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SOME SHARP OSTROWSKI-GRÜSS TYPE
INEQUALITIES

Zheng Liu

Using a variant of Grüss inequality, to give a new proof of a well known result
on Ostrowski-Grüss type inequalities and sharpness of this inequality is
obtained. Moreover, a new general sharp Ostrowski-Grüss type inequality
is given.

1. INTRODUCTION

In 2001, Cheng in [3] has improved and further generalized some Ostrow-
ski-Grüss type inequalities involving bounded once and twice differentiable map-
pings.

In 2002, almost at the same time, Cheng and Sun in [4] as well as Matić
in [5] have established the following variant of Grüss inequality.

Lemma 1. Let h, g : [a, b] → R be two integrable functions such that γ ≤ g(t) ≤ Γ
for all t ∈ [a, b], where γ, Γ ∈ R are constants. Then

(1)

∣∣∣∣
b∫

a

h(t)g(t) dt − 1

b − a

b∫
a

h(t) dt
b∫
a

g(t) dt

∣∣∣∣ ≤
Γ − γ

2

b∫
a

∣∣∣∣h(t) − 1

b − a

b∫
a

h(y) dy

∣∣∣∣dt.

Moreover, Matić has proved that there exists function g to attain the equality
in (1), Cerone and Dragomir have proved in [3] that 1/2 in (1) is sharp constant.

In Theorem 3 of [2], Cerone and Dragomir have treated Theorem 1.5 of
[3] in a more general setup by using Lemma 1 and obtain

Theorem 1. Let f : [a, b] → R be a function which is absolutely continuous on
[a, b] and there exist constants γ1, Γ1 ∈ R such that γ1 ≤ f ′(t) ≤ Γ1 for a.e.t ∈ [a, b].
Then for all x ∈ [a, b], we have

∣∣∣∣f(x) − 1

b − a

b∫
a

f(t) dt − f(b) − f(a)

b − a

(
x − a + b

2

)∣∣∣∣ ≤
1

8
(b − a)(Γ1 − γ1),

where the constant 1/8 is sharp.
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In this paper, we will also treat Theorem 1.6, Theorem 3.1 and Theorem 3.2
of [3] by using Lemma 1 to obtain some sharp Ostrowski-Grüss type inequalities
as follows:

Theorem 2. Let f : [a, b] → R be such that f ′ is absolutely continuous on [a, b]
and there exist constants γ2, Γ2 ∈ R such that γ2 ≤ f ′′(t) ≤ Γ2 for a.e.t ∈ [a, b].
Then for all x ∈ [a, b], we have

(2)

∣∣∣∣f(x) −
(
x − a + b

2

)
f ′(x) +

(
1

24
(b − a)2 +

1

2

(
x − a + b

2

)2
)

f ′(b) − f ′(a)

b − a

− 1

b − a

b∫
a

f(t) dt

∣∣∣∣ ≤ (Γ2 − γ2)G(a, b, x),

where

(3) G(a, b, x)

=






1

3 (b− a)

(∣∣∣(x − a)
(
x − a+ b

2

)
(b − x)

∣∣∣

+
(

1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2
)

, a ≤ x ≤ 1

3
(2a + b),

1

3
(a + 2b) ≤ x ≤ b,

2

3 (b− a)

(
1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2

,
1

3
(2a + b) ≤ x ≤ 1

3
(a + 2b).

The inequality (2) with (3) is sharp.

Theorem 3. Let the assumptions of Theorem 1 hold. Then for all x ∈ [a, b], we
have

(4)

∣∣∣∣
1

2
f(x) − 1

b− a

b∫
a

f(t) dt − (x− b)f(b) − (x− a)f(a)

2 (b− a)

∣∣∣∣

≤ 1

8 (b− a)

(
(x − a)2 + (x − b)2

)
(Γ1 − γ1).

The constant 1/8 is sharp.

