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CURIOUS SPECIAL FUNCTION IDENTITIES

H. W. Gould

S. Simons [7] exibited and proved a most curious identity which may be
rewritten using binomial coefficient notation in the form

(1)
n∑

k=0

(−1)n−k
(
n
k

)(
n + k

k

)
(1 + x)k =

n∑

k=0

(
n
k

)(
n + k

k

)
xk.

Simons also observed that if we define

(2) f(y) =

n∑

k=0

(n
k

)(n + k
k

)(
y − 1

2

)k

,

then

(3) f(−y) = (−1)nf(y),

so that f(y) is a polynomial function of y with the same parity as n.

We give a complete generalization of these results to other special functions.

I have exhibited [5] a simple proof of (1) and (3) using well-known properties
of the Legendre polynomials. It will be useful to recapitulate the proof here.

First, it is known that the Legendre polynomial may be written as

(4) Pn(z) =
n∑

k=0

(
n
k

)(
n + k

k

)(z − 1

2

)k

,

so that the identity (1), written in Legendre polynomial notation, says that

(5) (−1)nPn(−2x − 1) = Pn(2x + 1).

2000 Mathematics Subject Classification: 05A19, 33A45, 33A50
Keywords and Phrases: Combinatorial identities, special functions.

22



Curious special function identities 23

But more generally it is well-known that

(−1)nPn(−z) = Pn(z),

i.e., the Legendre polynomial in z has the same parity as n. This is equivalent to
(3).

The identity (1) of Simons does not appear in my book [4], but will find a
place there when a third edition ever appears.

We now generalize (1) as follows.

Theorem 1. Let a set of polynomials {Fn(z)} of degree n in z satisfy

(6) Fn(−z) = (−1)nFn(z),

and suppose there exists coefficients Ak(n) such that

(7) Fn(z) =

n∑

k=0

Ak(n)
(z − 1

2

)k

.

then necessarily

(8)
n∑

k=0

(−1)n−kAk(n)(x + 1)k =
n∑

k=0

Ak(n)xk.

Proof. Relation (7) may first be rewritten as

(9) Fn(2x + 1) =

n∑

k=0

Ak(n)xk.

Then using (6), followed by (7), we find

Fn(2x + 1) = (−1)nFn(−2x − 1)

= (−1)n
n∑

k=0

Ak(n)(−x − 1)k =

n∑

k=0

(−1)n−kAk(n)(x + 1)k,

which proves our theorem.

All that is necessary to determine curious Simons-type identities is then to
determine the coefficients Ak(n) corresponding to the function Fn(x). We have only
to expand Fn(2x + 1) as in (9) and equate coefficients.

The simplest example of our theorem occurs when Fn(x) = xn. It is then

easily shown by the binomial theorem that Ak(n) =
(n
k

)
2k, so that

(10)
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)
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)
2kxk.
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Of course, this is easily seen directly since each side equals (2x + 1)n.

It is natural to consider Gegenbauer polynomials, which are a form of
generalized Legendre polynomials. These are defined by

(11) (1 − 2xt + t2)−ν =

+∞∑

n=0

Cν
n(x)tn,

and C
1/2
n (x) = Pn(x). It is also known [6, p. 27] that

(12) Cν
n(x) =

[n/2]∑

k=0

(−1)k (ν)n−k

k!(n − 2k)!
(2x)n−2k,

so that clearly Cν
n(−x) = (−1)nCν

n(x). Moreover [6, p. 279] it is known that

(13) Cν
n(x) =

n∑

k=0

(2ν)n+k

k!(n − k)!(ν + 1/2)k

(x − 1

2

)k

.

N. B.: The ascending factorial notation is used here. That is to say

(α)n = α(α + 1)(α + 2) · · · (α + n − 1) for n ≥ 1, and (α)0 = 1 for α 6= 0.

Theorem 1 then tells us that we have the Simons-type identity

(14)

n∑

k=0

(−1)n−k (2ν)n+k

k!(n − k)!(ν + 1/2)k
(x + 1)k =

n∑

k=0

(2ν)n+k

k!(n − k)!(ν + 1/2)k
xk,

which is an extension of the original formula (1) of Simons valid for all complex ν,
and of course (1) occurs as the special case ν = 1/2.

We offer next a more difficult example using Hermite polynomials. These
may be defined by

(15) Hn(x) = (−1)nex2

Dn
x e−x2

=

[n/2]∑

k=0

(−1)k n!

k!(n − 2k)!
(2x)n−2k.

