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SOME PROPERTIES OF C-REFLEXIVE

LOCALLY CONVEX SPACES

Stojan Radenović

In this note, we shall prove that the class of C-reflexive spaces is stable
with respect to separated quotient, arbitrary product and sum, which is not
the case for the closed subspaces and the dense hyperplanes. If the quotient
mapping lifts compact disks, then the class of C-reflexive spaces is three-space
stable.

In [3] and [4] the classes of different types of semi-reflexive and reflexive locally
convex spaces were introduced. In [3] and [5], classic semi-reflexive and reflexive
locally convex spaces were studied thoroughly, including the Banach spaces. In
[3], the definitions and some basic properties of the so-called polar semi-reflexive
and polar reflexive spaces were given. That kind of reflexivity is called t-reflexive
in [4].

In this note, we are considering the class of C-reflexive spaces which was
defined in [4]. We shall prove some natural properties of this class of spaces which
were not even mentioned there.

If C is the family of all compact disks of a locally convex spaces E, then the
topological dual E′ is endowed with topology of uniform convergence on the family
C, denoted by E′

c, consistent with dual pair 〈E, E′〉 , that is, we have got algebraical
equity (E′, E′

c)
′
= E.

In the terms of different semi-reflexivities which we come across in mentioned
works, you could say that each locally convex space is C-semi-reflexive.

If C is now the family of all compact disks of the space (E′, E′
c) , then there

exists in E a new locally convex topology, denoted by Ec = (E′
c)

′
c .

In [4] it is said that locally convex space E is C-reflexive if E = Ec =
(E′

c)
′
c , that is, if starting topology of the space E and the topology Ec of uniform

convergence on all E′
c-compact disks are equal. It is clear that the topology Ec is
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consistent with the dual pair 〈E, E′〉 and that it is not weaker than the original
topology of the space E.

Henceforward, t will denote the original topology of the space E. We shall
begin with the following proposition:

Proposition 1. A locally convex space (E, t) is C-reflexive if and only if each
E′

c-compact disk is t-equicontinuous subset of topological dual E′.

Proof. Let K be any E′
c-compact disk. If the space (E, t) is C-reflexive, then

the polar K◦ is t-neighbourhood of zero, so K is one t-equicontinuous subset of
dual E′, according to [3], 20.8 (1) c). Conversely, let U be arbitrary absolutely
convex Ec-neighbourhood of zero. Then, there exists E′

c-compact disk K, such

that U ⊃ K◦. It follows that U◦ ⊂ K◦◦ = K
σ(E′,E)

= K
E′

c = K. Since U◦ is one
σ (E′, E)-closed disk, then U◦ is also E′

c-closed, so U◦ is E′
c-compact, because K is

E′
c-compact disk. According to hypothesis U◦ is t-equicontinuous subset of E′, so

U◦◦ is t-neighbourhood of zero. Since, U◦◦ = U
t
= U

Ec ⊂ 2U, it follows that U is
t-neighbourhood of zero, i.e. t = Ec.

Corollary 2. If (E, t) is C-reflexive space, then the completion
(
Ê, t̂

)
is also

C-reflexive space.

Proof. According to proposition 1, let K be one Ê′
c-compact disk. K is evidently

also E′
c-compact, that is, t-equicontinuous subset. Since the topologies t and t̂ yield

the same equicontinuous subsets of (E, t)
′
=
(
Ê, t̂

)′
the proof follows.

Proposition 3. For each locally convex space (E, t) the spaces (E′, E′
c) and

(E, Ec) =
(
E, (E′

c)
′
c

)
are C-reflexive.

Proof. Let K be any (E′
c)

′
c-compact disk, that is, one Ec-compact disk. Since

topology Ec is not weaker than the original topology t, K is then one t−compact
disk. Therefore, K is E′

c-equicontinuous subset of E, that is, according to proposi-
tion 1, (E′, E′

c) is C-reflexive space. Proof for the space (E, Ec) is the similarly.