Theorem 4. Let the assumptions of Theorem 2 hold. Then for all x ∈ [a, b], we
have

(5)

∣∣∣∣f(x) − 2

3

(
x − a+ b

2

)
f ′(x) +

(x− b)2f ′(b) − (x− a)2f ′(a)

6 (b− a)
− 1

b− a

b∫
a

f(t) dt

∣∣∣∣

≤ 1

9
√

3 (b− a)

(
(x − a)3 + (b − x)3

)
(Γ2 − γ2).

The constant
1

9
√

3
is sharp.
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Here we have given revised version for (5) since the expression in [3] contained
a misprint.

In Section 2, we will use Lemma 1 to provide a new proof of Theorem 2.
Instead of proving Theorem 3 and Theorem 4, in Section 3, we will give a new
general sharp Ostrowsky-Grüss type inequality.

2. A NEW PROOF OF THEOREM 2

We choose in (1), h(t) = K2(x, t) and g(t) = f ′′(t), where K2 : [a, b]2 → R is
given by

K2(x, t) :=






(t− a)2

2
, a ≤ t < x,

(t− b)2

2
, x ≤ t ≤ b.

Then we have

b∫
a

K2(x, t) dt =
(x − a)3 − (x − b)3

6
=

(
1

24
(b − a)2 +

1

2

(
x − a + b

2

)2
)

(b − a),

and so

b∫

a

∣∣∣h(t) − 1

b − a

b∫
a

h(y) dy
∣∣∣dt =

x∫

a

∣∣∣
(t − a)2

2
−
( 1

24
(b − a)2

+
1

2

(
x − a + b

2

)2)∣∣∣dt +

b∫

x

∣∣∣
(t − b)2

2
−
( 1

24
(b − a)2 +

1

2

(
x − a + b

2

)2)∣∣∣dt.

Denote t1 = a +
(

1

12
(b − a)2 +

(
x − a+ b

2

)2)1/2

and t2 = b −
(

1

12
(b − a)2

+
(
x − a+ b

2

)2)1/2

. It is clear that a < t1 < t2 < b.

In case a ≤ x ≤ 2a+ b

3
, we see that a ≤ x ≤ t1, and hence

b∫

a

∣∣∣h(t) − 1

b− a

b∫
a

h(y) dy
∣∣∣dt =

x∫

a

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− a)2

2

)
dt

+

t2∫

x

(
(t− b)2

2
− 1

24
(b − a)2 − 1

2

(
x − a+ b

2

)2
)

dt

+

b∫

t2

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− b)2

2

)
dt

=
2

3

(
(x − a)

(a + b

2
− x
)
(b − x) +

(
1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2
)

.
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In case
2a + b

3
≤ x ≤ a+ 2b

3
, we see that t1 ≤ x ≤ t2, and hence

b∫

a

∣∣∣h(t) − 1

b− a

b∫
a

h(y) dy
∣∣∣dt =

t1∫

a

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− a)2

2

)
dt

+

x∫

t1

(
(t− a)2

2
− 1

24
(b − a)2 − 1

2

(
x − a+ b

2

)2
)

dt

+

t2∫

x

(
(t− b)2

2
− 1

24
(b − a)2 − 1

2

(
x − a+ b

2

)2
)

dt

+

b∫

t2

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− b)2

2

)
dt

=
4

3

(
1

12
(b − a)2 +

(
x − a+ b

2

)2
)3/2

.

In case
a+ 2b

3
≤ x ≤ b, we see that t2 ≤ x ≤ b, and hence

b∫

a

∣∣∣h(t) − 1

b− a

b∫
a

h(y) dy
∣∣∣dt =

t1∫

a

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− a)2

2

)
dt

+

x∫

t1

(
(t− a)2

2
− 1

24
(b − a)2 − 1

2

(
x − a+ b

2

)2
)

dt

+

b∫

x

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2

− (t− b)2

2

)
dt

=
2

3

(
(x − a)

(
x − a+ b

2

)
(b − x) +

(
1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2
)

.

