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INEQUALITIES INVOLVING INVERSE

CIRCULAR AND INVERSE HYPERBOLIC
FUNCTIONS

Edward Neuman

Inequalities connecting inverse circular and inverse hyperbolic functions are
established. These results are otained with the aid of an elementary transcen-
dental function which belongs to the family of R-hypergeometric functions
discussed in detail in Carlson’s monograph [2].

1. INTRODUCTION AND NOTATION

In this paper we offer several inequalities involving inverse circular and inverse
hyperbolic functions. The main results are derived from the inequalities satisfied
by the R-hypergeometric function RC(· , ·). Let x ≥ 0 and y > 0. Following [2]

(1.1) RC(x, y) =
1

2

∫ ∞

0

(t + x)−1/2(t + y)−1dt.

It is well-known that RC(λx, λy) = λ−1/2RC(x, y) (λ > 0), i.e., RC is a homo-
geneous function of degree −1/2 in its variables and also that RC(x, x) = x−1/2

and

(1.2) RC(0, y) =
π

2
√

y
(y > 0).

For later use let us record the following formula

(1.3) RC(x, y) =

{
(y − x)−1/2 arccos (x/y)1/2, x < y

(x − y)−1/2arccosh (x/y)1/2, x > y
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(see [2, (6.9-15)]). Other inverse circular and inverse hyperbolic functions also
admit representations in terms of the RC function [2, Ex. 6.9-16]

(1.4) arcsinx = xRC(1 − x2, 1), |x| ≤ 1

(1.5) arctanx = xRC(1, 1 + x2), x ∈ R

(1.6) arcsinhx = xRC(1 + x2, 1), x ∈ R

(1.7) arctanhx = xRC(1, 1 − x2), |x| < 1.

Bounds for the inverse circular and inverse hyperbolic functions can be ob-
tained using the following inequalities

(1.8)
3

xn + 2yn
≤ RC(x2, y2) ≤ (xny 2

n )−1/3, n ≥ 0

(see [5, (3.10) and (2.2)]) where the sequences {xn}∞0 and {yn}∞0 are generated
using the Schwab-Borchardt algorithm

x0 = x, y0 = y, xn+1 = (xn + yn)/2, yn+1 =
√

xn+1yn, n = 0, 1, . . .

(see [1], [2]). It has been shown in [5, 3.3] that the sequences {3/(xn + 2yn)}∞0
and {(xny 2

n )−1/3}∞0 converge monotonically to the common limit RC(x2, y2). It is
worth mentioning that Carlson’s inequalities

6(1 − x)1/2

2
√

2 + (1 + x)1/2
< arccosx <

3
√

4 (1 − x)1/2

(1 + x)1/6
, 0 < x < 1

(see, e.g., [4, 3.4.30]) follow from (1.8) with n = 1 and (1.3) used with x := x2 and
y = 1. Lower bounds for the function arcsinx (see [4, 3.4.31]) can be derived using
the first inequality in (1.8) with n = 0, n = 1 and x0 = (1 − x2)1/2 followed by
application of (1.4). We omit further details.

For later use, let us record three inequalities

(1.9) y
(
RC(y2, x2)

)−1 ≤
(
RC(x2, y2)

)−2 ≤ 1

2

((
RC(y2, x2)

)−2
+ y2

)
,

(1.10)
(
RC(x2, y2)

)2 ≤ RC(y, A)

A
√

y
,

and

(1.11)
(
RC(x, A)

)2 ≤ RC(y2, x2) (A = (x + y)/2)

which have been established in [6, Theorem 3.1].

The main results of this note are contained in the next section.
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2. MAIN RESULTS

Our first result reads as follows.

Theorem. The following inequalities

(2.1)

(
arcsinx

x

)2

≤ arctanhx

x
≤
(

arcsinx

x
√

1 − x2

)1/2

, (|x| < 1)

and

(2.2)

(
arcsinhx

x

)2

≤ arctanx

x
≤
(

arcsinhx

x
√

1 + x2

)1/2

, (x ∈ R)

hold true. Inequalities (2.1) and (2.2) become equalities if x = 0.

Proof. For the proof of inequalities (2.1) we shall employ the following one

(2.3) R 2
C(x2, y2) ≤ RC(y2, x2)

y
≤ 1

y

(
RC(x2, y2)

x

)1/2

.

The first inequality in (2.3) follows from the first inequality in (1.9) while the
second one is obtained from the first inequality by interchanging x with y, i.e., by
letting x := y and y := x. Substituting x2 := 1 − x2 and y = 1 in (2.3) we obtain
the desired result using (1.4) and (1.7). In order to prove the inequalities (2.2) it
suffices to use (2.3) with x2 := 1 + x2 and y = 1 followed by application of (1.6)
and (1.5).

Companion inequalities to (2.1) and (2.2) are contained in the following.

Theorem 2. Let |x| < 1. Then

(2.4)

(
arctanhu

u

)2

≤ arcsinx

x
≤
(

arctanhu

u(1 − u2)

)1/2

,

where u =

√
1

2

(
1 −

√
1 − x2

)
. If x ∈ R, then

(2.5)

(
arctan v

v

)2

≤ arcsinhx

x
≤
(

arctan v

v(1 + v2)

)1/2

,

where v =

√
1

2

(√
1 + x2 − 1

)
. Equalities hold in (2.4) and (2.5) if x = 0.

