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NO STARLIKE TREES ARE LAPLACIAN
COSPECTRAL

Lihua Feng, Guihai Yu

It is proved in this paper that no two starlike trees are Laplacian cospectral,
and the starlike trees with maximum degree 3 and 4 are determined by their
Laplacian spectrum.

1. INTRODUCTION

Let G be a graph with n vertices and m edges. The degree sequence of G is
denoted by d1 ≥ d2 ≥ · · · ≥ dn. Let A(G) and D(G) = diag(di : 1 ≤ i ≤ n) be the
adjacency matrix and the degree diagonal matrix of G, respectively. The Laplacian
matrix of G is L(G) = D(G) − A(G). It is well known that L(G) is a symmetric,
semidefinite matrix. We assume the spectrum of L(G), or the Laplacian spectrum
of G, is λ = λ1 ≥ λ2 ≥ · · · ≥ λn = 0. If more than one graph is involved, we
may write λi(G) in place of λi. λn−1 is called the algebraic connectivity of G and
λn−1 > 0 if and only if G is connected. The multiplicity of zero as an eigenvalue
equals to the number of components of G. The characteristic polynomial of L(G)
can be written by

PL(G)(x) = |xI − L(G)| = q0x
n + q1x

n−1 + · · · + qn−1x + qn.

We use ρ(G) to denote the adjacency spectral radius of G. Two graphs G and
H are said to be adjacency (Laplacian) cospectral if they have the same adjacency
(Laplacian) spectrum, or in other words, they have equal adjacency (Laplacian)
characteristic polynomial. Obviously, two isomorphic graphs are adjacency and
Laplacian cospectral.
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For a connected graph G, let Q(G) = D(G) + A(G), we call this matrix Q-
matrix, its largest eigenvalue is denoted by µ(G) or µ for simplicity. It is well known
that Q(G) is entrywise nonnegative and positive definite, so from the Perron-
Frobenius Theorem, there is a unique positive eigenvector corresponding to µ.
We call this eigenvector principal eigenvector. For the background on the Laplacian
eigenvalues of a graph, the reader is referred to [1], [10], [11] and the references
therein.

All notations in graph theory that are not defined here, can be founds in [6].

A starlike tree is a tree with exactly one vertex having degree greater than
two. Let Pn denote the path on n vertices. By S(n1, n2, . . . , nk) we denote the
starlike tree which has a vertex v of degree k ≥ 3 and has the property that

S(n1, n2, . . . , nk) − v = Pn1
∪ Pn2

∪ · · · ∪ Pnk
,

where n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. Clearly, n1, n2, . . . , nk determine the starlike tree
up to isomorphism.

In [2], the authors raised the following problem: Which trees are determined
by their spectrum? We now still do not know the answer in the affirmative. In
[2],[3], [14], some partial results on this problem were got. In this paper, we will
prove that no two starlike trees are Laplacian cospectral, and the starlike trees with
maximum degree 3 and 4 are determined by their Laplacian spectrum.

SOME LEMMAS

Lemma 2.1. [15] For a connected graph G, we have λ(G) ≤ µ(G), with equality if
and only if G is bipartite.

Lemma 2.2. [2] For n × n matrices A and B, the following are equivalent:
(1). A and B are cospectral;
(2). A and B have the same characteristic polynomial;
(3). tr(Ai) = tr(Bi), for all i = 1, 2, · · · , n.

If A is the adjacency matrix of a graph, then tr(Ai) gives the total number of
closed walks of length i. So the adjacency cospectral graphs have the same number
of edges (for i = 2) and triangles (for i = 3).

Lemma 2.3. [12] For the characteristic polynomial of the Laplacian matrix of a
graph G, we have

q0 = 1; q1 = −2m; q2 = 2m2 − m − 1

2

n∑
i=1

d 2
i ;

q3 =
1

3
{−4m3 + 6m2 + 3m

n∑
i=1

d 2
i −

n∑
i=1

d 3
i − 3

n∑
i=1

d 2
i + tr(A3)};

qn−1 = (−1)n−1S(G); qn = 0,

where S(G) is the number of spanning trees of G.
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Lemma 2.4. [4], [16] Let G be a graph of order n with at least one edge, and the
maximum degree of G is ∆, then λ(G) ≥ ∆ + 1. Moreover, if G is connected, then
the equality holds if and only if ∆ = n − 1.

