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SOME SHARP OSTROWSKI-GRUSS TYPE
INEQUALITIES

Zheng Liu

Using a variant of GRUSS inequality, to give a new proof of a well known result
on OSTROWSKI-GRUSS type inequalities and sharpness of this inequality is
obtained. Moreover, a new general sharp OSTROWSKI-GRUSS type inequality
is given.

1. INTRODUCTION

In 2001, CHENG in [3] has improved and further generalized some OSTROW-
SKI-GRUSS type inequalities involving bounded once and twice differentiable map-
pings.

In 2002, almost at the same time, CHENG and SUN in [4] as well as MATIC
in [5] have established the following variant of GRUSS inequality.

Lemma 1. Let h,g : [a,b] — R be two integrable functions such that v < g(t) <T
for all t € [a,b], where v,T' € R are constants. Then

b 1 b b Ff’y b 1 b
(V) |[ (@9t dt = -— [ h(t)dt [ g(t) dt} < 5= |ht) = 7= [ h(y) dy|dt.

Moreover, MATIC has proved that there exists function g to attain the equality
in (1), CERONE and DRAGOMIR have proved in [3] that 1/2 in (1) is sharp constant.

In Theorem 3 of [2], CERONE and DRAGOMIR have treated Theorem 1.5 of
[3] in a more general setup by using Lemma 1 and obtain

Theorem 1. Let f : [a,b] — R be a function which is absolutely continuous on
[a,b] and there exist constants y1,T'1 € R such that y1 < f'(t) < Ty fora.e.t € [a,b].
Then for all x € [a,b], we have

b - a a
@) - = S = L9 (oo 20 < Lo -,

where the constant 1/8 is sharp.
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Some sharp Ostrowski-Griiss type inequalities 15

In this paper, we will also treat Theorem 1.6, Theorem 3.1 and Theorem 3.2
of [3] by using Lemma 1 to obtain some sharp OSTROWSKI-GRUSS type inequalities
as follows:

Theorem 2. Let f : [a,b] — R be such that f' is absolutely continuous on [a, D]
and there exist constants 2, € R such that v2 < f"(t) < T'g for a.e.t € [a,b)].
Then for all x € [a,b], we have

@) ‘f(:v) () @+ (i(z)a)? . a+b)2> £16) = £'(a)

2 2 b—a

b
— %a, ff(t) dt‘ S (F2 - ’72) G(avbal‘)’

where
(3) G(a,b, )
3(b17a) (‘(x_a)(x_ a;b>(b_x)’
_ +<1—12(ba)2+<ma;rb)2)3/2>, aéfﬂé%(Qaer),
%(a+2b) <z <b,
(o (- 2" Jasnzezdosn

The inequality (2) with (3) is sharp.

Theorem 3. Let the assumptions of Theorem 1 hold. Then for all x € [a,b], we
have

< N2 2 _
< 56-0 ((x = a)® + (= b)*) (T1 — ).
The constant 1/8 is sharp.

Theorem 4. Let the assumptions of Theorem 2 hold. Then for all x € [a,b], we
have

2 pr —(r—a)?f(a b

The constant 1 s sharp.
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16 Zheng Liu

Here we have given revised version for (5) since the expression in [3] contained
a misprint.

In Section 2, we will use Lemma 1 to provide a new proof of Theorem 2.
Instead of proving Theorem 3 and Theorem 4, in Section 3, we will give a new
general sharp OSTROWSKY-GRUSS type inequality.

2. A NEW PROOF OF THEOREM 2

We choose in (1), h(t) = Ka(z,t) and g(t) = f(t), where K> : [a,b]*> — R is
given by

Ka(z,t) = 2

Then we have

ng(x,t)dt: (z—0a) —(@=b" _ (i (b—a)Q—i—%(:v— a;b>2)(b—a),

and so

[ froage- [152 - (oo

e Ly E NN S

B 1 9 a+b\2\1/2 B 1 9
DenotetlfaJr(E(bfa) +(acf 3 )) andtgfb7<ﬁ(bfa)

24 1/2
+(xfa;b)) . It is clear that a < t1 <ty < b.
2a+b

Incasea <z < , we see that a < x < t1, and hence

b xT
/\h(ﬂ—b1afh(y)dy\dt=/(i(b_a)u%(x_a;b>2_(t—2a)2)dt
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In case 2a+b <z< a—g?b , we see that t; < z < t5, and hence
b . t , ,

_ 1 _ 1o 2 1( _a+b> _(t—a)
/‘h(t) baafh(y)dy‘dt—/(%(b a)? + 5 (o -5 S )ar

1 a+b\2  (t—b)?
(ﬂ(ba)QJr%(:c ;Lb> _ G 2") )dt

b t
/‘h(t)—b1ajh(y)dy‘dt:/(i(b_a)2+%(x_a;b>2_ (t_ga)Q)dt

(S o e )

a / a 2 / _ /a
I L Y =
1 b
- o a

b b

b
Ko@) () dt = = [Kae )t [ £(1)
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?,F(Qb:f) <(Ia)<a7+b *‘T)(b*‘”)
+(1_12(b_a)2+(x_a+b)2>3/2>, a§x<2a+b