Remark 4. If (E, t) is locally convex space, then

t ≤ Ec = (E′
c)

′

c ≤ τ (E, E′)

where τ (E, E′) is Mackey topology associated to space (E, t) .

Proposition 5. If (E, t) is Mackey locally convex space, then it is C-reflexive.

Proof. According to previous remark, ((τ(E, E′))′c)
′
c = Ec ≥ τ (E, E′) , that

is Ec = τ (E, E′) , since τ (E, E′) is the strongest locally convex topology on E
consistent with dual pair 〈E, E′〉 , E′ = (E, t)

′
.

Example 6. There exists C-reflexive space which is not Mackey.

Proof. For each reflexive Banach space E of infinite dimension the space (E′, E′
c)

is such. Indeed, then E′
c 6= τ (E′, E) = β (E′, E) where β (E′, E) is usual strong
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topology in dual E′ of the space E. According to the proposition 3, (E′, E′
c) is

C-reflexive space. It is not Mackey space, because the starting space E is of the
infinite dimension-the unit ball cannot be a compact disk. The mentioned example
generalizes the example 4.1 from [4].

In a general theory of locally convex spaces, the following matters were stud-
ied:

• If a space (E, t) possesses a certain property, for instance P, does its sub-
space possess the same property as well?

• If a space (E, t) possesses a property P and if F is its closed subspace, does
the quotient (E/F, t/F ) possess the property P?

• If the outer members F and E/F of the short exact sequence

0 → F
j→ E

q→ E/F → 0

possess the property P, does the middle member E possess the property P? If the
answer is affirmative, it is then said that property P is three-space stable, and if it
is negative, it is three-space unstable.

Further in this note, we shall discuss the mentioned matters, if the property
P is “C-reflexive”.

Proposition 7. Let F be a closed subspace of C-reflexive locally convex space
(E, t) . Then, the quotient space (E/F, t/F ) is also C-reflexive.

Proof. First

(1) t/F = Ec/F

and

(2) t/F ≤ (E/F )c =
(
(E/F )

′
c

)′
c
,

where, as we previously denoted Ec = (E′
c)

′
c . Then, according to

σ (F ◦, E/F ) ≤ E′
c|F ◦ ≤ (E/F )′c ≤ τ (F ◦, E/F )

it is also fulfilled

(3) (E/F )c ≤ Ec/F.

Now, from (1), (2) and (3) it follows

t/F = (E/F )c =
(
(E/F )

′
c

)′
c
,

that is (E/F, t/F ) is C-reflexive locally convex space.

“C-reflexivity” is one of rare properties among “semi-reflexive” and “reflex-
ive” ones, which is inherited on separated quotient. The known Köthe-Grothen-
dieck-Frechet-Montel space ([3], 31.5) shows that classical semi-reflexivity and
reflexivity are not inherited on quotient space.
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If F is a closed subspace of finite codimension, we have the result:

Proposition 8. Let F be closed subspace of finite codimension of C-reflexive locally
convex space (E, t) . Then (F, t|F ) is C-reflexive.

Proof. It is sufficient to assume that F is a closed hyperplane, and then apply
mathematical induction. If this is the case, then there exists x0 ∈ E \ F so that
(E, t) = (F, t|F ) ⊕ (L, t|L) , where L is the linear spain of the point x0. Then
(F, t|F ) w (E/L, t/L) . Since L is one dimensional subspace of E, therefore, closed
in (E, t) , then according to proposition 7 the space (E/L, t/L) is C−reflexive, so
(F, t|F ) is such as well.

If F is a dense hyperplane, we have the following counterexample:

Example 9. Let G be a dense hyperplane in the algebraic dual X∗ of the infinite
dimensional vector space X and let x∗ ∈ X∗ \ G. Then the space X provided with
the Mackey topology t := τ (X, G) is C-reflexive as a Mackey space. F := kerx∗

is a dense hyperplane in (X, t) , which is not C-reflexive with respect to the relative
topology t|F.

