UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 18 (2006), 46–51. Available electronically at http://pefmath.etf.bg.ac.yu

NO STARLIKE TREES ARE LAPLACIAN COSPECTRAL

Lihua Feng, Guihai Yu

It is proved in this paper that no two starlike trees are Laplacian cospectral, and the starlike trees with maximum degree 3 and 4 are determined by their Laplacian spectrum.

1. INTRODUCTION

Let G be a graph with n vertices and m edges. The degree sequence of G is denoted by $d_1 \ge d_2 \ge \cdots \ge d_n$. Let A(G) and $D(G) = diag(d_i : 1 \le i \le n)$ be the adjacency matrix and the degree diagonal matrix of G, respectively. The Laplacian matrix of G is L(G) = D(G) - A(G). It is well known that L(G) is a symmetric, semidefinite matrix. We assume the spectrum of L(G), or the Laplacian spectrum of G, is $\lambda = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n = 0$. If more than one graph is involved, we may write $\lambda_i(G)$ in place of λ_i . λ_{n-1} is called the *algebraic connectivity* of G and $\lambda_{n-1} > 0$ if and only if G is connected. The multiplicity of zero as an eigenvalue equals to the number of components of G. The characteristic polynomial of L(G)can be written by

$$P_{L(G)}(x) = |xI - L(G)| = q_0 x^n + q_1 x^{n-1} + \dots + q_{n-1} x + q_n.$$

We use $\rho(G)$ to denote the adjacency spectral radius of G. Two graphs G and H are said to be *adjacency (Laplacian) cospectral* if they have the same adjacency (Laplacian) spectrum, or in other words, they have equal adjacency (Laplacian) characteristic polynomial. Obviously, two isomorphic graphs are adjacency and Laplacian cospectral.

²⁰⁰⁰ Mathematics Subject Classification: $05\mathrm{C50}$

Keywords and Phrases: Laplacian spectrum, cospectral graphs, starlike trees.

Supported by National Natural Science Foundation of China (No. 10371075 and No. 10531070)

For a connected graph G, let Q(G) = D(G) + A(G), we call this matrix Qmatrix, its largest eigenvalue is denoted by $\mu(G)$ or μ for simplicity. It is well known that Q(G) is entrywise nonnegative and positive definite, so from the PERRON-FROBENIUS Theorem, there is a unique positive eigenvector corresponding to μ . We call this eigenvector principal eigenvector. For the background on the Laplacian eigenvalues of a graph, the reader is referred to [1], [10], [11] and the references therein.

All notations in graph theory that are not defined here, can be founds in [6].

A starlike tree is a tree with exactly one vertex having degree greater than two. Let P_n denote the path on *n* vertices. By $S(n_1, n_2, \ldots, n_k)$ we denote the starlike tree which has a vertex *v* of degree $k \geq 3$ and has the property that

$$S(n_1, n_2, \ldots, n_k) - v = P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_k},$$

where $n_1 \ge n_2 \ge \cdots \ge n_k \ge 1$. Clearly, n_1, n_2, \ldots, n_k determine the starlike tree up to isomorphism.

In [2], the authors raised the following problem: Which trees are determined by their spectrum? We now still do not know the answer in the affirmative. In [2],[3], [14], some partial results on this problem were got. In this paper, we will prove that no two starlike trees are Laplacian cospectral, and the starlike trees with maximum degree 3 and 4 are determined by their Laplacian spectrum.

SOME LEMMAS

Lemma 2.1. [15] For a connected graph G, we have $\lambda(G) \leq \mu(G)$, with equality if and only if G is bipartite.

Lemma 2.2. [2] For $n \times n$ matrices A and B, the following are equivalent: (1). A and B are cospectral;

(2). A and B have the same characteristic polynomial;

(3). $tr(A^i) = tr(B^i)$, for all $i = 1, 2, \dots, n$.

If A is the adjacency matrix of a graph, then $tr(A^i)$ gives the total number of closed walks of length *i*. So the adjacency cospectral graphs have the same number of edges (for i = 2) and triangles (for i = 3).