2

_a+b>2)3/2 2a+b a-+2b
2 b

(0 - 2520

2\ 3/2
+<1—12(b7a)2+(x—a;b) ) ), et oy <,
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)
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|
2
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=
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()
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i.e., we have obtained the inequality (2) with (3).
It is not difficult to find that the inequality (2) with (3) is sharp. Indeed,

t Yy
we can construct the function f(¢) = [ (fj(z) dz) dy to attain the equality in (2),
a a

where

V2, a§t<x,

J)={ To, w<t<t, a<e<Zrl
Yo, t2 <t <D,
Y2, a§t<t17

JW)={ To, i<t<t, Eroyctt®
Yo, to <t <D,
Y2, a§t<t17

) =4 Ta, t1<t<u, a+32b<:r§b

Y2, ¢ <t<b,

The proof of Theorem 2 is complete.

3. A NEW GENERAL OSTROWSKY-GRUSS TYPE INEQUALITY

We need the following two integral identities:

Lemma 2 [1]. Let f : [a,b] — R be such that "~V is absolutely continuous on
[a,b] for some n > 1. Then for all x € [a,b], we have the identity:

b n-1 b

[r@a =y E= OO0 j0) 4 (1) [ (w0 /0 @) dt,

K, (z,t):= v




Some sharp Ostrowski-Griiss type inequalities 19

Lemma 3. Let f: [a,b] — R be such that f*=1 is absolutely continuous on [a, b]
for some n > 1. Then for all x € [a,b], we have the identity:

b n-l k1 k k1
_ N =) + (=)= —a)
(6) :[f(t) dt - ];0 (k -+ 1)' f(k) ($)
(b—z)"+ ()" Nz —a)" (n
- (n+1)! fr )
L= ) + (1) = ) )
(n+1)!

) FH () £ (1) d,

a
where the kernel Hy, : [a,b]?> — R is given by

(t-—a)" (z—a)

— a<lt<z

o n! (n+1)° - ’
Hn(xvt) T (tfb)n _ (:Efb)n r<t< b
n! (n+1)!7 - =7

Proof. It is immediate that

fan(:v, £ (t) dt = fbKn(:v, £) £ () dt
)" —z)" —(z—a)" ,(n-
(n+1)! F V@)

D= IG) — (@ - @) )
(n+1)! '

+

Consequently, (6) follows from Lemma 2.
Now let us observe that

b

[H,(z,t)dt = fz((t_a)n - (fbla)n>dt+fb((t_b)n —~ (m_b)n)dt: 0.

p 2 n! ( 1)! n! (n+1)!
Further, denote t; = a + — n1+ - (x —a) and tyg = b — ﬁ (b — x). Clearly,

a <ty <ty <b. If nisodd, we get

5|Hn(x,t)| dt = tf((”ﬁ —o )y +f((t e

o\ (n+1)! n! (n+1)!
Zr(x—b"  (t=b)" bE=b"  (z—b)"
+;[((n+1)! - )dHt{( ar (n+1)!)dt
2n

= (n+ 1)(n + 1)! {‘/n——i—l ((:c — a)nJrl + (b _ x)n+1)
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and if n is even, we get

ty1

5|Hn(ac,t)|dt _ {((m_a)n - (t—a)n)dt+f((t—a)” _ (”U_“y:)dt

(n+1)! n! 4 n! (n+1)
ZrE-b"  (z-b" bila=b"  (t=b)"
i( a (n—&-l)!)dtth{((n—&—l)! ~ )
2n

= (n+ 1)(n + 1)! Vn+ 1 ((:E — a)"-i—l + (b . x)n—i—l)

Thus by Lemma 1 and Lemma 2 we can obtain a general OSTROWSKY-GRUSS
type inequality as follows:

Theorem 5. Let f : [a,b] — R be such that f*=1) is absolutely continuous on [a, b]
for some n > 1 and there exist constants v,,I'n, € R such that v, < f(") (t) <T,
for a.e.t € [a,b]. Then for all x € [a,b], we have

b-—2)"+ (D" (z—a)"

(7 @) - o DIG—a) FE=1 ()
n—1
(b—.T)’H—l + (_1)k($—a)k+1 )
i k=1 (k+1D!(b - a) (@)
b—a)" D) + (<) e - @) 1
+ (n+1)Yb—a) _b—a;[f(t)dt

=D +n1)! oy (@™ =) (T = ).

The equality in (7) is attained by choosing

ft)= j(i}f’l( . ?ﬁj(yl)dyl : ~)dyn1>dym

a a
where
Vs a§t§t1=a+ﬁ($—a),
=9 T hst<a, 1
Tns $§t<t2=b—ﬁ(b—x),

Fn; t2§t§b7

if n is odd, and
Yn, a§t<t1;
) T i <t<ua,
IO=91, s<t<t,
Yns t2§t§ba

if n is even.
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REMARK. It is easy to find that Theorem 5 reduces to Theorem 3 or Theorem 4 if
put n =1 or n = 2, and by the way, the sharpness of inequalities (4) and (5) are
proved.
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