Thus by Lemma 1, we can derive

∣∣∣∣f(x) −
(
x − a+ b

2

)
f ′(x) +

(
1

24
(b − a)2 +

1

2

(
x − a+ b

2

)2
)
f ′(b) − f ′(a)

b− a

− 1

b− a

b∫
a

f(t) dt

∣∣∣∣

=

∣∣∣∣
1

b− a

b∫
a

K2(x, t)f ′′(t) dt − 1

(b− a)2

b∫
a

K2(x, t) dt
b∫
a

f ′′(t) dt

∣∣∣∣
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≤






Γ2 − γ2

3 (b− a)

(
(x − a)

(
a+ b

2
− x
)
(b − x)

+
(

1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2
)

, a ≤ x ≤ 2a+ b

3
,

2 (Γ2 − γ2)

3 (b− a)

(
1

12
(b − a)2 +

(
x − a+ b

2

)2
)3/2

,
2a+ b

3
≤ x ≤ a+ 2b

3
,

Γ2 − γ2

3 (b− a)

(
(x − a)

(
x − a+ b

2

)
(b − x)

+
(

1

12
(b − a)2 +

(
x − a+ b

2

)2)3/2
)

,
a+ 2b

3
≤ x ≤ b,

i.e., we have obtained the inequality (2) with (3).

It is not difficult to find that the inequality (2) with (3) is sharp. Indeed,

we can construct the function f(t) =
t∫

a

( y∫
a

j(z) dz
)
dy to attain the equality in (2),

where

j(t) =






γ2, a ≤ t < x,
Γ2, x ≤ t < t2,
γ2, t2 ≤ t ≤ b,

a ≤ x ≤ 2a+ b

3
,

j(t) =






γ2, a ≤ t < t1,
Γ2, t1 ≤ t < t2,
γ2, t2 ≤ t ≤ b,

2a+ b

3
≤ x ≤ a+ 2b

3
,

j(t) =






γ2, a ≤ t < t1,
Γ2, t1 ≤ t < x,
γ2, x ≤ t ≤ b,

a+ 2b

3
≤ x ≤ b.

The proof of Theorem 2 is complete.

3. A NEW GENERAL OSTROWSKY-GRÜSS TYPE INEQUALITY

We need the following two integral identities:

Lemma 2 [1]. Let f : [a, b] → R be such that f (n−1) is absolutely continuous on
[a, b] for some n ≥ 1. Then for all x ∈ [a, b], we have the identity:

b∫
a

f(t) dt =

n−1∑

k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x) + (−1)n

b∫
a

Kn(x, t)f (n)(t) dt,

where the kernel Kn : [a, b]2 → R is given by

Kn(x, t) :=






(t− a)n

n!
, a ≤ t < x,

(t− b)2

n!
, x ≤ t ≤ b.
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Lemma 3. Let f : [a, b] → R be such that f (n−1) is absolutely continuous on [a, b]
for some n ≥ 1. Then for all x ∈ [a, b], we have the identity:

(6)
b∫

a

f(t) dt =

n−1∑

k=0

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!
f (k)(x)

− (b− x)n + (−1)n−1(x− a)n

(n+ 1)!
f (n−1)(x)

+
(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!

+(−1)n
b∫

a

Hn(x, t)f (n)(t) dt,

where the kernel Hn : [a, b]2 → R is given by

Hn(x, t) :=






(t− a)n

n!
− (x− a)n

(n+ 1)!
, a ≤ t < x,

(t− b)n

n!
− (x− b)n

(n+ 1)!
, x ≤ t ≤ b.

Proof. It is immediate that

b∫
a

Hn(x, t)f (n)(t) dt =
b∫

a

Kn(x, t)f (n)(t) dt

+
(−1)n(b− x)n − (x− a)n

(n+ 1)!
f (n−1)(x)

− (−1)n(b− x)nf (n−1)(b) − (x− a)nf (n−1)(a)

(n+ 1)!
.