Lemma 2.3. [12] For the characteristic polynomial of the Laplacian matrix of a graph G, we have

$$q_{0} = 1; \quad q_{1} = -2m; \quad q_{2} = 2m^{2} - m - \frac{1}{2} \sum_{i=1}^{n} d_{i}^{2};$$

$$q_{3} = \frac{1}{3} \{-4m^{3} + 6m^{2} + 3m \sum_{i=1}^{n} d_{i}^{2} - \sum_{i=1}^{n} d_{i}^{3} - 3 \sum_{i=1}^{n} d_{i}^{2} + tr(A^{3})\};$$

$$q_{n-1} = (-1)^{n-1} S(G); \quad q_{n} = 0,$$

where S(G) is the number of spanning trees of G.

Lemma 2.4. [4], [16] Let G be a graph of order n with at least one edge, and the maximum degree of G is Δ , then $\lambda(G) \geq \Delta + 1$. Moreover, if G is connected, then the equality holds if and only if $\Delta = n - 1$.

Lemma 2.5. [9], [13] If G is a graph, then $\lambda(G) \leq \max\{d_v + m_v | v \in V(G)\}$, equality holds if and only if G is either a regular bipartite graph or a semiregular bipartite graph.

Lemma 2.6. [6, p. 85] Let T_1 and T_2 be two trees that have isomorphic line graphs, then $T_1 \cong T_2$.

Lemma 2.7. [5] Let T be a tree of order n, then $\lambda_i(T) = \rho_i(M(T)) + 2$, $1 \le i \le n-1$, where $\rho_i(M(T))$ is the *i*th largest adjacency eigenvalue of the line graph of T.

Lemma 2.8. [7] Let G be bipartite graph and $\mu(G)$ be the spectral radius of Q(G). Let u, v be two vertices of G and d_v be the degree of v, suppose $v_1, v_2, \ldots, v_s \in N(v) \setminus N(u)(1 \leq s \leq d_v), X = (x_1, x_2, \ldots, x_n)$ be the principal eigenvector of Q(G), where x_i corresponds to $v_i, (1 \leq i \leq n)$. Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges $(u, v_i), 1 \leq i \leq s$. If $x_u \geq x_v$, then $\mu(G) < \mu(G^*)$.

Lemma 2.9. Let $f_1(x) = x - 1$, $f_{i+1}(x) = x - 2 - \frac{1}{f_i}$, $i \ge 1$, then we have $f_i(x) > \frac{x}{x-2} > 1$, if $x > 3 + \sqrt{2}$. Moreover, the sequence $\{f_i(x)\}$ is strictly decreasing.

Proof. We use the induction on *i*. When i = 1, it is easy to check our result holds. If $f_i(x) > \frac{x}{x-2} > 1$, then

$$f_{i+1}(x) = x - 2 - \frac{1}{f_i} > x - 2 - \frac{x - 2}{x} > \frac{x}{x - 2}.$$

By the induction hypothesis, we get the first result. Moreover,

$$f_i - f_{i-1} = x - 2 - \frac{1}{f_{i-1}} - x - 2 - \frac{1}{f_{i-2}} = \frac{f_{i-1} - f_{i-2}}{f_{i-1}f_{i-2}},$$

since $f_2 - f_1 < 0$, we get that the sequence $\{f_i(x)\}$ is strictly decreasing.

Lemma 2.10. Let u be a vertex of a connected bipartite graph G with at least two vertices. Let G(k,l), $k \ge \ell \ge 1$, be the graph obtained from G by attaching two paths $P_{k+1} = v_1v_2 \cdots v_ku$ and $P_{l+1} = w_1w_2 \cdots w_\ell u$ of length k and ℓ , respectively, at u. If $\lambda(G(k,\ell)) > 3 + \sqrt{2}$, then $\lambda(G(k,\ell)) < \lambda(G(k-1,\ell+1))$.