It is clear that Hn(−x) = (−1)nHn(x) so they satisfy (6). The first seven values
of Hn(x) are as follows:

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12, H5(x) = 32x5 − 160x3 + 120x,

H6(x) = 64x6 − 480x4 + 720x2 − 120.

Table 1 gives values of the coefficients Ak(n) found by expanding Hn(2x + 1) for
0 ≤ n ≤ 6. A formula could be worked out for these numbers by use of (9).

Theorem 1 may be applied to several other interesting polynomials. For
example, it applies to the Gould-Hopper polynomial Hr

n(x, a, p) when r is even
[2]. Also we can use it for the generalized Humbert polynomial Pn(m, x, y, p, C)
when m is even [3].
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0 1 2 3 4 5 6 · · · k
0 1
1 2 4
2 2 16 16
3 −4 24 96 64
4 −20 −64 192 512 256
5 −8 −400 −640 1280 2560 1024
6 184 −192 −4800 −5120 7680 12288 4096
n

Table 1. Coefficients Ak(n) found by expanding Hn(2x+ 1), for 0 ≤ n ≤ 6.

Theorem 2. As in Theorem 1, let Fn(−z) = (−1)nFn(z) and

(16) Fn(ax + b) =

n∑

k=0

Ak(n)xk.

Then

(17)

n∑

k=0

(−1)n−kAk(n)
(
x +

2b

a

)k

=

n∑

k=0

Ak(n)xk.

Proof. The proof is the same, mutatis mutandis, as that of Theorem 1. The
original Theorem 1 where a = 2 and b = 1 is probably most useful in the sense that
various interesting special functions satisfy (7).

Once we have established the identity (8) there are ways to devise variations
of it. Thus we have

(18)
n∑

k=0

(−1)n−kAk(n)kp(x + 1)k =
n∑

k=0

Ak(n)kpxk,

which follows from (8) because (xD)p(x + 1)k = (xD)pxk = kpxk, so the factor kp

may be introduced on each side. Another variation is

(19)

n∑

k=j

(−1)n−kAk(n)
(k
j

)
(x + 1)k−j =

n∑

k=j

Ak(n)
(k
j

)
xk−j ,

which follows by taking the j-th derivative of each side of (8).

In (8) let x = −1 and we obtain the interesting formula

(20)

n∑

k=1

(−1)kAk(n) =
(
(−1)n − 1

)
A0(n), for all n ≥ 2.
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This affords a partial check of the n-th row of the array. Thus for the Hermite
polynomial Simons array,

64 + 192 − 512 + 256 = 0,

400 − 640 − 1280 + 2560− 1024 = −2 · (−8) = 16,

192 − 4800 + 5120 + 7680 − 12288 + 4096 = 0, etc.

Starting with the defining characteristic Fn(−z) = (−1)nFn(z), as in Theo-
rem 1, it is evident that the general class of polynomials satisfying relation (8) is
given by

(21) Fn(x) =
∑

0≤k≤n/2

Ck(n)xn−2k,

where Ck(n) is any arbitrary array. From this it easily follows that

(22) Aj(n) = 2j
∑

0≤k≤(n−j)/2

Ck(n)
(
n − 2k

j

)
.

The simplest instance of this is when Ck(n) = 1 identically. Table 2 offers a
tabulation of the array in this case In this case we have

(23) Fn(x) =
∑

0≤k≤n/2

xn−2k,

and

(24) Aj(n) = 2j
∑

0≤k≤(n−j)/2

(
n − 2k

j

)
.

1
1 2

2 4 4
2 8 12 8

3 12 28 32 16
3 18 52 88 809 32

4 24 88 192 256 192 64

4 32 136 368 640 704 448 128

5 40 200 640 1376 1984 1856 1024 256
5 50 280 1040 2656 4736 5824 4736 2304 512

Table 2. Values of Aj(n) = 2j
∑

0≤k≤(n−j)/2

(n− 2k
j

)
, for 0 ≤ j ≤ n ≤ 9.
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Rows of this array checked by the simple formula

(25)

n∑

j=0

(−1)n−jAj(n) =
[n
2

]
+ 1,

where brackets denote the greatest integer function. Another property of these
special A’s is as follows:

n∑

j=0

Aj(n) = 3

n−1∑

j=0

Aj(n − 1) if n is odd,

and 1 more than this if n is even.

It is felt that our theorems shed light the form of these kinds of combinatorial
or special function identities.
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