Indeed, as (G, σ (G, F )) is barrelled space ([3], 27.1. page 369) all boun-
ded sets in (X, t) are finite dimensional; in particular, (F, t|F )′c = (F, t|F )′σ =
(G, σ (G, F )) . Moreover, it is clear from linear algebra that G is equal to the al-
gebraic dual of F. Therefore (G, σ (G, F )) is Montel space which implies that(
(F, t|F )

′
c

)′
c

= (G, σ (G, F ))
′
c = (G, σ (G, F ))

′
β = (F, β (F, G)) , where β (F, G) is

the strongest locally convex topology on F, hence complete and thus different from
t|F (for details see [3], 5. the spaces ωd and ϕd, pages 287, 288).

Corollary 10. The class of C-reflexive locally convex spaces is not stable with
respect to closed subspaces.

Proof. Let (F, t) be locally convex space which is not C-reflexive space (for in-
stance: the previous counterexample). According to Komura’s result [2], (F, t)
is the closed subspace of some barrelled space (which is C-reflexive, because it is
Mackey). It follows that closed subspace of C-reflexive does not need to be C-
reflexive, i.e. the class of C-reflexive locally convex spaces is not stable with respect
to closed subspaces.

Remark 11. From ([4], example 4.5), it follows that the semi-reflexive space
(l2, σ (`2, `2)) is not C-reflexive. But, this is true for each reflexive Banach space
of infinite dimension.

Indeed, let (E, ‖.‖) be such space. Then,

((
E, σ (E, E′)

)′
c

)′
c

=
(
E′, τ (E′, E)

)′
c

=
(
E′, β (E′, E)

)′
c

= (E, t) .

According to ([3], 21. 5. (4)), the space (E, t) is complete and thus different from
(E, σ (E, E′)) , i.e. the space (E, σ (E, E′)) is not C-reflexive.

As for the last matter of C-reflexive spaces, we firstly introduce:
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Definition 12. We say that quotient mapping

q : (E, t) → (E/F, t/F )

lifts compact disks if for each t/F -compact disk K1, there exists t-compact disk K2

so that

K1 ⊂ q (K2) .

Since q (K2) = q (K2)
t/F

, then the terms “lifting” and “lifting with closure” of
compact disks are equivalent as opposed to the same terms taking bounded disks
instead of compact ones.

From the general theory of locally convex spaces [3] and [5], we know that
(we used while proving proposition 7)

E′
c|F ◦ ≤ (E/F )

′
c ,

as well as that the topology E′
c|F ◦ is consistent with dual pair 〈F o, E/F 〉 w〈

(E/F )
′
, E/F

〉
. Based on that, it follows that the quotient mapping lifts com-

pact disks if and only if

E′
c|F ◦ = (E/F )

′
c .

Now, we formulate the main result of this note:

Proposition 13. If in short exact sequence

0 → (F, t|F )
j→ (E, t)

q→ (E/F, t/F ) → 0

the outer members (F, t|F ) and (E/F, t/F ) are C-reflexive and if the quotient
mapping q lifts compact disks, then the middle member (E, t) is also C-reflexive
space.

Proof. According to the assumption it follows that t|F = Fc, t/F = (E/F )c and
E′

c|F ◦ = (E/F )
′
c . The first two equalities are the consequence of the fact that

subspace and quotient are C−reflexive spaces, and last equality is equivalent with
the condition that the quotient mapping lifts compact disks. In order to prove that
the space (E, t) is C-reflexive, we shall prove the equality topologies t and Ec on
subspace F and quotient E/F, that is

t|F = Ec|F ∧ t/F = Ec/F.

Then, according to result of Dierolf-Schawanengel from [1], Lemma 1, on
minimal topological groups, it follows that t = Ec, that is, the space (E, t) is
C-reflexive.