Consequently, (6) follows from Lemma 2.

Now let us observe that

b∫
a

Hn(x, t) dt =
x∫
a

(
(t− a)n

n!
− (x− a)n

(n+ 1)!

)
dt +

b∫
x

(
(t− b)n

n!
− (x− b)n

(n+ 1)!

)
dt = 0.

Further, denote t1 = a +
1

n
√
n+ 1

(x − a) and t2 = b − 1
n
√
n+ 1

(b − x). Clearly,

a < t1 < t2 < b. If n is odd, we get

b∫
a

|Hn(x, t)| dt =
t1∫
a

(
(x− a)n

(n+ 1)!
− (t− a)n

n!

)
dt +

x∫
t1

(
(t− a)n

n!
− (x− a)n

(n+ 1)!

)
dt

+
t2∫
x

(
(x− b)n

(n+ 1)!
− (t− b)n

n!

)
dt +

b∫
t2

(
(t− b)n

n!
− (x− b)n

(n+ 1)!

)
dt

=
2n

(n+ 1)(n+ 1)! n
√
n+ 1

(
(x − a)n+1 + (b − x)n+1

)
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and if n is even, we get

b∫
a

|Hn(x, t)| dt =
t1∫
a

(
(x− a)n

(n+ 1)!
− (t− a)n

n!

)
dt +

x∫
t1

(
(t− a)n

n!
− (x− a)n

(n+ 1)!

)
dt

+
t2∫
x

(
(t− b)n

n!
− (x− b)n

(n+ 1)!

)
dt +

b∫
t2

(
(x− b)n

(n+ 1)!
− (t− b)n

n!

)
dt

=
2n

(n+ 1)(n+ 1)! n
√
n+ 1

(
(x − a)n+1 + (b − x)n+1

)

Thus by Lemma 1 and Lemma 2 we can obtain a general Ostrowsky-Grüss
type inequality as follows:

Theorem 5. Let f : [a, b] → R be such that f (n−1) is absolutely continuous on [a, b]
for some n ≥ 1 and there exist constants γn, Γn ∈ R such that γn ≤ f (n)(t) ≤ Γn

for a.e.t ∈ [a, b]. Then for all x ∈ [a, b], we have

(7)

∣∣∣∣f(x) − (b− x)n + (−1)n−1(x− a)n

(n+ 1)!(b− a)
f (n−1)(x)

+

n−1∑

k=1

(b− x)k+1 + (−1)k(x− a)k+1

(k + 1)!(b − a)
f (k)(x)

+
(b− x)nf (n−1)(b) + (−1)n−1(x− a)nf (n−1)(a)

(n+ 1)!(b − a)
− 1

b− a

b∫
a

f(t) dt

∣∣∣∣

≤ n

(n + 1)(n + 1)! n
√

n + 1

(
(x − a)n+1 + (b − x)n+1

)
(Γn − γn).

The equality in (7) is attained by choosing

f(t) =
t∫

a

(
yn∫
a

(
· · ·

y2∫
a

j(y1) dy1 · · ·
)
dyn−1

)
dyn,

where

j(t) =






γn, a ≤ t ≤ t1 = a +
1

n
√
n+ 1

(x − a),

Γn, t1 ≤ t < x,

γn, x ≤ t < t2 = b − 1
n
√
n+ 1

(b − x),

Γn, t2 ≤ t ≤ b,

if n is odd, and

j(t) =






γn, a ≤ t < t1,
Γn, t1 ≤ t < x,
Γn, x ≤ t ≤ t2,
γn, t2 ≤ t ≤ b,

if n is even.
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Remark. It is easy to find that Theorem 5 reduces to Theorem 3 or Theorem 4 if
put n = 1 or n = 2, and by the way, the sharpness of inequalities (4) and (5) are
proved.
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