Proof. There is nothing to prove when x = 0. Since all members of (2.4) and (2.5)
are even functions in x, we will always assume that x > 0. Inequalities (2.4) and
(2.5) follow easily from the following one

(2.6)
(
RC(x, A)

)2 ≤ RC(y2, x2) ≤
(

RC(x, A)

A
√

x

)1/2

,
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where A = (x + y)/2 is the arithmetic mean of two positive numbers x and y.
The first inequality in (2.6) is (1.11) while the second one follows from (1,10) after
interchanging x with y. Letting y2 = 1 − x2 and x = 1 in (2.6) we obtain

(
RC(1, A)

)2 ≤ RC(1 − x2, 1) ≤
(

RC(1, A)

A

)1/2

,

where A =
1

2

(
1 +

√
1 − x2

)
. Writing A = 1 − u2 we obtain

(
RC(1, 1 − u2)

)2 ≤ RC(1 − x2, 1) ≤
(

RC(1, 1 − u2)

1 − u2

)1/2

.

Application of (1.4) and (1.7) completes the proof of (2.4). Inequalities (2.5) can
be established in an analogous manner. We use (2.6) with y2 = 1 + x2, x = 1 to
obtain

R 2
C(1, 1 + v2) ≤ RC(1 + x2, 1) ≤

(
RC(1, 1 + v2)

1 + v2

)1/2

.

Making use of (1.5) and (1.6) we obtain the desired result.

Our next result reads as follows.

Theorem 3. The following inequalities

(2.7)

(
arcsinx

arctanhx

)2

+

(
arcsinx

x

)2

≥ 2, (|x| < 1)

(2.8)

(
arcsinhx

arctanx

)2

+

(
arcsinhx

x

)2

≥ 2, (x ∈ R)

(2.9)

(
arccosx

arccosh (1/x)

)2

+

(
arccosx√

1 − x2

)2

≥ 2, (|x| < 1, x 6= 0)

and

(2.10)

(
arccoshx

arccos(1/x)

)2

+

(
arccoshx√

x2 − 1

)2

≥ 2, (|x| ≥ 1)

are valid. Inequalities (2.7) and (2.8) become equalities if x = 0. Equalities hold in
(2.9) and (2.10) if x = 1.

Proof. Inequalities (2.7)–(2.19) can be regarded as special cases of the inequality

(2.11)
(
RC(x2, y2)

)2(
R−2

C (y2, x2) + y2
)
≥ 2 (x > 0, y > 0)

which follows from the second inequality in (1.9). Equality holds in (2.11) if x = y.
In order to prove (2.7) we put x2 := 1 − x2 and y = 1 in (2.11) and next we use
(1.4) and (1.7) Similarly, letting x2 := 1 + x2 and y = 1 in (2.11) and applying
(1.5) and (1.6) we obtain the inequalities (2.8). For the proof of the inequalities
(2.9) we use (2.11) with y = 1 together with two formulas

RC(x2, 1) =
arccosx√

1 − x2
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and

(2.12) RC(1, x2) =
arccosh (1/x)√

1 − x2
(|x| ≤ 1)

which follow easily from (1.3). If |x| ≥ 1, then

RC(x2, 1) =
arccoshx√

x2 − 1

and

(2.13) RC(1, x2) =
arccos(1/x)√

x2 − 1
.

Letting y = 1 in (2.11) and next using the last two formulas we obtain the inequa-
lities (2.10).

We shall prove now the following.

Theorem 4. If 0 < y ≤ 1 ≤ x, then

(2.14)
arccoshx√

x2 − 1
≤ arccos y√

1 − y2

with equality if x = y = 1. Also, if 0 ≤ x ≤ 1, then

(2.15)
√

1 − x2 arctanhx ≤
√

1 + x2 arctanx

with the inequality reversed if −1 < x ≤ 0. Inequality (2.15) becomes an equality if
x = 0.

Proof. B. C. Carlson and J. L. Gustafson [3] have proven a result which in
a particular case states that the function RC is strictly totally positive. Thus if
0 ≤ x1 < x2 and 0 < y1 < y2, then

RC(x1, y2)RC(x2, y1) < RC(x1, y1)RC(x2, y2).

Letting above x1 = 0, x2 = x > 0 and next using (1.2) we obtain

(2.16)
√

y1 RC(x, y1) <
√

y2 RC(x, y2).

Assume that 0 < y < 1 < x. Putting in (2.16) y1 = 1/x2, y2 = 1/y2, and x = 1 we
obtain

(2.17)
1

x
RC

(
1,

1

x2

)
<

1

y
RC

(
1,

1

y2

)
.

Application of (2.12), with x := 1/x, to the first member of (2.17) and use of (2.13),
with x := 1/y, on the second member of (2.17) completes the proof of (2.14). In
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order to establish the inequality (2.15) we use (2.16) with y1 = 1− x2, y2 = 1 + x2

(0 < x < 1), and x = 1, to obtain
√

1 − x2 RC(1, 1 − x2) <
√

1 + x2 RC(1, 1 + x2).

Making use of (1.7) and (1.5) we obtain the assertion. The proof is complete.

We close this section with the following.

Theorem 5. Let f(t) denote one of the following functions arcsin t, arctan t,
arcsinh t, arctanh t and let x and y belong to the domain of f(t). If z2 = (x2+y2)/2,
then the following inequality

(2.18)

(
f(z)

z

)2

≤ f(x)

x

f(y)

y

is valid.

Proof. It follows from Proposition 2.1 in [6] that the function RC(· , ·) is logarith-
mically convex in its variables

(2.19)

(
RC

(
x1 + x2

2
,

y1 + y2

2

))2

≤ RC(x1, y1)RC(x2, y2)

(x1 ≥ 0, x2 ≥ 0, y1 > 0, y2 > 0). Letting in (2.19) x1 = 1 − x2, x2 = 1 − y2,
y1 = y2 = 1 and next using (1.4) we obtain the desired result when f(t) = arcsin t.
The remaining cases can be established in the same way.

Using (1.3) and (2.19) one can establish inequalities similar to (2.18) when
f(t) = arccos t and f(t) = arccosh t. We omit further details.
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