Lemma 2.5. [9], [13] If G is a graph, then λ(G) ≤ max{dv + mv|v ∈ V (G)},
equality holds if and only if G is either a regular bipartite graph or a semiregular
bipartite graph.

Lemma 2.6. [6, p. 85] Let T1 and T2 be two trees that have isomorphic line graphs,
then T1

∼= T2.

Lemma 2.7. [5] Let T be a tree of order n, then λi(T ) = ρi(M(T )) + 2, 1 ≤ i ≤
n − 1, where ρi(M(T )) is the ith largest adjacency eigenvalue of the line graph of
T .

Lemma 2.8. [7] Let G be bipartite graph and µ(G) be the spectral radius of Q(G).
Let u, v be two vertices of G and dv be the degree of v, suppose v1, v2, . . . , vs ∈
N(v) \ N(u)(1 ≤ s ≤ dv), X = (x1, x2, . . . , xn) be the principal eigenvector of
Q(G), where xi corresponds to vi, (1 ≤ i ≤ n). Let G∗ be the graph obtained from
G by deleting the edges (v, vi) and adding the edges (u, vi), 1 ≤ i ≤ s. If xu ≥ xv,
then µ(G) < µ(G∗).

Lemma 2.9. Let f1(x) = x − 1, fi+1(x) = x − 2 − 1

fi
, i ≥ 1, then we have

fi(x) >
x

x− 2
> 1, if x > 3 +

√
2. Moreover, the sequence {fi(x)} is strictly

decreasing.

Proof. We use the induction on i. When i = 1, it is easy to check our result holds.
If fi(x) >

x

x− 2
> 1, then

fi+1(x) = x − 2 − 1

fi
> x − 2 − x − 2

x
>

x

x − 2
.

By the induction hypothesis, we get the first result. Moreover,

fi − fi−1 = x − 2 − 1

fi−1
− x − 2 − 1

fi−2
=

fi−1 − fi−2

fi−1fi−2
,

since f2 − f1 < 0, we get that the sequence {fi(x)} is strictly decreasing.

Lemma 2.10. Let u be a vertex of a connected bipartite graph G with at least two
vertices. Let G(k, l), k ≥ ` ≥ 1, be the graph obtained from G by attaching two
paths Pk+1 = v1v2 · · · vku and Pl+1 = w1w2 · · ·w`u of length k and `, respectively,
at u. If λ(G(k, `)) > 3 +

√
2, then λ

(
G(k, `)

)
< λ

(
G(k − 1, ` + 1)

)
.

Proof. By Lemma 2.1, we know λ
(
G(k, `)

)
= µ

(
G(k, `)

)
= µ > 3 +

√
2. Let X

be the principal eigenvector corresponding to µ, and suppose the eigencomponent
corresponding to the vertex v is xv. Our aim is to show that xw1

> xv2
, then by
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Lemma 2.8, we can get the desired result. From µX = QX , on the path Pk+1, we
can get that

xv2
= f1(µ)xv1

, . . . , xvi
= fi−1(µ)xvi−1

.

So,
xu = f2(µ)f3(µ) · · · fk(µ)xv2

.

Similarly,
xu = f1(µ)f2(µ) · · · f`(µ)xw1

.

Combining the above two relations, we have

xw1

xv2

=
f`+1(µ) · · · fk(µ)

f1(µ)
.

By Lemma 2.9,

f`+1(µ)f`+2(µ) =

(
µ − 2 − 1

f`+1(µ)

)
f`+1(µ) = (µ − 2)f`+1(µ) − 1

> (µ − 2)
µ

µ − 2
− 1 = f1(µ).

So xw1
> xv2

, and the result holds.

By Lemma 2.10, we can get the following corollaries.

Corollary 2.11. Of all trees with diameter d, Td has the maximal Laplacian
spectral radius, where Td is obtained by attaching n− d− 1 pendent vertices on the

vertex
[
d+ 1

2

]
of the path Pd+1.

