the assertion (3.1) holds true. Further, if β1 5 α1, then the assertion (3.3)
holds true.

Corollary 10. Let a function f of the form (1.11) belong to the class E∗
ρ (s;A,B; P).

If

β1 5 α1 + 1, A1 5 α1, βj 5 αj (j = 2, . . . , s) , and Bj = Aj (j = 1, . . . , s) ,

then the assertion (3.8) holds true. Further, if β1 5 α1, then the assertion (3.9)
holds true.

4. COMPUTATION OF THE ASSOCIATED RADII

OF CONVEXITY AND STARLIKENESS

Our first set of results involving the radius of starlikeness can be stated as
Theorem 4 below (cf. Dziok et al. [3]).

Theorem 4. If a function f of the form (1.11) belongs to the class E (q, s;A,B; P) ,
then f is starlike in the disk

(4.1)
∥∥R∗

(
E (q, s;A,B; P)

)∥∥ < r1 := inf
n∈N\{1}

(
δn
nδ1

)1/(n−1)

,

where δn is defined by (2.1). The result is sharp for the function f∗
a given by

(4.2) f∗
a (z) = a

(
z − δ1

δn
zn

)
(a > 0) .

Proof. It suffices to show that

(4.3)

∥∥∥∥
P f ′ (P)

f (P)
− 1

∥∥∥∥ < 1
(
P = r1I (0 < r1 < 1)

)
.

Since

∥∥∥∥
P f ′ (P)

f (P)
− 1

∥∥∥∥ =

∥∥∥∥∥∥∥∥

∞∑
n=2

(n− 1) an Pn−1

a1 −
∞∑

n=2
an Pn−1

∥∥∥∥∥∥∥∥
,

the condition (4.3) holds true if

∥∥∥∥
P f ′ (P)

f (P)
− 1

∥∥∥∥ 5

∞∑
n=2

(n− 1)an rn−1
1

a1 −
∞∑

n=2
an rn−1

1

5 1,
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that is, if

(4.4)
∞∑

n=2
nan rn−1

1 5 a1.

By Theorem 1, we also have

(4.5)
∞∑

n=2

δn an

δ1
5 a1,

where δn is defined by (2.1). Comparing (4.4) and (4.5), we obtain the desired
result (4.1). The sharpness of the result (4.1) can easily be verified for the function
f∗

a given by (4.2).

Theorem 5. If a function f of the form (1.11) belongs to the class E (q, s;A,B; P) ,
then f is convex in the disk

(4.6) Rc
(
E (q, s;A,B; P)

)
< r2 := inf

n∈N\{1}

(
δn
n2 δ1

)1/(n−1)

,

where δn is defined by (2.1). The result is sharp for the function f c
a given by

(4.7) f c
a (z) = a

(
z − nδ1

δn
zn

)
(a > 0) .

Proof. It suffices to show that

(4.8)

∥∥∥∥
P f ′′ (P)

f ′ (P)

∥∥∥∥ < 1
(
P = r2 I (0 < r2 < 1)

)
.

Since

∥∥∥∥
P f ′′ (P)

f ′ (P)

∥∥∥∥ =

∥∥∥∥∥∥∥∥
−

∞∑
n=2

n (n− 1)an Pn−1

a1 −
∞∑

n=2
nan Pn−1

∥∥∥∥∥∥∥∥
,

the condition (4.8) holds true if

∥∥∥∥
P f ′′ (P)

f ′ (P)

∥∥∥∥ 5

∞∑
n=2

n (n− 1)an rn−1
2

a1 −
∞∑

n=2
nan rn−1

2

5 1,

that is, if

(4.9)
∞∑

n=2
n2 an rn−1

2 5 a1.



70 H. M. Srivastava

By comparing (4.9) with (4.5) again, we arrive at the desired result (4.6),
with the extremal function f c

a given by (4.7).

Remark 3. Just as we pointed out in Remark 1, the various results presented
in this lecture would provide interesting extensions and generalizations of those
considered earlier for simpler analytic function classes. The details involved in the
derivations of such specializations of the results presented here are fairly straight-
forward.
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