Proof. By Lemma 2.1, we know $\lambda(G(k, \ell)) = \mu(G(k, \ell)) = \mu > 3 + \sqrt{2}$. Let X be the principal eigenvector corresponding to μ , and suppose the eigencomponent corresponding to the vertex v is x_v . Our aim is to show that $x_{w_1} > x_{v_2}$, then by

$$x_{v_2} = f_1(\mu) x_{v_1}, \dots, x_{v_i} = f_{i-1}(\mu) x_{v_{i-1}}.$$

So,

$$x_u = f_2(\mu) f_3(\mu) \cdots f_k(\mu) x_{v_2}.$$

Similarly,

$$x_u = f_1(\mu) f_2(\mu) \cdots f_\ell(\mu) x_{w_1}.$$

Combining the above two relations, we have

$$\frac{x_{w_1}}{x_{v_2}} = \frac{f_{\ell+1}(\mu) \cdots f_k(\mu)}{f_1(\mu)}.$$

By Lemma 2.9,

$$f_{\ell+1}(\mu)f_{\ell+2}(\mu) = \left(\mu - 2 - \frac{1}{f_{\ell+1}(\mu)}\right)f_{\ell+1}(\mu) = (\mu - 2)f_{\ell+1}(\mu) - 1$$

> $(\mu - 2)\frac{\mu}{\mu - 2} - 1 = f_1(\mu).$

So $x_{w_1} > x_{v_2}$, and the result holds.

By Lemma 2.10, we can get the following corollaries.

Corollary 2.11. Of all trees with diameter d, T_d has the maximal Laplacian spectral radius, where T_d is obtained by attaching n - d - 1 pendent vertices on the vertex $\left[\frac{d+1}{2}\right]$ of the path P_{d+1} .

Corollary 2.12. Of all trees of order n, the star has the maximal Laplacian spectral radius and the path has the minimal Laplacian spectral radius.

Corollary 2.13. The Laplacian spectral radius of T_d , $2 \le d \le n-1$ can be ordered by

$$\lambda(P_n) = \lambda(T_{n-1}) < \dots < \lambda(T_2) = \lambda(S_{1,n-1}).$$

3. MAIN RESULTS

Let

$$S_1 = S(n_1, n_2, \dots, n_k), \quad n_1 \ge n_2 \ge \dots \ge n_k \ge 1, \quad k \ge 3, \quad \sum_{i=1}^k n_i = n - 1,$$

$$S_2 = S(m_1, m_2, \dots, m_\ell), \quad m_1 \ge m_2 \ge \dots \ge m_\ell \ge 1, \quad \ell \ge 3, \quad \sum_{j=1}^\ell m_j = n - 1$$

be two starlike trees.

Theorem 3.1. If S_1 and S_2 are Laplacian cospectral, then $k = \ell$.

Proof. By Lemma 2.3, S_1 and S_2 have the same number of vertices and edges. Consider the line graph G_1 and G_2 of S_1 and S_2 , so G_1 and G_2 have the same number of vertices. By Lemma 2.7, G_1 and G_2 are adjacency cospectral. By item (3) of Lemma 2.2, G_1 and G_2 have the same number of edges, that is

$$\binom{k}{2} + (n_1 - 1) + \dots + (n_k - 1) = \binom{\ell}{2} + (m_1 - 1) + \dots + (m_\ell - 1),$$

i.e., $\binom{k}{2} - k = \binom{\ell}{2} - \ell$, this implies our result.

Theorem 3.2. No two non isomorphic starlike trees are Laplacian cospectral.

Proof. Let S_1 and S_2 be two non isomorphic starlike trees as we said above. We will prove that if S_1 and S_2 are Laplacian cospectral, then $S_1 \cong S_2$. If S_1 and S_2 are Laplacian cospectral, then by Theorem 3.1, we know $k = \ell$. If $n_i \neq m_i$ for some i, then by $k, \ell \geq 3$, S_1 or S_2 contains $K_{1,3}^*$ as a subgraph, where $K_{1,3}^*$ is obtained by subdividing an edge of the star $K_{1,3}$, note that $\lambda(K_{1,3}^*) > 3 + \sqrt{2}$, then by Lemma 2.10, we get $\lambda(S_1) \neq \lambda(S_2)$, this contradicts to the fact that they are Laplacian cospectral. So $n_i = m_i$ for all i and we complete the proof.

In the rest of this paper, we will obtain that some classes of starlike trees are determined by their Laplacian spectrum.

Theorem 3.3. [14] The star is determined by its Laplacian spectrum.

Proof. Since the line graph of a star is a complete graph and the complete graph is determined by its adjacency spectrum (see [2]), together with Lemmas 2.6 and 2.7, we get the result.