Corollary 2.12. Of all trees of order n, the star has the maximal Laplacian spectral
radius and the path has the minimal Laplacian spectral radius.

Corollary 2.13. The Laplacian spectral radius of Td, 2 ≤ d ≤ n−1 can be ordered
by

λ(Pn) = λ(Tn−1) < · · · < λ(T2) = λ(S1,n−1).

3. MAIN RESULTS

Let

S1 = S(n1, n2, . . . , nk), n1 ≥ n2 ≥ · · · ≥ nk ≥ 1, k ≥ 3,
k∑

i=1

ni = n − 1,

S2 = S(m1, m2, . . . , m`), m1 ≥ m2 ≥ · · · ≥ m` ≥ 1, ` ≥ 3,
∑̀
j=1

mj = n − 1

be two starlike trees.
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Theorem 3.1. If S1 and S2 are Laplacian cospectral, then k = `.

Proof. By Lemma 2.3, S1 and S2 have the same number of vertices and edges.
Consider the line graph G1 and G2 of S1 and S2, so G1 and G2 have the same
number of vertices. By Lemma 2.7, G1 and G2 are adjacency cospectral. By item
(3) of Lemma 2.2, G1 and G2 have the same number of edges, that is

(k
2

)
+ (n1 − 1) + · · · + (nk − 1) =

(`
2

)
+ (m1 − 1) + · · · + (m` − 1),

i.e.,
(k
2

)
− k =

(`
2

)
− `, this implies our result.

Theorem 3.2. No two non isomorphic starlike trees are Laplacian cospectral.

Proof. Let S1 and S2 be two non isomorphic starlike trees as we said above. We
will prove that if S1 and S2 are Laplacian cospectral, then S1

∼= S2. If S1 and S2

are Laplacian cospectral, then by Theorem 3.1, we know k = `. If ni 6= mi for some
i, then by k, ` ≥ 3, S1 or S2 contains K∗

1,3 as a subgraph, where K∗
1,3 is obtained by

subdividing an edge of the star K1,3, note that λ(K∗
1,3) > 3 +

√
2, then by Lemma

2.10, we get λ(S1) 6= λ(S2), this contradicts to the fact that they are Laplacian
cospectral. So ni = mi for all i and we complete the proof.

In the rest of this paper, we will obtain that some classes of starlike trees are
determined by their Laplacian spectrum.

Theorem 3.3. [14] The star is determined by its Laplacian spectrum.

Proof. Since the line graph of a star is a complete graph and the complete graph
is determined by its adjacency spectrum (see [2]), together with Lemmas 2.6 and
2.7, we get the result.

Theorem 3.4. The starlike trees with maximum degree 3 are determined by their
Laplacian spectrum.

Proof. Let S be a starlike tree as in Section 1 and G be a graph that are Laplacian
cospectral with S. By Lemma 2.2, G and S share the same characteristic polynomial
and by Lemma 2.3, G and S have the same number of vertices and edges. Since S
is connected, λn−1(S) > 0, so λn−1(G) > 0, G must be connected and is a tree. By
Lemmas 2.5, 24, we have 4 ≤ λ(S) < 5. So by Lemma 2.4, the maximum degree
of G is not greater than 3. Suppose the number of vertices of degree 1, 2, 3 are
x1, x2, x3, respectively. By Lemma 2.3, from q1, q2, we have

x1 + x2 + x3 = n, x1 + 2x2 + 3x3 = 2(n − 1), x1 + 4x2 + 9x3 = 3 + 4(n − 4) + 9.

Solving the above equations, we have x1 = 3, x2 = n − 4, x3 = 1. That is, G and S
have the same degree sequence, so G is a starlike tree. By Theorem 3.2, we have
G ∼= S, this is the desired result.

Theorem 3.5. The starlike trees with maximum degree 4 are determined by their
Laplacian spectrum.
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Proof. Note that in Lemma 2.3, for the adjacency matrix A of a tree, tr(A3) = 0.
The remaining work is the same as in Theorem 3.4.

REFERENCES
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