Since t ≤ Ec = (E′
c)

′
c , then t|F = Fc = (F ′

c)
′
c ≤ Ec|F on one side; on

the other side Fc ≥ Ec|F, because the quotient image of each E′
c-compact disk is

E′
c/F ◦-compact disk (F ′

c ≤ E′
c/F ◦). Therefore, t|F = Ec|F.
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The equality of topologies E′
c|F ◦ and (E/F )′c brings to relation Ec/F ≤ t/F.

Indeed, if K is any E′
c-compact disk, then K ∩ F ◦ is one E′

c|F ◦-compact, that is
(E/F )

′
c-compact disk, so

(K ∩ F ◦)◦ = K◦ + F ◦◦ = K◦ + F

is one
(
(E/F )′c

)′
c

= (E/F )c = t/F -neighbourhood of zero. The reverse relation
t/F ≤ Ec/F is apparent. Therefore, t/F = Ec/F. The proof that the space (E, t)
is C-reflexive is complete.

For now, we do not know whether in the previous proposition we can let go
off the assumption of lifting compact disks.

For arbitrary product and direct sum of C-reflexive locally convex spaces, we
give the following results:

Proposition 14. Let (Ei)i∈I be an arbitrary family of C-reflexive locally convex
spaces. Then the product

∏
i∈I

Ei and the direct sum ⊕
i∈I

Ei are C-reflexive spaces.

Proof. Let us denote with E =
∏
i∈I

Ei. Then, as is well known ([3], 22,5 (2))

E′ = ⊕
i∈I

E′
i. It is clear that compact disks K of the shape K =

∏
i∈I

Ki, Ki is

compact disk in Ei, make the base of the set of compact disks of the space E.
Therefore, according to ([3], 22.5 (1), the first part), it follows E′

c = ⊕
i∈I

(Ei)
′
c.

Let K now be arbitrary E′
c-compact disk. It is also E′

c-bounded and that is
why there exists a finite subset J ⊂ I, so that

K ⊂ ⊕
i∈J

pri (K)

(pri is the projection of E′ on E′
i). Since the sets pri (K) , i ∈ J, are (Ei)

′
c-

compact, and therefore are also Ei-equicontinuous, then ⊕
i∈J

pri (K) is also one

E-equicontinuous set, so K is such as well. The space E is then C-reflexive if such
are the spaces Ei.

If now E = ⊕
i∈I

Ei is direct sum of C-reflexive locally convex spaces Ei, let us

prove that E is also C-reflexive space. It is known ([3], 22.5 (4)) that E′ =
∏
i∈I

E′
i.

Since the base of the set of all compact disks of the space E includes the sets of the
shape ⊕

i∈J⊂I
pri (K) , where K is a compact subset of E, pri is the projection from

E on Ei and J is the finite subset of I. Therefore, according to ([3],22. 5 (1), the
second part), it follows

E′
c =

∏

i∈I

(Ei)
′
c .

Let K ⊂ E′ be now a E′
c-compact disk, that is K ⊂ ∏

i∈I

Ki, where Ki are compact

disks in space (Ei)
′
c . Since the spaces Ei are C-reflexive, then Ki are equicontinuous,
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therefore
∏
i∈I

Ki is such, that is, the subset K is E−equicontinuous, i.e. the space

E is C-reflexive.
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3. G. Köthe: Topological Vector Spaces I, 2nd ed. Springer, Berlin-Heidelberg-New York,

1983.

4. S. H. Kye: Several reflexivities in topological vector spaces. Journal of Mathematical

Analysis and Application, 139 (1989), 477–482.

5. R. Meise, D. Vogt: Introduction to Functional Analysis. Clarendon Press, Oxford,

1997.

University of Belgrade, (Received July 10, 2006)

Faculty of Mechanical Engineering,

Kraljice Marije 16,

11120 Beograd,

Serbia

E–mail: radens@beotel.yu; sradenovic@mas.bg.ac.yu