Theorem 3.4. The starlike trees with maximum degree 3 are determined by their Laplacian spectrum.

Proof. Let S be a starlike tree as in Section 1 and G be a graph that are Laplacian cospectral with S. By Lemma 2.2, G and S share the same characteristic polynomial and by Lemma 2.3, G and S have the same number of vertices and edges. Since S is connected, $\lambda_{n-1}(S) > 0$, so $\lambda_{n-1}(G) > 0$, G must be connected and is a tree. By Lemmas 2.5, 24, we have $4 \leq \lambda(S) < 5$. So by Lemma 2.4, the maximum degree of G is not greater than 3. Suppose the number of vertices of degree 1, 2, 3 are x_1, x_2, x_3 , respectively. By Lemma 2.3, from q_1, q_2 , we have

 $x_1 + x_2 + x_3 = n, \ x_1 + 2x_2 + 3x_3 = 2(n-1), \ x_1 + 4x_2 + 9x_3 = 3 + 4(n-4) + 9.$

Solving the above equations, we have $x_1 = 3, x_2 = n - 4, x_3 = 1$. That is, G and S have the same degree sequence, so G is a starlike tree. By Theorem 3.2, we have $G \cong S$, this is the desired result.

Theorem 3.5. The starlike trees with maximum degree 4 are determined by their Laplacian spectrum.

Proof. Note that in Lemma 2.3, for the adjacency matrix A of a tree, $tr(A^3) = 0$. The remaining work is the same as in Theorem 3.4.

REFERENCES

- D. CVETKOVIĆ, M. DOOB, H. SACHS: Spectra of graphs. Academic Press, New York, 1980.
- E. R. VAN DAM, W. H. HAEMERS: Which graphs are determined by their spectrum? Linear Algebra Appl., 373 (2003), 241–272.
- M. DOOB, W. H. HAEMERS: The complement of the path is determined by its spectrum. Linear Algebra Appl., 356 (2002), 57–65.
- R. GRONE, R. MERRIS: The Laplacian spectrum of a graph II. SIAM J. Matrix Anal. Appl., 11 (1990), 218–238.
- I. GUTMAN, V. GINEITYTE, M. LEPOVIĆ: The high-band in the photoelectron spectrum of alkaners and its dependence on molecular structure. J. Serb. Chem. Soc., 64 (1999), 673–680.
- 6. F. HARARY: Graph Theory. Addison Wesley, 1969.
- Y. HONG, X. D. ZHANG: Sharp upper and lower bound for the largest eigenvalue of the Laplacian matrices of trees. Discrete Math., 296 (2005), 187–197.
- M. LEPOVIĆ, I. GUTMAN: No starlike trees are cospectral. Discrete Math., 242 (2002), 291–295.
- R. MERRIS: A note on the Laplacian graph eigenvalues. Linear Algebra Appl., 285 (1998), 33–35.
- R. MERRIS: Laplacian matrices of graphs: a survey. Linear Algebra Appl., 197–198 (1994), 143–176.
- B. MOHAR: The Laplacian spectrum of graphs. Graph theory, Combinartorics and applications, Vol 2, Edt. Y. ALAVI, etc, Wiley, 1991, pp. 871–898.
- C. S. OLIVEIRA, N. M. M. DE ABREU, S. JUKIEWILZ: The characteristic polynomial of the Laplacian graphs in (a,b)-linear classes. Linear Algebra Appl., 356 (2002), 113–121.
- Y. L. PAN: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl., 355 (2002) 287–295.
- 14. X. L. SHEN, Y. P. HOU, Y. P. ZHANG: Graph Z_n and some graphs related to Z_n are determined by their spectrum. Linear Algebra Appl., 404 (2005), 58–68.
- J. SHU, Y. HONG, K. WENREN: A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph. Linear Algebra Appl., 347 (2002), 123–129.
- X. D. ZHANG: The spectral radius of triangle-free graphs. Australasian Journal of Combin., 26 (2002), 33–39.

School of Mathematics,

(Received June 17, 2006)

Shandong Institute of Business and Technology, 191 Binhaizhong Road, Yantai, Shandong, P.R. China, 264005

E-mail: lihuafeng@sjtu.edu.cn, yuguihai@126.com